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Abstract

Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-
protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory
relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of
programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER,
heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in
different ways, including ced-3 (cell death defective) mutations, which block programmed cell death, ced-1 and ced-2
mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1) mutations, which accelerate the clearance
of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered
patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together,
our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates
environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently
and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.
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Introduction

In nature, animals are constantly exposed to changing

environmental conditions. In order to survive, organisms must

weather normal and oftentimes extreme variations in temperature,

water availability, salt levels, xenobiotics and other environmental

factors. To cope, animals have developed mechanisms for stress

protection. At the cellular level, DNA damage and other forms of

stress can induce apoptosis to remove damaged cells; at the

organismal level, stressful conditions can sometimes induce

responses that make the entire animal more stress resistant [1,2].

The nematode C. elegans has evolved several stress-protective

responses. These include aversive behaviors, such as avoidance of

noxious stimuli, and the activation of alternative developmental

programs, such as entry into the dauer state of diapause [3,4]. The

animal can also induce environmental stress resistance by turning

on gene transcription to manage the stressor using, for example,

the heat-shock transcription factor HSF-1 to combat heat stress

[5], SKN-1/Nrf2 to combat xenobiotic stress [6] and the hypoxia-

inducible factor HIF-1 to combat hypoxia [7].

In addition to coordinated stress responses at the organismal

level, C. elegans, like other organisms, can protect itself against stress

at the cellular level. For example, in C. elegans, germ cells undergo

apoptosis in response to DNA damage from ionizing radiation

[8,9]. In general, these types of single-cell, live-or-die decisions

may be made to sacrifice a part for the betterment of the whole.

How these decisions are made and the mechanistic and molecular

relationship, if any, between animal-wide stress responses and

programmed cell death are, however, poorly understood.

As a fundamental process by which organisms remove

unnecessary, abnormal or damaged cells, programmed cell death

involves both cell killing via apoptosis and cell corpse removal via

phagocytosis and degradation [10]. Although once considered a

disinterested second party that simply removes the dead cell, the

engulfing cell is now known to be an active participant in the cell

death program. For example, in weak C. elegans caspase mutants, in

which decisions about whether to complete the cell death program

are made stochastically, a second mutation in an engulfment gene

further reduces cell death [11,12]. Likewise, in mammals,

mutations affecting either the dying or engulfing cell can disrupt
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tissue homeostasis and produce developmental disorders, autoim-

mune disease, cancer and neurodegeneration [13].

Genes responsible for carrying out apoptosis and apoptotic-cell

engulfment were first described in C. elegans (Figure S1) [14,15]. In

the apoptotic cell, the canonical programmed cell death pathway

involves the Apaf-1 like protein CED-4, which is inhibited by the

BCL-2-like protein, CED-9 [16–19]. When disinhibited by

developmental cues, CED-4 activates the C. elegans executioner

caspase CED-3 [20,21]. In the engulfing cell, several partially

redundant pathways govern the membrane and cytoskeletal

rearrangements required for phagocytosis of the dying cell (Figure

S1) [22–25].

C. elegans was instrumental in illuminating the core features of

programmed cell death and clearance because it is highly

amenable to genetic and experimental manipulation. Recently,

we implicated the human disease gene progranulin in the

regulation of programmed cell death using a C. elegans mutant

[26]. The regulation and function of progranulin are particularly

interesting because of its links to disease. Progranulin haploinsuf-

ficiency causes the human neurodegenerative disease frontotem-

poral lobar degeneration while homozygous null carriers develop

neuronal ceroid lipofuscinosis [27–29]. Allelic variations in the

gene have also been linked to Alzheimer Disease, Parkinson

Disease and amyotrophic lateral sclerosis (ALS) [30–34], and

altered progranulin levels have been implicated in autoimmune

disease [35,36], cancer [37–42] and ischemic injury [43,44]. Thus,

precise regulation of progranulin levels is important for maintain-

ing health and homeostasis.

Previously, we showed that progranulin normally functions to

regulate the rate of apoptotic cell engulfment during the process of

programmed cell death [26]. In pgrn-1(-) mutants, apoptotic cells

are cleared approximately twice as fast as normal. We also showed

that macrophages from progranulin null-mutant mice are able to

engulf apoptotic cells more rapidly than are wild-type macro-

phages. Thus, progranulin, like mtm-1, abl-1 and srgp-1, is a

negative regulator of programmed cell death clearance [25,26,45–

47] (Figure S1).

Given the close relationship between environmental stress and

age-related disease, we asked whether pgrn-1(-) mutants exhibited

an altered response to cellular stressors. We found that they did.

However, unexpectedly, they demonstrated increased stress resis-

tance. Even more surprisingly, we found that the same was true of

mutations that perturb cell death in other ways, suggesting that a

stress response pathway is activated when any part of the

programmed cell death pathway does not proceed normally.

Our findings reveal an unexpected link between mechanisms that

control life-or-death decisions at the level of the individual cell and

at the level of the entire animal.

Results

Loss of pgrn-1 Confers Stress Resistance
We tested the resistance of progranulin mutants to several

environmental stressors. We found that compared to wild-type

controls, pgrn-1(tm985) mutants were resistant to osmotic, heat and

endoplasmic reticulum (ER) stress (the latter as measured by

resistance to tunicamycin, an inhibitor of N-linked glycosylation)

(Figure 1A–C, Tables S1A–C). In contrast, pgrn-1 mutants had

normal responses to oxidative stress (paraquat), genotoxic stress

(UV light) and pathogen exposure (P. aeruginosa and S. enterica;

Figure S2A–C and data not shown). Reintroducing either the C.

elegans or human progranulin gene into pgrn-1(-) mutants rescued

or partially rescued the mutant stress resistance phenotypes

(Figure 1C–D, Tables S1C–D). The partial rescue by human

progranulin only at higher doses of tunicamycin could be due to

species differences or differences in binding affinities to the

progranulin receptor.

What do heat, osmotic stress and tunicamycin have in common?

One possibility is that they all beget unfolded proteins and induce

the ER unfolded protein response. To address this idea, we tested

the ability of each stressor to increase expression of hsp-4. HSP-4 is

the nematode ortholog of mammalian grp78/BiP/HSP70, and is

upregulated by heat and ER stress [48,49]. We confirmed that

heat stress and tunicamycin increased Phsp-4::gfp reporter levels

(Figure S3A–B), and found that paraquat, UV irradiation and

exposure to P. aeruginosa did not (Figure S4A–C). However, under

our conditions, osmotic stress did not increase Phsp-4::gfp levels

(Figure S3C). Thus, induction of the ER stress-resistance marker

Phsp-4::gfp is not a feature that unifies heat, tunicamycin and

osmotic stress.

Apoptosis-Defective Mutants Are Stress Resistant
Because loss of function of pgrn-1, a regulator of programmed

cell death clearance, caused stress resistance, we asked whether

other mutations affecting programmed cell death would also affect

the stress response of the whole animal. In contrast to progranulin

mutants, loss-of-function mutations in the gene encoding the

executioner caspase ced-3 prevent apoptosis [15]. In ced-3 loss-of-

function mutants, cells that normally die during development

instead persist. Surprisingly, we found that ced-3(n717) mutant

animals also exhibited increased resistance to ER stress (Figure 2A

and Tables S2A). Moreover, pgrn-1(-); ced-3(n717) double mutants

were no more stress-resistant than were either of the single

mutants (Figure 2A and Table S2A), suggesting that pgrn-1 and ced-

3 mutations may activate the same stress response pathway. ced-

3(n717) mutants could also exhibit osmotic and heat stress

resistance, albeit not as consistently as ER stress resistance

(Figure 2B–C and Table S2B). Like pgrn-1 mutants, ced-3(n717)

mutants did not exhibit resistance to paraquat or UV light (Figure

S5).

Many alleles of ced-3 have been isolated, and they form an allelic

series based on their ability to inhibit programmed cell death [50].

We found that ced-3 alleles exhibited graded levels of ER stress

Author Summary

As an animal interacts with its environment, it invariably
encounters stressful conditions such as extreme temper-
atures, drought, UV exposure and harmful xenobiotics.
Since the ability to respond appropriately to stressful
stimuli is paramount to survival, organisms have devel-
oped sophisticated stress response programs. Some
stressful conditions cause damaged cells to commit suicide
(undergo apoptosis), whereas others cause the entire
organism to develop mechanisms to resist environmental
stress. Studying the small roundworm C. elegans, we find
that these two responses are somehow linked: perturbing
the mechanisms that allow cells to undergo apoptosis
changes the whole animal’s response to environmental
stress. In fact, perturbing the apoptosis machinery in any
way—through mutations that prevent apoptosis altogeth-
er, or through mutations that either slow or accelerate the
clearance of dying cells—causes the animal to become
more stress resistant. Together our findings raise the
possibility that the animal may have a way of detecting
defects in the normal programmed cell death pathway,
and that in response it induces a new program that
protects itself from a harsh environment.

Organismal Stress Resistance in Cell Death Mutants
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resistance that were correlated with their ability to block

programmed cell death. The strong ced-3 allele n717 was more

resistant to ER stress than were two intermediate strength (n1949

and n2436) alleles, and these, in turn, were more resistant than the

weak (n2438) allele (Figure 2D and Table S2A). These results are

consistent with a model in which the stress resistance conferred by

ced-3 mutations is mechanistically related to the apoptotic killing

conferred by ced-3.

In C. elegans, ced-9 and ced-4 regulate the ability of ced-3 to

activate programmed cell death [17]. The Bcl-2-like protein CED-

9 inhibits CED-4/Apaf1 activity, blocking cell death; whereas

activated CED-4 cleaves CED-3 and activates its caspase function,

leading to cell death [18,51]. Therefore, ced-9 gain-of-function (gf)

and ced-4 loss-of-function (lf or -) mutations are similar to ced-3(-)

mutations in the sense that they impair programmed cell death,

whereas ced-9(lf) mutations cause excessive cell death (and animal

lethality) due to uncontrolled activity of CED-4 and CED-3. We

tested ced-9(n1950gf) and ced-4(n1162lf) single mutants, as well as a

ced-4(n1162lf) ced-9(n2812lf) double mutant, for their responses to

ER stress. We found that ced-9(gf) mutants were resistant to ER

stress (Figure 2E and Table S2C). Further, the stress resistance

conferred by ced-9(gf) mutations was not additive with that

conferred by either pgrn-1(-) or ced-3(-) mutations, once again

suggesting that these genes affect the same stress-response pathway

(Figure 2E, Table S2C). We also found that ced-4(lf) single mutants

were resistant to ER stress at low doses of tunicamycin in one of

two experiments (Table S2D), and that these mutants did not

require intact ced-9 for this stress resistance (Figure 2F, Table S2D).

These findings suggest that ced-4 (and likely ced-3) may be

genetically downstream of ced-9 in the stress-resistance pathway,

as it is in the cell death pathway. However, since ced-4(lf) animals

displayed an incomplete degree of stress resistance compared to

ced-3(lf) and ced-9(gf) mutants, it remains possible that ced-4 is

dispensable or redundant in this stress response pathway.

Figure 1. pgrn-1(-) mutants are resistant to osmotic, heat and ER stress. N2 control and pgrn-1(tm985) animals were subjected to various
stressors and then scored for survival or ability to develop from egg to L4 stage. (A) Day 1 adult animals were treated with 600 mM NaCl for 24 hours
and scored for survival (Student’s t test). (B) Day 1 adult animals were incubated at 35uC for 8 hours and scored for survival (Student’s t test). (C)
Embryos from WT, pgrn-1(-) or pgrn-1(-) expressing a C. elegans progranulin rescue construct were treated with 0, 1 or 5 mg/mL tunicamycin (TM) for 3
days to induce ER stress and scored for ability to develop to the L4 stage (Two-way ANOVA with Bonferroni post-tests). (D) Embryos from WT, pgrn-1(-
) or pgrn-1(-) expressing a human progranulin rescue construct (two independently integrated and outcrossed strains) were treated with TM as in (C)
(Two-way ANOVA with Bonferroni post-tests). Results shown are representative of at least 2 experiments. Error bars represent standard deviation.
Statistical comparisons here are to N2 control. n.s. not significant, *p,0.05, **p,0.01, ***p,0.001. For additional statistical data, please see Table
S1A–D.
doi:10.1371/journal.pgen.1003714.g001

Organismal Stress Resistance in Cell Death Mutants
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Inhibition of Apoptotic Cell Engulfment Also Confers
Stress Resistance

In addition to mutations that accelerate the clearance of

apoptotic corpses, or prevent apoptosis altogether, we also asked

whether mutations in apoptotic cell engulfment pathways affected

stress resistance. We found that certain engulfment mutant alleles

increased ER stress resistance, although the degree of resistance

seen in engulfment mutants was generally less than that seen in

animals carrying pgrn-1(-) or strong ced-3(-) mutant alleles. The

engulfment mutants ced-1(e1735), ced-6(n1813), ced-7(n1892) and

ced-2(e1752), ced-5(n1812), ced-10(n3246) exhibited resistance to ER

stress at low doses of tunicamycin (1 mg/mL). However they

exhibited variable responses to tunicamycin at higher doses (5 mg/

mL), with ced-5, 7 and 10 mutants demonstrating ER stress

resistance but not ced-1, 2 or 6 mutants (Figure 3A–B and Table

S3A–B). Once again, double mutants containing pgrn-1 and

engulfment mutations were not more resistant than pgrn-1(-) alone,

suggesting that these mutations could potentially induce a

common ER stress-resistance pathway (Figure 3A–B and Table

S3A–B).

We also tested the response of engulfment mutants to other

stressors. We found that ced-1(e1735) and ced-2(e1752) mutants

were resistant to osmotic stress (Figure S6A and Table S3C). The

ced-2 mutant was also resistant to thermal stress in 1 of 2 trials

(Figure S6 and Table S3C). As a group, the engulfment mutants

were not as robustly resistant to environmental stressors as pgrn-1

and ced-3 mutants, which may be due to the partial functional

redundancy of engulfment pathway genes (See Figure S1).

Like pgrn-1, the tyrosine kinase ABL-1 is a negative regulator of

apoptotic corpse engulfment [45]. However, unlike pgrn-1, abl-1

does not act through the canonical engulfment pathways. Instead,

abl-1 negatively regulates the engulfment gene abi-1 to inhibit cell

death clearance (See Figure S1). We asked whether these two

genes might influence ER stress resistance, and found that both

abl-1 and abi-1 mutants exhibited resistance to low doses of

tunicamycin (Figure 3C, Table S3D). At higher doses of TM, abl-

1(-) and one mutant allele of abi-1, ok171, were resistant to

tunicamycin stress compared to wild type. Curiously, in some

situations, abl-1 mutations actually reduced ER stress resistance.

For example, abl-1(n1963) mutations alone have no visible effect

on engulfment of apoptotic corpses; however, abl-1 mutations

reduce the severity of the engulfment phenotype of ced-1(n2091)

and ced-6(n2095) mutants [45]. Likewise, we found that abl-

1(n1963) mutations reduced the level of ER stress resistance

conferred by ced-1(n2091) and ced-6(n2095) mutations (Figure S7A

and Table S3E). We do not have a simple unifying explanation for

these findings at this time, but they indicate that pgrn-1 is not the

only negative regulator of cell engulfment that can affect ER stress

resistance.

We also tested two additional genes that may modulate but are

not directly involved in programmed cell death for stress response

phenotypes. A mutation in unc-73 enhances the effect of other

Figure 2. Mutations in programmed cell death genes ced-3 and ced-9 confer stress resistance. (A) ced-3(n717) animals were subjected to
ER stress with indicated doses of tunicamycin (TM) and then scored for the ability to develop from egg to L4 stage. (B–C) Day 1 adult ced-3(n717)
animals were exposed to 600 mM NaCl for 24 hours or thermal stress at 35uC for 8 hours and scored for survival. (D) Strong (n717), moderate (n1949,
n2436) or weak (n2436) alleles of ced-3 were tested for response to ER stress. (E) A ced-9(n1950) gain-of-function allele was tested for ER stress
resistance in wild-type, pgrn-1(-) or ced-3(-) backgrounds. (F) ced-4(n1162) and ced-9(n2812) loss-of-function mutants were treated with TM and scored
for the ability to develop from egg to L4 stage. Results shown are representative of at least 2 experiments except for (C), which is an average of 3
experiments. Error bars represent standard deviation. Statistical comparisons are to N2 control (Student’s t test or ANOVA with Bonferroni post-tests).
n.s. not significant, *p,0.05, **p,0.01 ***p,0.001. For additional statistical data, see Table S2A–D.
doi:10.1371/journal.pgen.1003714.g002

Organismal Stress Resistance in Cell Death Mutants
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Figure 3. Engulfment mutations enhance ER stress resistance. (A) Mutations in ced-1(e1735), ced-6(n1813) and ced-7(n1892) with or without
pgrn-1(tm985) in the background were tested for ER stress resistance by tunicamycin (TM) treatment. (B) Mutations in ced-2(e1752), ced-5(n1812) and
ced-10(n3246) with or without pgrn-1(tm985) in the background were tested for ER stress resistance by tunicamycin treatment. (C) Mutations in abl-
1(ok171), abi-1(ok640) and abi-1(tm494) were tested for ER stress resistance by tunicamycin treatment. Results shown are representative of at least 2
experiments except in the case of (C) which was performed once. Error bars represent standard deviation. Statistical comparisons are to N2 control
(ANOVA with Bonferroni post-tests). n.s. not significant, *p,0.05, **p,0.01, ***p,0.001. For additional statistical data, see Table S3A, B, and D.
doi:10.1371/journal.pgen.1003714.g003

Organismal Stress Resistance in Cell Death Mutants
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engulfment mutants but alone has no engulfment defect [52]. A

mutation in unc-53 results in defective migration of cells and

neuronal processes and the UNC-53 protein interacts with ABI-1

[53]. However, neither unc-73(e936) nor unc-53(e404) mutants

exhibited ER stress resistance phenotypes (Figure S7B and Table

S3F). Thus, not all genes involved in apoptotic cell engulfment are

utilized for stress response.

Stress Resistance in a Non-Apoptotic Programmed Cell
Death Pathway

Recently, pqn-41 was identified as a mediator of a type of non-

apoptotic cell death [54]. This type of cell death, characterized by

crenellation of the nuclear envelope and organelle swelling, occurs

independently of the ced-3 caspase and engulfment genes [55,56].

To determine if pqn-41 affects ER stress resistance, we tested a

deletion mutant, ns924. We found that pqn-41(ns924) mutants were

resistant to ER stress at a low dose of tunicamycin but not at a high

dose, similar to some of the engulfment mutants we tested such as

ced-1, ced-2 and ced-6 (Figure S7C and Table S3G). These data

suggest that organismal stress resistance may be linked to both

apoptotic and non-apoptotic programmed cell death.

Together, these findings indicate that perturbing C. elegans

programmed cell death in a variety of ways, either by affecting the

initiation of cell death or the engulfment of the dying cell, can

confer whole-animal resistance to environmental stress.

The Unfolded Protein Response (UPR) Gene ire-1
Mediates ER Stress Resistance of pgrn-1 Mutants

Because of recent findings connecting the unfolded protein response

with neurodegenerative diseases [57], we decided to investigate the

mechanism by which a pgrn-1 mutation affected ER stress resistance.

The UPR is the cellular program that responds to ER stress. The UPR

is mediated by three ER resident proteins encoded by ire-1, pek-1

(mammalian Perk) and atf-6 [58]. Mutations in these genes impair the

response to ER stress in C. elegans [59,60]. Part of this stress response

includes alternative splicing of xbp-1 mRNA by activated IRE-1 and

the consequent upregulation of XBP-1 target genes, such as hsp-4, the

nematode ortholog of mammalian grp78/BiP/HSP70 [48,49]. To

investigate the role of the UPR in the stress resistance of apoptosis

mutants, we first tested whether pgrn-1 mutants required ire-1 for ER

stress resistance. We tested a pgrn-1; ire-1 double mutant and found that

resistance in pgrn-1 mutants was dependent on ire-1 (Figure 4A and

Table S4A) suggesting that the mechanism of stress resistance of cell

death mutants requires this branch of the UPR pathway. One

possibility was that the IRE-1 pathway is constitutively activated in

pgrn-1 mutants. To test this, we measured the levels of spliced xbp-1

mRNA. Interestingly, we found no changes in the levels of spliced xbp-1

mRNA in pgrn-1 mutants compared to wild type (Figure S8). We also

investigated whether ced-3 or ced-1 mutants exhibited increased levels of

spliced xbp-1 mRNA. Similar to pgrn-1 mutants, they did not (Figure

S8).

Figure 4. pgrn-1(-) resistance to ER stress may be partially dependent on the UPR pathway, daf-16 and pmk-1. (A) Embryos from the
indicated strains were grown on plates with tunicamycin (TM) and assessed for their ability to develop to the L4 stage. (B) daf-2(e1370) and daf-
16(mu86) were tested for ER stress resistance with and without pgrn-1(-) in the background. (C) daf-16(mu86); muIs113 and pgrn-1(tm985); muIs113
animals were tested for ER stress resistance. (D) pmk-1(km25) and pgrn-1(-); pmk-1(-) mutants were tested for ER stress resistance. Error bars represent
standard deviation. Statistical comparisons are to N2 control (Two-way ANOVA with Bonferroni post-tests). *p,0.05, **p,0.01, ***p,0.001. For
additional statistical data, see Table S4A–D.
doi:10.1371/journal.pgen.1003714.g004

Organismal Stress Resistance in Cell Death Mutants
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Since the hsp-4 gene is a target of active XBP-1, we measured

whether pgrn-1 mutants displayed increased Phsp-4::gfp reporter

levels. We found that except for one time point at the L4 stage of

larval development, Phsp-4::gfp levels in pgrn-1 mutants were largely

unchanged compared to controls. Correspondingly, levels of Phsp-

4::gfp in ced-3(n717) mutants were also generally unchanged

compared to controls (Figure S9). These data suggest that

although pgrn-1 mutations affect the ER stress response through

the ire-1 gene, the downstream splicing of xbp-1 mRNA and

expression of Phsp-4::gfp is not affected. pgrn-1 mutations may

somehow make the IRE-1 branch of the UPR more effective

without dramatically changing its activity.

The FOXO Transcription Factor DAF-16 and the MAPK
PMK-1 Are Required for ER Stress Resistance of pgrn-1
Mutants

Mammalian progranulin has been demonstrated to activate the

insulin/IGF-1 pathway and downstream MAP kinases [37,61,62].

Animals carrying mutations in the C. elegans insulin/IGF-1

receptor, daf-2, are long-lived [63,64] and resistant to many

stressors, including heat, osmotic stress and ER stress [63,64]. The

longevity and stress resistance of daf-2 mutants require the FOXO

transcription factor daf-16 [60]. Upon inactivation of daf-2, DAF-

16 accumulates in the nucleus [65] where it regulates transcription

of stress response genes. We found that the degree of ER stress

resistance of pgrn-1(tm985); daf-2(e1370) double mutants was

similar to that of daf-2(-) single mutants (Figure 4B and Table

S4B). pgrn-1 mutants also required intact daf-16 for stress

resistance, as daf-16(mu86) pgrn-1(tm985) double mutants were no

more stress resistant than were single daf-16(mu86) mutants

(Figure 4B and Table S4B). These findings suggest that pgrn-1

may be part of the daf-2 pathway or act with daf-2 to confer stress

resistance. However, unlike mutations in daf-2, pgrn-1(-) does not

affect nuclear localization of DAF-16::GFP protein (Figure S10).

DAF-16::GFP localization is also unaffected in ced-1 and ced-3

mutant animals (Figure S10). To determine if nuclear localization

of DAF-16 would further increase stress resistance in pgrn-1

mutants, we crossed the daf-16aAM transgene (which causes DAF-

16 nuclear accumulation due to mutation of its AKT-phosphor-

ylation sites) into a pgrn-1(-) background [65]. We found that a

pgrn-1(-); daf-16aAM strain was no more stress resistant than was the

pgrn-1 mutant alone (Figure 4C and Table S4C).

Others have shown that adult-only ced-3 RNAi extends lifespan

without altering DAF-16::GFP localization [66]. Given the

correlation between lifespan extension and some forms of stress

resistance [67], we tested the lifespan of ced-3, ced-1 and ced-2

mutants. In earlier work, we showed that pgrn-1(-) mutant lifespan

is no different than wild type [26]. Whereas a ced-3(-) mutation

significantly extended lifespan compared to wild type, ced-1 and

ced-2 mutations did not (Figure S11), indicating that longevity and

this type of organismal stress resistance can be dissociated.

Several MAP kinases are required for responses to cellular

stressors in C. elegans. The PMK-1/p38 MAP kinase encoded by

pmk-1 is required for resistance to oxidative stressors [68],

pathogenic bacteria [69] and exogenously induced ER stress

[70]. We confirmed that pmk-1 mutations increased sensitivity to

ER stress and found that pgrn-1(-); pmk-1(km25) double mutants

were no more resistant to ER stress than were pmk-1 single

mutants. Thus, pmk-1 is required for the ER stress resistance

induced by pgrn-1 mutations (Figure 4D and Table S4D).

Progranulin is a secreted protein. In mammals, two progranulin

receptors have been identified, the tumor necrosis factor receptor

(TNFR) and sortilin [71]. Thus, we tested a downstream TNF

receptor associated factor (TRAF) mutant, trf-1(nr2014), for stress

resistance and epistasis with pgrn-1(-). trf-1 mutants were not stress

resistant compared to wild type and pgrn-1(-) did not require trf-1 for

its stress resistance (Figure S12A). We also tested two mutant alleles

of trk-1, a C. elegans neurotrophin receptor similar to a co-receptor

for sortilin, the other mammalian progranulin receptor. Again, pgrn-

1 mutants did not require trk-1 for stress resistance (Figure S12B).

Thus, an as yet unidentified receptor(s) appears to be required for

progranulin to influence ER stress resistance in C. elegans.

Apoptotic Cell Death Mutants Share Co-regulated Genes
If mutations that perturb cell death in different ways act in the

same stress-resistance pathway, then they might share gene

expression patterns that differ from wild type. To test this, we

performed gene expression profiling by RNA sequencing (RNA-

seq), comparing day 1 adult pgrn-1(tm985), ced-3(n717) and ced-

1(e1735) mutants to wild-type animals. This allowed us to assess 1)

whether these strains have altered gene expression, and 2) whether

their differentially expressed genes are shared, suggesting the

involvement of a common pathway. In spite of different cell death

phenotypes of these mutants, RNA-seq revealed that all three

mutants down-regulated the same 95 genes and up-regulated the

same 9 genes, a highly significant portion of the total transcrip-

tome (p,10216) (Figure 5 and Table S5). Of the genes that share

differential regulation in our mutants, a significant number are

regulated by DAF-16 (Table S5). These findings are consistent

with the possibility that the stress resistance phenotypes of these

three mutants may be due to the involvement of shared pathways.

Discussion

We have shown that mutations that impair C. elegans

programmed cell death in any of three ways—by inhibiting

apoptosis, by impairing corpse clearance or by accelerating corpse

clearance—all enhance resistance to certain environmental

stressors. These mutations do not confer resistance to all cellular

stressors, as pgrn-1 and ced-3 mutants exhibit normal sensitivity to

UV light and oxidative stress.

Several questions naturally follow from these findings. First, why

are these mutants resistant to specific stressors? Tunicamycin is an

N-linked glycosylation inhibitor that causes retention of translated

proteins in the ER and induces the unfolded protein response.

Similarly, heat and osmotic stress cause ER and/or cytosolic

proteins to unfold and activate signaling programs that induce

expression of heat shock proteins and other chaperones. Thus, it

seems possible that cell death mutations all trigger a response

specific for unfolded proteins, such as the ER unfolded protein

response. Consistent with this, we found that the cell-death-related

stressors tunicamycin and heat both activated the ER stress-

response gene hsp-4/BIP, whereas the cell-death-unrelated stress-

ors Pseudomonas, UV and paraquat did not. However, Phsp-4::gfp was

not induced by osmotic stress and pgrn-1(-) mutation did not

increase basal Phsp-4::gfp expression levels. Thus, defects in cell

death can do more to protect the animal than simply to induce the

canonical UPR. They must generate a more multifaceted response

that can maintain proteostasis.

The mechanism by which cell death mutations induce animal-

wide stress resistance is not known. If different cell-death

mutations affected different pathways, or the same pathway to

different extents, then one would expect double mutants to be even

more stress resistant than the individual single mutants. As this was

not the case, it is possible that all of these mutations trigger the

same stress response, though other interpretations remain possible.

We identified some of the genes required for pgrn-1 mutants to

resist the ER stressor tunicamycin. We found that this stress
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resistance requires an intact ire-1 gene, the MAP kinase PMK-1

and the transcription factor DAF-16/FOXO. We also identified a

number of genes that are differentially regulated by all three of our

mutants (compared to wild type), suggesting that they may achieve

stress resistance by recruiting shared genes and/or pathways. It

will be very interesting to explore these shared genes in future

studies.

In contrast to the selective stress resistance of pgrn-1 mutants,

daf-2 mutants are resistant to most environmental stressors. Thus,

decreased DAF-2/insulin/IGF-1 signaling activates a genetic

program that more generally elevates organismal resilience. daf-2

mutants appear to increase their resistance to ER stress by making

the ire-1/xbp-1 pathway more efficient, possibly by activating

stress-response transcription factors like DAF-16 that collaborate

with ire-1/xbp-1 to induce new protective genes [60]. In

concordance with this, daf-2 mutants actually have reduced levels

of expression of ire-1/xbp-1-regulated genes such as hsp-4/BIP.

While this was not the case for pgrn-1 or ced-3 mutants, whose Phsp-

4::gfp levels were not decreased, there are some unexpected

similarities between the ER stress-resistance phenotypes of cell-

death mutants and daf-2 mutants. First, the ER stress resistance

phenotypes of pgrn-1 and daf-2 mutants require daf-16, either fully

(pgrn-1 mutant) or partially (daf-2 mutant). Second, both ER stress

responses are completely dependent on ire-1, yet in neither case is

xbp-1 splicing increased. Additionally, the cell death mutants

exhibited either no increase or only slight increases in Phsp-4::gfp

expression, rather than the substantial increase one might expect if

this branch of the ER pathway were constitutively active. Finally,

the daf-2 and pgrn-1 mutant ER stress-resistance phenotypes are

not additive. Thus the ER-stress resistance pathways activated by

these mutations likely share at least some mechanistic features.

It was striking that mutations that perturb programmed cell

death in such different ways all had similar effects on environ-

mental stress resistance. Why should mutations that lead to

undead cells (apoptosis mutations), lingering corpses (engulfment

mutations), and prematurely-engulfed corpses (progranulin muta-

tions) all activate what appears to be (from genetic tests) the same

stress resistance pathway? From an evolutionary perspective, this

linkage may make sense. Presumably apoptosis evolved not only to

sculpt tissues during development, but also to remove cells that are

damaged and unable to perform their normal functions, or

perhaps that are overtly harmful to the animal. Viewed in this

way, impairments in programmed cell death could be interpreted

by the organism as an inability to respond normally to stress.

Perhaps, under these conditions, the animal uses an alternative,

back-up system to survive; namely, the system we have described

in this study. Specifically, animals could have developed a sensitive

surveillance system that can detect abnormalities in cell death, and

respond to them by activating another pathway that enhances

their overall level of stress resistance. The existence of this type of

alternative system could have increased animal fitness during

evolution in turbulent or adverse environments.

While this model makes sense from an evolutionary perspective,

other models are possible as well. For example, perhaps cell-death

proteins, which act in a multi-step pathway to remove unwanted

cells, also act together in a different pathway that has the effect of

sensitizing the animal to various forms of stress. Non-cell death

functions have, in fact, been described for cell-death effectors. In

C. elegans, ced-10(-) mutations impair not only cell engulfment but

also cell migration [72]. Another engulfment gene, ced-1, has also

been implicated in neuronal regulation of innate immunity

[73,74]. In mammals, a defect in the BCL2-family protein BID

impairs cytokine production in response to immune activation

independently of its cell death signaling function [75]. Further,

certain mammalian executioner caspases can activate microglia in

response to inflammogens without causing microglial death [76].

Finally, in a mouse model of Alzheimer Disease, caspase activation

may be responsible for tau cleavage and aggregate formation,

thereby serving a protective function [77]. Thus, programmed cell

death effectors could hypothetically act together to sensitize

animals to certain stressors or, alternatively, to inhibit a stress-

response pathway. In either case, perturbing programmed cell

death would increase organismal stress resistance.

A protein in the flowering plant Arabidopsis may support the

model that programmed cell death effectors can sensitize an

animal to environmental stress. Arabidopsis can express a protein

called RD21 that, like CED-3, is a cysteine protease, and, like

progranulin, contains a granulin domain. Osmotic stress induces

Figure 5. Programmed cell death mutants share differentially
regulated genes. (A) Venn diagram of differentially regulated genes
in day 1 adult wild-type (N2) animals versus pgrn-1(tm985), ced-3(n717)
or ced-1(e1735) mutants. Significance cut-off was an FDR of ,0.05. The
numbers in black represent the total number of overlapping genes,
with direction of change (up-regulated = red, down-regulated = green)
indicated below. The significance of the overlaps between the mutant
strains was calculated using Fisher’s exact test. See the Excel file (Table
S5) for gene list. *p value,2.2610216. (B) Heat map depicting the fold
changes of gene expression in pgrn-1(tm985), ced-3(n717) and ced-
1(e1735) mutants compared to N2 wild-type animals for each of four
biological replicates.
doi:10.1371/journal.pgen.1003714.g005
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RD21 and, possibly as a consequence, leaf senescence. Interest-

ingly, in response to stress RD21 undergoes a process of

maturation in which its caspase domain cleaves and releases the

granulin domain [78–80]. In RD21, the caspase and granulin

domains are contained within the same molecule. However,

perhaps in C. elegans, the two domains reside in different proteins

but nevertheless act together to influence organismal stress

resistance.

In summary, our findings indicate that programmed cell death

effectors not only kill and remove individual cells, but also

influence environmental stress resistance at the level of the whole

animal. To our knowledge this is the first time that cell-death

effectors like ced-3, pgrn-1 and ced-1 have been implicated in

organismal stress resistance, and these findings raise many

interesting new questions about both mechanism and evolution.

Materials and Methods

Strains
Unless otherwise indicated, C. elegans were cultured at 20uC

using standard procedures [81]. Strains were kindly provided by

the Mitani Laboratory (National Bioresource Project) at the Tokyo

Women’s Medical University and the Caenorhabditis Genetics

Center (CGC) at the University of Minnesota. Strains were

outcrossed four times to the laboratory N2 control strain (N2

Bristol). Descriptions of strains can be found at www.wormbase.

org. The following strains were used:

AWK2 ced-9(n1950gf) III; ced-3(n717) IV

AWK74 daf-16(mu86) I; ced-3(n717) IV

AWK76 daf-16(mu86) pgrn-1(tm985) I; muIs109[Pdaf-16::daf-

16::gfp+Podr-1::RFP]

AWK77 daf-16(mu86) I; ced-3(n717) IV; muIs109[Pdaf-16::daf-

16::gfp+Podr-1::RFP]

AWK78 ced-1(e1735) daf-16(mu86) I

AWK80 ced-1(e1735) daf-16(mu86) I; muIs109[Pdaf-16::daf-

16::gfp+Podr-1::RFP]

AWK109 pgrn-1(tm985) I; pqn-41(ns294) III

AWK111 pgrn-1(tm985) I; muIs113[Pdaf-16::daf-16AM::gfp+rol-6]

CB404 unc-53(e404) II

CB936 unc-73(e936) I

CF1037 daf-16(mu86) I

CF1041 daf-2(e1370) III

CF1934 daf-16(mu86) I; muIs109[Pdaf-16::daf-16::gfp+Podr-1::RFP]

CF2260 N2; zcIs4[Phsp-4::gfp] V

CF2473 ire-1(ok799) II

CF3050 pgrn-1(tm985) I

CF3165 pgrn-1(tm985) I; zcIs4[Phsp-4-4::gfp] V

CF3170 pgrn-1(tm985) I; ire-1(ok799) II

CF3196 daf-16(mu86) pgrn-1(tm985) I

CF3206 pgrn-1(tm985) I; daf-2(e1370) III

CF3324 ced-3(n717) IV

CF3419 pgrn-1(tm985) I; ced-3(n717) IV

CF3447 pgrn-1(tm985) I; muIs189[Ppgrn-1:: pgrn-1::polycistronic

mCherry+Podr-1::CFP]

CF3762 ced-3(n2436) IV

CF3656 ced-2(e1752) IV

CF3660 ced-10(n3246) IV

CF3662 pgrn-1(tm985) I; ced-2(e1752) IV

CF3667 ced-1(e1735) I

CF3672 pgrn-1(tm985) ced-1(e1735) I

CF3675 pgrn-1(tm985) I; ced-10(n3246) IV

CF3680 ced-5(n1812) IV

CF3683 pgrn-1(tm985) I; ced-7(n1892) III

CF3684 pgrn-1(tm985) I; ced-5(n1812) IV

CF3685 pgrn-1(tm985) I; ced-6(n1813) III

CF3687 pgrn-1(tm986) I; muIs211[Pegl-3::huPGRN::polycistronic

mCherry+Podr-1::CFP] Line 1

CF3688 pgrn-1(tm986) I; muIs211[Pegl-3::huPGRN::polycistronic

mCherry+Podr-1::CFP] Line 2

CF3762 ced-3(n1949) IV

CF3802 ced-3(n717) IV; zcIs4[Phsp-4::gfp] V

CF3808 trk-1(tm3985) X

CF3809 trk-1(tm4054) X

CF3817 pgrn-1(tm985) I; trk-1(tm3985) X

CF3818 pgrn-1(tm985) I; trk-1(tm4054) X

CF3821 trf-1(nr2014) III

CF3833 pgrn-1(tm985) I; trf-1(nr2014) III

CF3879 pgrn-1(tm985) I; pmk-1(km25) IV

CF3881 pgrn-1(tm985) I; ced-9(n1950gf) III

FX494 abi-1(tm494) III

KU25 pmk-1(km25) IV

MT2547 ced-4(n1162) III

MT4433 ced-6(n1813) III

MT4982 ced-7(n1892) III

MT4770 ced-9(n1950gf) III

MT7384 ced-4(n1162) ced-9(n2812lf) III

MT16077 ced-1(n2091) I; abl-1(n1963) X

MT19956 ced-6(n2095) III; abl-1(ok171) X

OS4023 pqn-41(ns294) III

RB829 abi-1(ok640) III

XR1 abl-1(ok171) X

Generation of Transgenic C. elegans Strains
To generate a C. elegans pgrn-1 rescue construct, full-length pgrn-

1a+TAA stop codon and its endogenous 0.5 kB upstream

promoter were cloned into a Gateway polycistronic mCherry

vector (courtesy K. Ashrafi lab, UCSF). The resulting plasmid

(Ppgrn-1::pgrn-1+TAA::polycistronic mCherry) expresses both progranulin

and mCherry and functions as a full length rescuing construct

when expressed in the pgrn-1 mutant. To generate a human

progranulin rescue strain, the pan-neuronal egl-3 promoter

(courtesy of K. Ashrafi lab) and the human progranulin cDNA

sequence were cloned into a Gateway polycistronic mCherry

vector (Pegl-1::human PGRN::polycistronic mCherry).

The constructs were microinjected separately into the gonads of

day 1 adult C. elegans. Stable monogenic lines were isolated and

analyzed using Leica fluorescent, Zeiss Axioplan 2 or Nikon

Spectral Confocal microscopes. Extrachromosomal arrays were

integrated by UV irradiation by the method of C. Frank et al. [82]

and outcrossed at least 5 times to our lab’s wild-type N2 control

strain.

Stress Assays
For thermal and osmotic stress assays on Day 1 worms, L4-stage

animals were picked and grown at 20uC overnight. For thermal

stress assays, worms were moved to a 35uC incubator for 12 hours

and then scored for survival. Osmotic stress assays were performed

by the method of Lamitina et al. [83] with the following

modifications: worms were fed OP50 bacteria, worms were

cultured at 20uC prior to the assay, and assays were performed

on NG-based plates at 20uC with increasing amounts of NaCl

added as indicated. For paraquat stress assays, individual animals

were placed in 96-well plates with 100 mL of 250 mM methyl

viologen (paraquat, Sigma-Aldrich) dissolved in M9 and scored for

movement every 1 hour at 25uC. For genotoxic stress assays, day 1

adult animals were transferred to unseeded plates and treated with

1200 J/m2 UV light in a Stratalinker 1800 (Stratagene). Animals

were then scored for survival every 24 hours. Pathogen stress was
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performed by transferring worms to plates seeded with P. aeruginosa

or S. enterica starting at day 1 and scoring each subsequent day for

survival. In all assays, animals that failed to move in response to a

gentle touch with a metal pick were scored as dead.

For ER stress assays, synchronized eggs were transferred to

plates containing 0, 1, 2 or 5 mg/mL of tunicamycin (EMD

Chemicals). After 3 days, animals that developed to the L4 stage

were quantified. Figures show fraction of animals that develop to

L4 stage normalized to percent hatching on 0 mg/mL tunicamycin

for each strain.

Statistical analyses were performed in GraphPad Prism

statistical package with tests as indicated in figure legends.

Lifespan Analysis
Wild-type, ced-1(e1735), ced-2(e1752) and ced-3(n717) strains

were grown at 20 degrees Celsius (C), then picked to fresh OP50 at

the L4 stage and shifted to 25 degrees C. Subsequent lifespan

analysis was done at this temperature. Animals were transferred

every day to fresh plates until progeny production ceased. Animals

that crawled off the plate, exploded, bagged, or became

contaminated were censored. GraphPad Prism was used to

calculate mean life spans and perform statistical analyses. P values

were determined using log-rank (Mantel-Cox) statistics.

xbp-1 RT-PCR
C. elegans eggs were obtained by bleaching, then plated onto E.

coli OP50 and allowed to develop at 20uC to day 1 of adulthood.

At this point, positive controls were exposed to 5 mg/ml

tunicamycin for 5 hours while all other worms were left untreated.

After washing animals off plates, Trizol was added and samples

were frozen in liquid nitrogen. Animals were lysed in a Mini-

Beadbeater (Biospec products) for 10 minutes at the maximal

setting. Total RNA was isolated using a phenol/chloroform

extraction and DNA contamination was removed with DNA-free

treatment (Ambion). cDNA was synthesized (iScript) using oligo

(dT) primers and RT-PCR was performed using primers that

amplify an ,200 bp unspliced transcript and an ,180 bp spliced

transcript. Forward primer sequence: 59 ctacgaagaagaagtcgtcgg 39

and reverse primer sequence: 59 ttcttgttgcgatccatgtg 39. RT-PCR

products were analyzed by running them out on a 3% agarose gel

stained with ethidium bromide.

Quantification of Fluorescence
Animals expressing the Phsp-4::gfp transgene were anaesthetized

on agarose pads containing 2.5 mM levamisole. Whole worm

images were taken using a Retiga EXi Fast1394 CCD digital

camera (QImaging, Burnaby, BC, Canada) using the 56objective

on a Zeiss Axioplan 2 compound microscope (Zeiss Corporation,

Germany). Each image was taken so that the intestine was in focus

and exposure time was calibrated to minimize number of saturated

pixels for the set of animals. Images within each experiment were

acquired using identical settings and exposure times to allow direct

comparisons. Fluorescence intensity was measured by outlining

the entire worm. Openlab 4.0.2 software (Improvision, Coventry,

UK) was then used to quantify total intensity of each pixel in the

selected area. Measurements were obtained by subtracting the

minimum intensity from the mean intensity and taking the average

of these calculations for 8–10 animals per time-point.

RNA-Seq Analysis
Total RNA was isolated from each of the strains pgrn-1(tm985),

ced-3(n717), ced-1(e1735) and wild-type (N2E) using a phenol/

chloroform extraction, and DNA contamination was removed

with DNA-free treatment (Ambion). Samples were extracted in

quadruplicates (four biological replicates for each strain), for a total

of 16 samples. Total RNA was quantified using the RiboGreen

assay and RNA quality was checked using an Agilent Bioanalyzer

(Agilent). RNA Integrity Numbers (RINs) were .8 in all the

samples. Libraries for RNA-seq were prepared using the Illumina

TruSeq library preparation protocol (Illumina Inc), multiplexed

into a single pool and sequenced using an Illumina HiSeq 2500

sequencer across 4 lanes of 2 Rapid Run SR 1650 flow cells. After

demultiplexing, we obtained between 13 and 32 million reads per

sample, each one 50 bases long. Quality control was performed on

base qualities and nucleotide composition of sequences. Alignment

to the C. elegans genome (ce10) was performed using the STAR

spliced read aligner (PMID 23104886) with default parameters.

Additional QC was performed after the alignment to examine the

following: level of mismatch rate, mapping rate to the whole

genome, repeats, chromosomes, and key transcriptomic regions

(exons, introns, UTRs, genes). Between 92 and 93% of the reads

mapped uniquely to the worm genome. Total counts of read-

fragments aligned to candidate gene regions within the C. elegans

reference gene annotation were derived using HTS-seq program

and used as a basis for the quantification of gene expression. Only

uniquely mapped reads were used for subsequent analyses.

Following alignment and read quantification, we performed

quality control using a variety of indices, including sample

clustering, consistency of replicates, and average gene coverage.

Differential expression analysis was performed using the EdgeR

Bioconductor package (19910308), and differentially expressed

genes were selected based on False Discovery Rate (FDR

Benjamini Hochberg adjusted p- values) estimated at #5%.

Clustering and overlap analyses were performed using Biocon-

ductor packages within the statistical environment R (www.r-

project.org/). Gene Ontology annotation was performed using

DAVID (david.abcc.ncifcrf.gov/). DAF-16 dependent genes were

curated from published reports [84,85] and Wormmart annotation

(http://caprica.caltech.edu:9002/biomart/martview).

Supporting Information

Figure S1 Genetic pathways that regulate programmed cell

death in apoptotic and engulfing cells in C. elegans. Genes that

normally promote cell death and engulfment are in green while

those that normally inhibit them are shown in red. Genes tested in

this study are in bold.

(TIFF)

Figure S2 Related to Figure 1. A mutation in pgrn-1 does not

confer oxidative, UV or pathogen stress resistance. Day 1 adult N2

or pgrn-1(tm985) animals were subjected to oxidative stress with

250 mM paraquat (A), genotoxic stress with 1200 J/m2 UV light

(B) or pathogen stress by feeding P. aeruginosa (C). Worms were

scored for survival at indicated times and analyses by log-rank

Mantel-Cox test were performed. (A) p = 0.1, N.30 animals/

strain. (B) p = 0.054, n.50 animals/strain. (C) p = 0.078, N.50

animals/strain. Results shown are representative of at least 2

experiments except in A, which was performed 3 times with p

values of 0.0034, 0.01 and 0.125.

(TIFF)

Figure S3 Related to Figure 1. Heat and tunicamycin stress

increase HSP-4::GFP levels while osmotic stress does not. (A) Phsp-

4::hsp-4::gfp animals were incubated at 20uC (Control treated) or

35uC (Heat stress treated) for 4 hours then imaged on a Zeiss

AxioImager. (B) Phsp-4::hsp-4::gfp animals were incubated at 20uC
on agarose plates containing 0 mg/mL (Control treated) or 5 mg/
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mL (ER stress treated) tunicamycin. Twenty-four hours later, they

were imaged on a Zeiss AxioImager. (C) Phsp-4::hsp-4::gfp animals

were incubated at 20uC on agarose plates containing 51 mM

NaCl (Control treated) or 400 mM NaCl (Osmotic stress treated).

After 24 hours, they were imaged on a Zeiss AxioImager.

(TIFF)

Figure S4 Related to Figure 1. UV light, paraquat and P.

aeruginosa do not increase HSP-4::GFP levels. (A) Phsp-4::hsp-4::gfp

animals were mock-treated (Control treated) or exposed to

1200 J/m2 of ultraviolet light (UV stress treated). After 5 hours

at 20uC, the animals were imaged on a Zeiss AxioImager. (B) Phsp-

4::hsp-4::gfp animals were placed onto agarose plates with either

OP50 bacteria (Control treated) or P. aeruginosa PA14 (Pathogen

treated) bacteria. After incubation for 24 hours at 20uC, animals

were imaged on a Zeiss AxioImager. (C) Phsp-4::hsp-4::gfp animals

were placed in M9 solution containing either vehicle alone

(Control treated) or 200 mM paraquat (Oxidative stress treated)

for 3 hours. The animals that were still alive at that time were

imaged on a Zeiss AxioImager.

(TIFF)

Figure S5 Related to Figure 2. A mutation in ced-3 does not

confer oxidative or UV stress resistance. Day 1 adult N2 or ced-

3(n717) animals were subjected to oxidative stress with 250 mM

paraquat (A) or genotoxic stress with 1200 J/m2 UV light (B).

Worms were scored for survival at indicated times and analyses by

log-rank Mantel-Cox test were performed. (A) p.0.05, N = 20

animals/strain. (B) p.0.05, N.35 animals/strain.

(TIFF)

Figure S6 Related to Figure 3. Mutations in engulfment genes

confer resistance to osmotic and heat stresses. Day 1 adult ced-

1(e1735) and ced-2(e1752) animals were exposed to 600 mM NaCl

for 24 hours (A) or thermal stress at 35uC for 8 hours (B) and

scored for survival. Error bars represent standard deviation.

Statistical comparisons here are to N2 control (Student’s t test or

ANOVA with Bonferroni post-tests). *p,0.05, ***p,0.001. For

additional statistical data, see Supplemental Table S3C.

(TIFF)

Figure S7 Related to Figure 3. ER stress resistance in related cell

death mutants. A) Mutations in ced-1(e2091) and ced-6(n2095) with

or without abi-1(n2091 or ok171) in the background were tested for

ER stress resistance by tunicamycin (TM) treatment. (B) Mutations

in unc-53(e404) and unc-73(e936) were tested for ER stress

resistance by tunicamycin treatment. (C) Mutations in pqn-

41(ns924) with and without pgrn-1(tm985) in the background were

tested for ER stress resistance by tunicamycin treatment. Results

shown are representative of at least 2 experiments except in the

case of (C) which was performed once. Error bars represent

standard deviation. Statistical comparisons are to N2 control

(ANOVA with Bonferroni post-tests). *p,0.05, **p,0.01,

***p,0.001. For additional statistical data, see Supplemental

Tables S3E–G.

(TIFF)

Figure S8 Related to Figure 4. Levels of spliced xbp-1 mRNA is

unchanged in pgrn-1(-), ced-1(-) or ced-3(-) mutants compared to

wild type. Representative RT-PCR of xbp-1 from RNA isolated

from day 1 animals. Arrows point to the unspliced and spliced xbp-

1 bands and the loading control actin band. + TM refers to

treatment with 5 mg/mL tunicamycin.

(TIFF)

Figure S9 Related to Figure 4. HSP-4 does not mediate stress

resistance of pgrn-1(-) or ced-3(-) mutants. Baseline levels of

HSP-4::GFP in wild-type, pgrn-1(-) and ced-3(-) animals. Animals

expressing Phsp-4::hsp-4::gfp in an otherwise wild-type, pgrn-1(tm985)

or ced-3(n717) background were synchronized by washing adults

and larvae away from eggs. L1 animals were collected from

hatched embryos 1 hour later while L2, L3 and L4 larval stages

were identified by size and anatomical landmarks. All animals

were imaged and fluorescence quantified as in Experimental

Methods.

(TIFF)

Figure S10 Related to Figure 4. DAF-16 nuclear localization is

unchanged in pgrn-1(-), ced-1(-) or ced-3(-) mutants compared to

wild type. Day 1 daf-16(-) adult animals expressing Pdaf-16::daf-

16::GFP in an otherwise wild-type, daf-2(e1370), pgrn-1(tm985), ced-

1(e1735) or ced-3(n717) background were imaged on a Zeiss

AxioImager and DAF-16::GFP was scored as either nuclear or

diffuse. Images shown are representative of 10 to 15 animals

observed for each genotype except for ced-3(-) for which three

animals were observed. Top row shows two representative animals

and bottom row displays close-ups of these animals.

(TIFF)

Figure S11 Lifespan analysis of ced mutants. Survival of N2

Control, ced-3(n717), ced-1(e1735) and ced-2(e1752) animals was

plotted across time. Compared to control, ced-3(-) animals lived

significantly longer (p = 0.0007, Mantel-Cox Test). N = 100

animals per strain.

(TIFF)

Figure S12 TNFR/neurotrophin receptor-related genes are not

resistant to ER stress. (A) A C. elegans TRAF mutant, trf-1(nr2010),

was tested for stress resistance. (B) Two alleles of the neurotrophin

receptor trk-1 (tm3985 and tm4054) were tested for ER stress

resistance. Error bars represent standard deviation. N = 50

animals in triplicate per strain per condition. *p,0.05,

**p,0.01, ***p,0.001.

(TIFF)

Table S1 Related to Figure 1. pgrn-1 mutants are resistant to

osmotic, thermal and unfolded protein stress. (A) Day-1 adult wild-

type control animals and pgrn-1(-) mutants were exposed to

osmotic stress with 600 mM NaCl for 24 hours and then scored

for survival. Shown are mean survival 6 SD and p value versus

control (Student’s t test). (B) Day-1 adult wild-type control animals

and pgrn-1(-) mutants were exposed to thermal stress at 35uC for

8 hours and then scored for survival. Shown are mean survival 6

SD and p value versus control (Student’s t test). (C) Newly-laid

wild-type control, pgrn-1(tm985) and pgrn-1(-); pgrn-1-rescue

embryos were collected and placed onto plates with varying doses

of tunicamycin. Three days later, those animals that had

developed to L4 stage were counted. The fraction of animals that

developed to L4 stage 6 SD are shown. P value versus control and

pgrn-1 mutant are shown (ANOVA with Bonferroni post-tests). (D)

Newly laid embryos from wild-type control, pgrn-1(tm985) and

pgrn-1(-); human PGRN-rescue (2 independent lines) were collected

and placed onto plates with varying doses of tunicamycin. Three

days later, the number of animals that had developed to L4 stage

was determined. The fraction of animals that developed to L4

stage 6 SD are shown. P value versus control and pgrn-1 mutant

are shown (ANOVA with Bonferroni post-tests).

(DOCX)

Table S2 Related to Figure 2. ced-3(n717lf), ced-4(n162lf) and ced-

9(n1950gf) mutations inhibit programmed cell death and confer

stress resistance. (A) ER stress resistance is correlated with ced-3

allele strength. Newly laid embryos from wild-type control and ced-

3 mutant alleles with graded abilities to inhibit programmed cell
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death (n717—strong, n1949—intermediate, n2436—intermediate and

n2438—weak) were collected and placed onto plates with varying

doses of tunicamycin. Three days later, the number of animals that

had developed to L4 stage was determined. The fraction of

animals that developed to L4 stage 6 SD is shown. P value versus

control and pgrn-1 mutant are shown (ANOVA with Bonferroni

post-tests). (B) Day-1 adult wild-type control animals and ced-3(-)

mutants were exposed to osmotic stress with 600 mM NaCl for

24 hours or thermal stress at 35uC for 8 hours and scored for

survival. Shown are mean survival 6 SD and p value versus

control (Student’s t test). (C) A gain-of-function mutation in ced-9

increases stress resistance. Newly laid wild-type control, pgrn-

1(tm985), ced-3(n717), ced-9(n1950gf), pgrn-1(-); ced-9(gf) and ced-

3(n717); ced-9(gf) embryos were collected and placed onto plates

with varying doses of tunicamycin. Three days later, the number

of animals that had developed to L4 stage was determined. The

fraction of animals that developed to L4 stage 6 SD are shown. P

value versus control and pgrn-1 mutant are shown (ANOVA with

Bonferroni post-tests). (D) Newly laid wild-type control, pgrn-

1(tm985), ced-4(n1162lf) and ced-4(n1162lf); ced-9(n2812lf) embryos

were collected and placed onto plates with varying doses of

tunicamycin. Three days later, the number of animals that had

developed to L4 stage was determined. The fraction of animals

that developed to L4 stage 6 SD are shown. P value versus control

and pgrn-1 mutant are shown (ANOVA with Bonferroni post-tests).

(DOCX)

Table S3 Related to Figure 3. Engulfment mutants are resistant

to unfolded protein stress. (A) Newly laid wild-type control, pgrn-

1(tm985), ced-1(e1735), ced-6(n1813) and ced-7(n1892) embryos

were collected and placed onto plates with varying doses of

tunicamycin. Three days later, the number of animals that had

developed to L4 stage was determined. The fraction of animals

that developed to L4 stage 6 SD are shown. (B) Newly laid wild-

type control, pgrn-1(tm985), ced-2(e1752), ced-5(n1812) and ced-

10(n3246) embryos were collected and placed onto plates with

varying doses of tunicamycin. Three days later, the number of

animals that had developed to L4 stage was determined. The

fraction of animals that developed to L4 stage 6 SD are shown.

(C) Day 1 adult wild-type control, ced-1(e1735), ced-6(n1813), ced-

7(n1892), ced-2(e1752) and ced-5(n1812) mutants were exposed to

osmotic stress with 600 mM NaCl for 24 hours or thermal stress at

35uC for 10 hours and then scored for survival. Shown are mean

survival 6 SD and p value versus control (ANOVA with Tukey

post-test). (D) Newly laid wild-type control, pgrn-1(tm985), abl-

1(ok171), abi-1(ok640) and abi-1(tm494) embryos were collected

and placed onto plates with varying doses of tunicamycin. Three

days later, the number of animals that had developed to L4 stage

was determined. The fraction of animals that developed to L4

stage 6 SD are shown. P value versus control and pgrn-1 mutant

are shown (ANOVA with Bonferroni post-tests). (E) Newly laid

wild-type control, pgrn-1(tm985), ced-1(n2091), ced-1(n2091); abi-

1(n1963), ced-6(n2095), and ced-6(n2095); abi-1(n1963) embryos

were collected and placed onto plates with varying doses of

tunicamycin. Three days later, the number of animals that had

developed to L4 stage was determined. The fraction of animals

that developed to L4 stage 6 SD are shown. P value versus control

and ced-1 or ced-6 mutants are shown (ANOVA with Bonferroni

post-tests). (F) Newly laid wild-type control, pgrn-1(tm985), unc-

53(e404), and unc-73(e936) embryos were collected and placed

onto plates with varying doses of tunicamycin. Three days later,

the number of animals that had developed to L4 stage was

determined. The fraction of animals that developed to L4 stage 6

SD are shown. P value versus control and pgrn-1 mutant are shown

(ANOVA with Bonferroni post-tests). (G) Newly laid wild-type

control, pgrn-1(tm985), pqn-41(ns294), and pgrn-1(tm985); pqn-

41(ns294) embryos were collected and placed onto plates with

varying doses of tunicamycin. Three days later, the number of

animals that had developed to L4 stage was determined. The

fraction of animals that developed to L4 stage 6 SD are shown. P

value versus control and pgrn-1 mutant are shown (ANOVA with

Bonferroni post-tests).

(DOCX)

Table S4 Related to Figure 4. pgrn-1(-) resistance to ER stress

may be partially dependent on the UPR pathway, daf-16 and pmk-

1. (A) Newly laid embryos from wild-type control, pgrn-1(tm985),

ire-1(ok799) and pgrn-1(-); ire-1(-) mutants were collected and

placed onto plates with varying doses of tunicamycin. Three days

later, the number of animals that had developed to L4 stage was

determined. The fraction of animals that developed to L4 stage 6

SD is shown. P value versus control and pgrn-1 mutant are shown

(ANOVA with Bonferroni post-tests). (B) Newly laid embryos from

wild-type control, pgrn-1(tm985), daf-2(e1370), pgrn-1(-);daf-2(-), daf-

16(mu86) and pgrn-1(-); daf-16(-) mutants were collected and

placed onto plates with varying doses of tunicamycin. Three days

later, the number of animals that had developed to L4 stage was

determined. The fraction of animals that developed to L4 stage 6

SD is shown. P value versus control and pgrn-1 mutant are shown

(ANOVA with Bonferroni post-tests). (C) Newly laid embryos from

wild-type control, pgrn-1(tm985), daf-16(mu86); muIs113 and pgrn-

1(tm985); muIs113 mutants were collected and placed onto plates

with varying doses of tunicamycin. Three days later, the number

of animals that had developed to L4 stage was determined. The

fraction of animals that developed to L4 stage 6 SD is shown. P

value versus control and pgrn-1 mutant are shown (ANOVA with

Bonferroni post-tests). (D) Newly laid embryos from wild-type

control, pgrn-1(tm985), pmk-1(km25) and pgrn-1(-); pmk-1(-) mutants

were collected and placed onto plates with varying doses of

tunicamycin. Three days later, the number of animals that had

developed to L4 stage was determined. The fraction of animals

that developed to L4 stage 6 SD is shown. P value versus control

and pgrn-1 mutant are shown (ANOVA with Bonferroni post-tests).

(DOCX)

Table S5 Supplementary dataset of differentially expressed

genes. Each worksheet contains lists of genes differentially

expressed with FDR,0.05. Lists include log2 fold-changes, p-

values, and FDR for each gene. Fold-changes are color coded to

denote up- or down-regulation (up-regulated = red, down-regula-

ted = green). Please see first tab for contents of other tabs. Tab E

shows genes differentially expressed in pgrn-1(tm985), ced-3(n717),

and ced-1(e1735) compared to N2E that are also regulated by daf-

16. Hypergeometric distribution, p value,261029.

(XLSX)
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