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ABSTRACT

Digital transcriptome analysis by next-generation
sequencing discovers substantial mRNA variants.
Variation in gene expression underlies many biolo-
gical processes and holds a key to unravelling
mechanism of common diseases. However, the
current methods for construction of co-expression
networks using overall gene expression are origin-
ally designed for microarray expression data, and
they overlook a large number of variations in gene
expressions. To use information on exon, genomic
positional level and allele-specific expressions, we
develop novel component-based methods, single
and bivariate canonical correlation analysis, for con-
struction of co-expression networks with RNA-seq
data. To evaluate the performance of our methods
for co-expression network inference with RNA-seq
data, they are applied to lung squamous cell cancer
expression data from TCGA database and our
bipolar disorder and schizophrenia RNA-seq study.
The preliminary results demonstrate that the
co-expression networks constructed by canonical
correlation analysis and RNA-seq data provide rich
genetic and molecular information to gain insight
into biological processes and disease mechanism.
Our new methods substantially outperform the
current statistical methods for co-expression
network construction with microarray expression
data or RNA-seq data based on overall gene expres-
sion levels.

INTRODUCTION

Despite great progress in genetic studies of complex
diseases has been made, information on the function of

the identified genetic variation in association studies
has still been limited (1). Gene expression variation may
significantly contribute to phenotype variation (2). Gene
expression analyses are important sources to study
function of genetic variation and are increasingly
acquiring an important role in unravelling mechanism of
complex traits. The rapidly developed next-generation
sequencing technologies have been becoming the
platform of choice for gene expression profiling.
RNA-seq for expression profiling offers comprehensive
picture of transcriptome and is superior to microarray
platforms. RNA-seq has made a number of significant
qualitative and quantitative improvements on gene expres-
sion analysis and provides multiple layers of resolutions
and transcriptome complexity: the expression at exon,
single-nucleotide polymorphism (SNP) and positional
level; splicing; post-transcriptional RNA editing across
the entire gene; isoform and allele-specific expressions
(ASE) (1,3–5).
Variation in complex phenotypes is not caused by a

single gene acting as a marker, but by a set of interacted
genes that are often organized into various types of bio-
logical networks (6). Gene co-expression networks are
often used to extract important information about
groups of co-regulated genes that play a central role in
regulatory processes. Co-expression networks are able to
comprehensively capture the relationships of individual
components of the transcriptome perturbed by environ-
ments (7); hence, they provide a powerful tool to gain
new insights into the function of genes, biological
processes, the global structure of the transcriptome and
mechanism of complex diseases (6,8–11).
Traditional statistical methods for construction of

co-expression networks, such as weighted co-expression
networks, mutual information relevance networks, covari-
ance selection and sparse graphical model, and partial
correlation methods are mainly designed for microarray
expression data (12–15). All these methods use a single
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value of summarizing statistic to represent gene expression
level and overlook all information on expression differ-
ence in exons, genomic position and alleles. Therefore,
although RNA-seq dramatically increases the level of bio-
logical details (11), we still use the traditional statistical
methods for co-expression network inference, which are
designed for microarray expression data and do not effi-
ciently use all of the information contained in RNA-seq
data. To fully use the comprehensive information of the
transcriptome and capture expression variation at the level
of exon, chromosomal position, allele and splicing
isoforms which are provided by RNA-seq, development
of powerful computational tools for expression data
analysis is highly desirable (16).
In this article, we develop computational methods to

address challenges arising from co-expression network in-
ference with RNA-seq data. To explore observed expres-
sion variation in exons or in genomic position across the
genes, we use an ordinary single variate canonical correl-
ation analysis (CCA) that quantifies the correlation
between a linear combination of the expressions at exon
levels or position levels in one gene and another such com-
bination of expressions in a second gene to construct
co-expression networks. Specifically, the expression level
at each exon, or expression level at each genomic position,
will be considered as variables. The exon expressions or
genomic positional-level expressions of two genes form
two large sets of variables. We wish to study those linear
combinations of variables most highly correlated. The
goal of CCA is to seek linear combinations of two sets
of variables that maximize the correlation between two
sets of variables. To achieve this, we first identify the
pair of linear combinations that have the largest correl-
ation. Next, we identify the pair of linear combinations
having the largest correlation among all pairs uncorrelated
with the initially selected pair, and so on. Therefore, CCA
measures the co-expression between two genes that can
take genomic position and allele levels of expressions
into consideration. To model ASE, we develop bivariate
CCA to construct co-expression networks with ASE data,
allowing levels of ASE to vary across SNPs and to
consider complicated patterns of ASE because of
allele-specific splicing and alternative transcription start
sites (2). Bivariate CCA consider two sets of vectors of
measurements. Two allele-specific expressions at each
SNP form a vector for the SNP. Bivariate CCA is to
seek a few linear combinations of vectors with two
alleles’ expressions that have the largest correlations.
Therefore, two variate CCA measure the co-expressions
between two genes that can consider expressions of two
alleles at each SNP. To evaluate the performance of CCA
for co-expression network inference with RNA-seq data,
the CCA for co-expression network construction is
applied to lung squamous cell cancer (LUSC) expression
data from TCGA and a bipolar disorder and schizophre-
nia RNA-seq study. We find that CCA for co-expression
network construction with RNA-seq data substantially
outperforms the current statistical methods for
co-expression network construction with microarray
expression data or overall gene expression data. A
program for implementing the developed CCA for

co-expression network construction can be downloaded
from bioconductor (http://www.bioconductor.org/) and
our local website http://www.sph.uth.tmc.edu/hgc/
faculty/xiong/index.htm.

MATERIALS AND METHODS

Data access

The TCGA RNA-seq data sets are publicly available from
the TCGA website (https://tcga-data.nci.nih.gov/tcga/).
Pathways are available from KEGG database (17,18)
(http://www.genome.jp/kegg/pathway.html).

CCA method for construction of gene co-expression
networks

A gene co-expression network is considered as an undir-
ected graph, where a gene is represented as a node and
each edge connecting two nodes is regarded as the
co-expression relationship of the two connected genes.
Construction of co-expression networks is often carried
out by detecting the pairwise correlation of gene
co-expression. The CCA is to seek maximization of the
correlation between two linear combination of the
variables in the data sets (19). Suppose that we have
p exons or positions in one gene and q exons or positions
in another gene. Let x

ð1Þ
j denote the expression of the j-th

exon or the number of reads at the j-th genomic position
within the first gene. We can similarly define x

ð2Þ
j

for the second gene. Let Xð1Þ ¼ ½x
ð1Þ
1 , . . . ,xð1Þp �

T and

Xð2Þ ¼ ½x
ð2Þ
1 , . . . , xð2Þq �

T. For the convenience of presenta-
tion, we assume that p � q. Let

X ¼
Xð1Þ

Xð2Þ

� �
and � ¼ covðX,XÞ ¼

�11 �12

�21 �22

� �
:

Construction of co-expression networks is implemented
by seeking maximization of correlation coefficients
between linear combination U ¼ aTXð1Þfor the first gene
and linear combination V ¼ bTXð2Þ:

max
a,b

corrðU,VÞ ¼
aT�12bffiffiffiffiffiffiffiffiffiffiffiffiffi

aT�11

p
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT�22b

p ð1Þ

Solutions to the optimization problem (1) are the
eigenvalues �21 � �

2
2 � � � � � �

2
p and their corresponding

eigenvectors of the of the Rayleigh quotient matrix:

R ¼ ��1=211 �12�
�1
22 �21�

�1=2
11 :

In RNA-seq data, we observe either multiple exon
expressions or sets of number of reads at genomic
position levels across two genes. The exon-level or
genomic positional-level expressions form two sets of vari-
ables or two vectors of variables. Canonical correlation
between two genes is to find the pair of linear combin-
ations of the variables determined by a and b such that
their correlation is maximized. The first pair of linear
combination is called the first pair of canonical variables.
Their largest correlation is called the first canonical cor-
relations. Next, we identify the pair of linear combinations
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that have the largest correlation among all pairs
uncorrelated with the initially selected pair and called
the second pair of canonical variables, and so on. The
first canonical correlation is equal to the square root
of the largest eigenvalue �1 of the matrix R, the second
canonical correlation is equal to the square root of the
largest eigenvalue �2 of the matrix R, and so on. Let ej
be the eigenvector of the matrix R associated with the
eigenvalue �j. Then, the vectors of coefficients a and b
are given by

aj ¼ ��111 �12�
�1=2
22 ej, and bj ¼ ��1=222 ej, j ¼ 1, . . . , p:

Ordinary correlation coefficient can only measure the
linear relationship between two variables. When it is
applied to quantify co-expression between two genes,
exon-level expressions or genomic positional-level expres-
sions need to be aggregated into overall expressions.
The exon-level and genomic positional-level expression
variation information cannot be preserved in the
ordinary correlation. Canonical correlation is extension
of ordinary correlation between two variables to canonical
correlation between two sets of variables. Therefore,
canonical correlation for measuring co-expression
between two genes in RNA-seq data can more accurately
quantify the linear relationship between two genes than
the ordinary correlation.

Let Pkbe the P-value of the test statistic (20)

Tk ¼ �½n�
1
2 ðp+qÞ�

Pp
i¼k+1

logð1� �̂2i Þ with distribution

�2ðp�kÞðq�kÞ, where n is sample size for testing the null
hypothesis H0 : �k ¼ . . . ¼ �p ¼ 0. We assign a weight to
the edge connecting two genes:

w ¼

Pp
i¼1

�iI logPið Þ

Pp
i¼1

I logPið Þ

ð2Þ

where IðlogPÞ ¼
0 P > 0:05

� logP P � 0:05

�
. When the denom-

inator is zero, the weight is zero.

The method for determining the threshold for retaining
an edge by the CCA method is hard threshold method (8).
We first ranked edges by their weights from the largest to
the smallest. We then select edges by pre-determined
number of edges or percentage of edges. In this article,
we selected 5% of edges with top weights.

The edges with rank larger than threshold are retained
in the network.

In general, we have multiple canonical variables and
canonical correlations. To fully use canonical correlations
to characterize the relationships between two sets of
variables, we introduce the weight w. The larger the
contribution to the edge weight, the larger the eigenvalue
or canonical correlation. If the i-th canonical correlation
is not significant (P > 0.05), its contribution to the edge
weight will be small. Therefore, IðlogðpÞÞ is given value
of 0. The edge weight defined by Equation (2) can fully
use canonical correlation information to measure the
degrees of co-expression of two genes.

Bivariate CCA for construction of co-expression networks
with ASE data

We develop novel bivariate CCA for construction of

co-expression networks with ASE data. Let x
ð1Þ
j and x

ð2Þ
j

be the number of reads of the major and minor allele at

the j-the SNP in the gene, respectively. We can similarly

define y
ð1Þ
j and y

ð2Þ
j for another gene. Let X ¼ ½x

ð1Þ
1 , xð2Þ1 , . . .,

xð1Þp , xð2Þp �
T and Y ¼ ½y

ð1Þ
1 , yð2Þ1 , . . . , yð1Þq , yð2Þq �

T. Define linear

combinations U ¼ aTXand V ¼ bTY, where a ¼ ½�ð1Þ1 ,

�ð2Þ1 , . . . ,�ð1Þp ,�ð2Þp �
T and b ¼ ½�ð1Þ1 ,�ð2Þ1 , . . . ,�ð1Þq ,�ð2Þq �

T. These

linear combinations can be rewritten as

U ¼ ½�ð1Þ�TXð1Þ+½�ð2Þ�TXð2Þ and V¼½�ð1Þ�TYð1Þ+½�ð2Þ�TYð2Þ,

where �ð1Þ ¼ ½�ð1Þ1 , . . . ,�ð1Þp �
T, �ð2Þ ¼ ½�ð2Þ1 , . . . ,�ð2Þp �

T, �ð1Þ ¼

½�ð1Þ1 , . . . ,�ð1Þq �
T, �ð2Þ ¼ ½�ð2Þ1 , . . . ,�ð2Þq �

T, Xð1Þ ¼ ½x
ð1Þ
1 , . . . ,

xð1Þp �
TXð2Þ ¼ ½x

ð2Þ
1 , . . .xð2Þp �

T,Yð1Þ ¼ ½yð1Þ1 , . . . , yð1Þq �
T and

Yð2Þ ¼ ½y
ð2Þ
1 , . . . ,yð2Þq �

T.
Define the covariance matrices:

� ¼
�xx �xy
�yx �yy

� �
, where

�xx ¼
�xð1Þxð1Þ �xð1Þxð2Þ

�xð2Þxð1Þ �xð2Þxð2Þ

� �
,

�xy ¼ �T
yx ¼

�xð1Þyð1Þ �xð1Þyð2Þ

�xð2Þyð1Þ �xð2Þyð2Þ

� �
and

�yy ¼
�yð1Þyð1Þ �yð1Þyð2Þ

�yð2Þyð1Þ �yð2Þyð2Þ

� �
:

The CCA seeks to maximize

max
�,�

corrðU,VÞ ¼
�T�xy�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�T�xx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T�yy�

pq ð3Þ

where � ¼
�ð1Þ

�ð2Þ

� �
and � ¼

�ð1Þ

�ð2Þ

� �
.

The solutions to the optimization problem (3) are
the eigenvectors of the matrix with the eigenvalues
�1 � �2 � . . . � �2p:

R ¼ ��1=2xx �xy�
�1
yy �yx��1=2xx :

Our formulation considers the correlation between the
expressions of two alleles. If we do not take their correl-
ations into account, the two variate CCA will become two
single variate CCA.
Again, let Pkbe the P-value of the test statistic (20)

Tk ¼ �½n� ðp+qÞ�
P2p

i¼k+1 logð1� �̂
2
i Þ with distribution

�2ð2p�kÞð2q�kÞ, where n is sample size for testing the null

hypothesis H0 : �k ¼ . . . ¼ �2p ¼ 0. We assign a weight to

the edge connecting two genes:

w ¼

P2p
i¼1

�iI logPið Þ

P2p
i¼1

I logPið Þ

ð4Þ
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where IðlogPÞ ¼
0 P > 0:05

� logP P � 0:05

�
. When the denom-

inator is zero, the weight is zero.

Similar to single CCA for construction of co-expression
networks, after we rank the weights, we also use rank
procedure to prune the networks.

Graphical LASSO

Sparse undirected graphical models can be estimated by
the use of L1 (LASSO: least absolute shrinkage and
selection operator) regularization (21). We assume that
the overall expressions of genes have a multivariate
Gaussian distribution with mean � and covariance
matrix �. It is shown that if the ij the component of the
inverse matrix ��1 is zero, then variables i and j are
conditionally independent, given the other variables.
Therefore, co-expression networks can be constructed by
estimating the inverse of covariance matrix ��1 through
L1 regularization.

RESULTS

Canonical correlation analysis for construction of
co-expression networks with exon-level expression data

A gene co-expression network is represented as an undir-
ected graph, where each node denotes a gene or more
precisely a gene expression profile, and each edge connect-
ing two nodes indicates significant co-expression relation-
ships of the two genes. To explore exons with varying
expression information, we developed a CCA-based
method for construction of co-expression networks. The
canonical correlations measure the strength of association
between the two sets of exon expression. To illustrate the
application of CCA for construction of co-expression
networks with exon expression data, the CCA was
applied to LUSC RNA-seq data set from TCGA
database. LUSC consists of 242 samples (225 case
samples and 17 control samples). Here, we only use data
belonging to the case group. The CCA method was
compared with a graphic LASSO (GLASSO) (21)
method that used overall gene expression to construct
co-expression network (for detail, see ‘Materials and
Methods’ section). A simple rank-based cut-off method
was used to prune the network (for detail, see ‘Materials
and Methods’ section).
We first randomly selected The TCGA RNA-seq level 3

data with 50, 200, 400, 600 and 1000 genes, resulting in
five RNA-seq data sets. We then applied GLASSO and
CCA to these five sampled RNA-seq data sets to construct
co-expression networks that were called the original
co-expression networks as the basis to evaluate the per-
formance of CCA and GLASSO for construction of
co-expression networks. We used bootstrapping for
re-sampling RNA-seq data 1000 times from each of five
RNA-seq data sets. The CCA and GLASSO methods
were applied to the re-sampled RNA-seq data to construct
co-expression networks for testing the accuracy (how
many edges in the original networks are reserved in the
reconstructed co-expression networks from the re-sampled
RNA-seq data sets). The results were shown in

Supplementary Figure S1. It was clearly shown that the
accuracy of CCA method for construction of co-
expression networks was much higher than that by
GLASSO under all different network sizes. Then we
studied non-small cell lung cancer pathway in KEGG
with LUSC data set. After discarding the isolated nodes
in the pathway and matching to the TCGA LUSC
RNA-seq level 3 data, we included 44 genes in the
analysis. The constructed co-expression networks for the
non-small cell lung cancer pathway by the CCA and
GLASSO (21) method were shown in Figure 1. Edges
with red colour were in the co-expression network con-
structed only by CCA. Edges with blue colour were in
the co-expression networks constructed by both CCA
and GLASSO. Edges with cyan colour were in the
co-expression networks constructed only by GLASSO.
It consisted of four pathways: ErbB signalling pathway,
MAPK signalling pathway, PI3K pathway and apoptosis
pathway. Figure 1 showed that EGF (epidermal growth
factor)–EGFR–PI3K/Akt–apoptosis signal pathway and
MAPK (Raf–MEK–ERK) signal pathway were in the
co-expression network constructed by the CCA method.
However, EGF–EGFR–PI3K pathway and MAPK
pathway connections were not in the co-expression
network constructed by GLASSO. Recent studies un-
covered (22) that the EGF stimulates the production of
interleukin (IL)-8 from lung cancer cells, which in turn
activates EGFR and signalling pathway of PI3K/Akt.
PI3K/Akt pathway activation plays a crucial role in lung
cancer development and proliferation. Raf–MEK–ERK
was involved in gene transcription, regulation of cell
survival and angiogenesis and was associated with lung
metastasis (23).

Network topology plays an important role in the
function and information processing of biological
networks (24). Assortativity and centralization are two
important topology measures of networks. Assortativity
is a preference for a network’s nodes to attach to other
similar nodes. Assortativity is measured by the assort-
ativity coefficient that is defined as the Pearson correlation
coefficient of degree between pairs of linked nodes (25).
If the assortativity coefficient was positive, the network
was said to be assortative. On the other hand, if the
assortativity coefficient was negative, the network was
recognized as disassortative. We observe that in social
networks, highly connected nodes tend to be connected
with other high degree nodes. The assortativity coefficient
in social networks is, hence, positive (25). However,
technological and biological networks typically show
that high-degree nodes tend to attach to low-degree
nodes. Their assortativity coefficient is negative. For
random networks, the assortativity coefficient tended to
be nearly zero (Wikipedia, the free encyclopedia). The cen-
trality of a vertex within a graph that determines the
relative importance of a vertex within the graph is an
important concept in network theory. Centralization is
based on the concept of centrality. It is defined as
measuring the sum in differences in centrality between
the most central node in a network and all other nodes.
It attempts to quantify the level of a network about how
centralized it was around particular nodes (26). Table 1
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showed that assortativity and centralization of
co-expression networks constructed by the CCA,
GLASSO, random selection and true non-small cell lung
cancer pathway in KEGG, where standard deviation was
calculated by 1000 re-sampling. We observed that
topology of the co-expression network constructed by
GLASSO (overall gene expression) was close to the
random network; however, topology of the co-expression
network constructed was close to the structure of true
non-small cell lung cancer pathway in KEGG. Table 1
indicated that the co-expression networks constructed by
RNA-seq exon expressions were highly centralized and
disassortative, which were inherent topology features in
the biological networks. This further demonstrated that
the co-expression network constructed by RNA-seq exon

expressions was more biologically meaningful than that by
overall gene expressions.
To further evaluate the performance of the CCA for

construction of co-expression networks, we applied both
CCA and GLASSO methods to another TCGA RNA-seq
data set (uterine corpus endometrioid carcinoma) where
416 case samples of UCEC were used in the study.
The reconstructed pathway for the endometrial cancer
by the CCA and GLASSO method were shown in
Supplementary Figure S2. From this figure, it was
shown that only the CCA method detected the MAPK
(Raf–MEK–ERK) signal pathway in the co-expression
network. We also present the network topology compari-
son of two reconstructed network as well as random
network and true endometrioid carcinoma pathway in
the Supplementary Table S1. This table showed that the
co-expressed network reconstructed by the CCA method
was closer to the pathway in KEGG, but the topology of
co-expression network inferred by the overall expressions
and GLASSO was more similar to the random one.

CCA for co-expression network construction with
position-level RNA-seq data

The current methods for co-expression network construc-
tion with RNA-seq data are to collapse the position-level

Figure 1. The shared network structure by non-small lung cancer pathway in KEGG and reconstructed co-expression networks using the CCA and
GLASSO methods.

Table 1. Topology property of co-expression networks generated by

CCA, GLASSO, random and KEGG

Method Assortativity Centralization
Mean (SD) Mean (SD)

CCA �0.3937 (0.0407) 0.7606 (0.0078)
GLASSO �0.0482 (0.0868) 0.6297 (0.0458)
Random �0.0489 (0.0064) 0.5666 (0.0033)
KEGG �0.2305 0.7257
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read data into a single overall gene expression
measurement. Collapsing the position-level read counts
may lose detailed position-level information of gene
expressions. To fully use information contained in
RNA-seq data, we developed CCA for co-expression
network construction that directly modelled the
position-level read counts. We maximized the correlation
between a linear combination of the number of read
counts at each position within one gene and a linear com-
bination of the number of read counts at each position
within another gene.
To illustrate its application, the CCA for construction

of co-expression network with position-level RNA-seq
data was applied to bipolar and schizophrenia RNA-seq
study that sequenced mRNA in 31schizophrenia,
25 bipolar and 26 normal samples. The RNA samples
were from post-mortem brain tissues; the brain region is
anterior cingulate cortex, also called Brodmann’s area 24.
The RNA-seq data were produced on IlluminaHiSeq
platform. Data pre-processing and normalization were
followed the Beijing Genomics Institute (BGI’s) protocol
(http://www.genomics.cn/index). A total of 65 genes in

Wnt signal pathway were included in the analysis. If the
number of reads at the position was <5 in 80% of
samples, this position was removed from analysis. The
co-expression networks constructed by the CCA and
GLASSO with the position-level RNA-seq data and
gene-level aggregate data from schizophrenia, bipolar
and normal tissues were shown in Figures 2–4 and
Supplementary Figures S3–S5, respectively.

To unravel the merits and limitations of the CCA with
the position-level RNA-seq data and GLASSO with the
gene-level aggregate data for construction of gene
co-expression networks, we will mainly investigate biolo-
gical significance of the hub genes in the networks and
the other network properties. Table 2 summarized the top-
ology properties of constructed networks. We observed
that only the co-expression network constructed by the
CCA showed the disassortative property of the biological
network. The networks inferred by GLASSO showed
either a nearly zero assortativity coefficient, which
usually appeared in random networks, or a positive
assortativity coefficient, which was often observed in the
social networks.
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Figure 2. The co-expression network reconstructed by CCA method using position-level RNA-seq data in Wnt pathway of schizophrenia tissue
samples. Nodes are sized, numbered and coloured by their degree value.
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We also observed that the co-expression networks
constructed by position-level RNA-seq data were much
more centralized than those inferred by the gene-level
aggregate data. Although no hub genes in the networks
constructed by the gene-level aggregate data were found,
we identified six hub genes: PLCB1, APC, CAMK2A,
CAMK2B, PPP3R1 and MAPK10, which were highly
connected and had degree >10 in the co-expression
networks constructed by the position-level RNA-seq
data, no matter they were from disease tissue samples or
from normal tissue samples. The average gene-level
expressions in schizophrenia, bipolar and normal tissue
samples and the P-values for testing the differential
expression between schizophrenia and normal samples
or between bipolar and normal samples were listed in
Table 3. Five genes—PLCB1, APC, PPP3R1, CAMK2A
and MAPK10—were differentially expressed between
disease tissues (schizophrenia and bipolar) and normal
tissues. More specifically, they were downregulated in
both bipolar and schizophrenia samples. However, we
observed that CAMK2B was downregulated in schizo-
phrenia and upregulated in bipolar disorder samples.

These hub genes were essential for the maintenance
of gene regulations and were of functional importance.
It was reported that PLCB1 played key roles in two

processes: long-term depression and long-term potenti-
ation, which were both involved in learning and memory
of neuron cells and associated with both schizophrenia
and bipolar diseases (27). PLCB1 functions via
co-regulation with gene PLCB4, which was closely
located in the downstream region of PLCB1. It was inter-
esting to observe that co-expressed PLCB1 and PLCB4
were also co-expressed with other hub genes (APC,
CAMK2A and CAMK2B) in the normal tissues
(Figure 4). However, in the bipolar co-expression
network (Figure 3), although the co-expressed pattern of
PLCB1 and PLCB4 was still remained, PLCB4 was no
longer co-expressed with other genes. In the schizophrenia
co-expression network (Figure 2), PLCB1 and PLCB4
were not co-expressed. It seems that PLCB4 lost regula-
tory function in schizophrenia and bipolar.
Both CAMK2A and CAMK2B were crucial for central

nervous system and may function at the plasticity of
glutamatergic synapses (28). CAMK2A was responsible
for spatial learning, neurotransmitter release and hippo-
campal long-term potentiation. They were ubiquitously
expressed in the brain and phosphorylated a subunit of
the NMDA receptor involved in schizophrenia (29).
Another study reported a decrease in the expression of
CAMK2A in bipolar disorder patients (30). CAMK2B is

APC24

AXIN1
1

BTRC
1

CACYBP
2

CAMK2A
1

CAMK2B
23

CAMK2D
0

CAMK2G
4

CCND3
3

CREBBP
2

CSNK1E
3

CSNK2A1
1

CSNK2A2
1

CTBP1
2

CTNNB1
2

CTNNBIP1
1

CUL1
2

DAAM1
1

DAAM2
1

DKK2
4

DVL2
2

EP300
1

FZD3
2

GSK3B
6

JUN
2

LEF1
5

MAP3K7
3

MAPK10
0

MAPK8
1

MAPK9
3

NFAT5
2

NFATC3
3

NLK
3

PLCB1
37

PLCB4
1

PPARD
2

PPP2CA
1

PPP2R1A
1

PPP2R5A
1

PPP2R5D
2

PPP2R5E
3

PPP3CA
1

PPP3CB
3

PPP3R110

PRICKLE2
2

PRKACB
4

PRKCB
0

PRKCG
0

PSEN1
3

RAC1
2

RBX1
2

RHOA
2

ROCK1
1

ROCK2
1

RUVBL1
1

SENP2
0

SFRP4
5

SKP1
2

SMAD2
1

SMAD3
1

TBL1XR1
1

TCF7L1
0

TCF7L2
1

WNT10B
4

WNT7A
1

Figure 3. The co-expression network reconstructed by CCA method using position-level RNA-seq data in Wnt pathway of bipolar tissue samples.
Nodes are sized, numbered and coloured by their degree value.
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involved in the reorganization of actin cytoskeleton during
the plasticity of synapse with the help of CAMK2A.
MAPK10, also known as JNK3, is involved in neuronal
proliferation and many other cell processes. This gene was
expressed selectively in neurons (31). Several studies had
reported the relationship of MAPK10 and schizophrenia
(32–35). APC, known as an antagonist of the Wnt

signalling pathway, was a tumour suppressor gene. It
was involved in a number of key cell processes, such as
transcriptional activation, cell migration, adhesion and
apoptosis, and it regulates the expression of many genes
(36). PPP3R1 was a regulatory subunit of calcineurin, a
calmodulin-stimulated phosphatase, which was linked to
receptors for several important brain chemicals, such as
dopamine, GABA and NMDA (37). An animal study (38)
had validated that lack of calcineurin could cause several
symptoms similar to those in schizophrenia.

The Glutamatergic synapse pathway is also essential in
neurology process. To demonstrate that the CCA method
for construction of co-expression works using genomic
positional-level RNA-seq data can reveal more biologic-
ally important information on the mechanism of schizo-
phrenia and bipolar, we applied the CCA and GLASSO
methods to the glutamatergic synapse pathway that
consists of 63 genes. The reconstructed networks
were shown in Supplementary Figures S6–S11.
The co-expression networks reconstructed by the CCA
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Figure 4. The co-expression network reconstructed by CCA method using position-level RNA-seq data in Wnt pathway of normal tissue samples.
Nodes are sized, numbered and coloured by their degree value.

Table 2. Topology property of co-expression networks generated by

CCA and GLASSO with position-level and gene-level data

Methods Tissues Assortativity Centralization

CCA Bipolar �0.6444 0.8420
Schizophrenia �0.7215 0.8249
Normal �0.6316 0.8163

GLASSO Bipolar 0.0567 0.7408
Schizophrenia 0.0324 0.7325
Normal 0.2061 0.6574

Random �0.0359 0.7000
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method using position-level RNA-seq data have clear hub
structure, in which degrees of hub genes were >10.
However, no hub genes can be found in networks recon-
structed by overall expression data and GLASSO method.
Topology comparison of the co-expression networks con-
structed by the CCA and GLACCO methods was shown
in the Supplementary Table S2.

The hub genes play an important role in schizophrenia
and bipolar. Hub genes SLC1A2 (39) and PLCB1 (27) had
been reported to be highly related with both schizophrenia
and bipolar disorder. GRM5 was reported to be
associated with schizophrenia (40) and other neurological
disease (41). Researchers also observed that a point
mutation in the GNAO1 gene can show significantly
decreased affinity for RGS4 (42) whose variations are
possibly associated with schizophrenia, which are dis-
covered by many studies (43–45). DLGAP1 was also an
important gene that had been reported to be associated
with schizophrenia (46,47). Furthermore, the interactions
between DLGAP1 and DLG4, SHANK1 and SHANK3
observed in the co-expression networks constructed by the
genomic position-level expressions, and CCA method can
be confirmed from UniProtKB database (48).

Bivariate CCA for co-expression network construction
with ASE RNA-seq data

To fully use the information of the captured exons, genomic
position, allele- and isoform-specific expression provided
by RNA-seq, we developed a novel bivariate CCA
method for construction of co-expression networks with
ASE RNA-seq data. The bivariate CCA method allows
levels of ASE to vary across SNPs within genes. The
complicated patterns of ASE may come from allele-specific
splicing, alternative polyadenylation site usage and alterna-
tive transcription start sites (2). The traditional single
variate CCA analyses the correlation between two sets of
variables in which each variable has only one dimension.
Therefore, the single variate CCA cannot distinguish
difference in expressions between two alleles. Taking differ-
ence in expressions between two alleles into account,
we extended single variate CCA to bivariate CCA, in
which each vector with two components represents expres-
sions of two alleles at an SNP. To evaluate performance
of bivariate CCA for co-expression network construction
with ASE data, we again used the GLASSO with
the gene-level aggregate data to construct co-expression
networks. The bivariate CCA for construction of
co-expression network with ASE data was applied to

schizophrenia and bipolar RNA-seq data set described
before. We included 65 genes in the Wnt signal pathway
in the analysis. The co-expression networks for schizophre-
nia, bipolar and normal tissue samples constructed by bi-
variate CCA (ASE) and the GLASSO are shown in Figures
5–7 and Supplementary Figures S3–S5, respectively.
To unravel the merits and limitations of using ASE and

gene-level expressions for construction of co-expression
networks, we investigated the biological significance of
the hub genes in the networks. Compared with the
position-level networks, more hub genes, which had been
previously reported to be involved with schizophrenia,
bipolar disorder and other neurological diseases, were
detected in the networks by the bivariate CCA method
and ASE data. Five genes (CAMK2B, PPP3R1, PSEN1,
TBL1XR1 and CSNK2A1) in the schizophrenia network
and five genes (CAMK2B, NFAT5, TBL1XR1, GSK3B
and RAC1) in the bipolar networks constructed by ASE
were detected to be hub genes in the networks. The
function of CAMK2B and PPP3R1 and their association
with the two disorders had been described in the previous
section. PSEN1 is a core protein that regulates the process
of g-secretase (49) and is also a well-known cause of
Alzheimer’s disease (50). This gene was also suspected to
be involved in schizophrenia (51). TBL1XR1 contained
an F-box-like domain and might act as function in tran-
scription activation (52). A recent Genome-wide
association study (GWAS) study reported an association
of this gene with bipolar disorder (53). CSNK2A1 is a
serine/threonine protein kinase and might be related to
Alzheimer’s disease (54). GSK3B is a proline-directed
serine–threonine kinase and involved in neuronal cell de-
velopment (55). This gene had been reported to play im-
portant roles in many neurology diseases, such as
Parkinson’s disease (56), bipolar disorder (57) and schizo-
phrenia (58). NFAT5 belongs to the protein family of the
nuclear factors of activated T cells (NFAT) and plays a
key role in inducible gene transcription during the pro-
cess of immune response. It was reported to have alterna-
tive splicing in a neurodegenerative disorder (59). This
gene mainly plays key roles in cancer (60). Although
there were no direct evidence of its relationship with
bipolar disorder and schizophrenia, this gene’s exchange
factor, ARHGEF6, is a mental retardation protein,
which plays important roles in the plasticity of synaptic
networks (61).
We observed a number of SNPs at which either major

allele or minor allele or both alleles showed differential

Table 3. Expression pattern of the hub genes in the co-expression networks for three types of tissues

Gene Number
of SNPs

Average expressions P-values

Bipolar Schizophrenia Normal Bipolar Schizophrenia

PLCB1 17 28.65 32.94 36.66 1.83E-05 2.38E-02
APC 19 27.31 27.45 31.4 9.92E-03 1.44E-03
PPP3R1 12 179.04 180.25 209.42 4.90E-03 4.31E-03
CAMK2B 13 157.34 148.28 151.84 3.11E-01 5.18E-01
CAMK2A 23 288.49 276.61 321.92 6.54E-03 1.80E-04
MAPK10 24 87.81 84.79 98.79 2.00E-02 2.38E-03
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expressions between affected tissue samples and normal
tissue samples (Supplementary Table S3). Among them,
some SNPs were found to have interesting molecular
features (62–64) (Table 4). The top hub gene in both
schizophrenia and bipolar networks was the CAMK2B
gene. We found that the SNP rs11542227 in CAMK2B
was an exonic splicing enhancer. We also imputed the
genotypes of samples that were used for RNA-seq and
tested the association of rs11542227 with schizophrenia
and bipolar (65). Although we did not find association
of rs11542227 with schizophrenia [P < 0.4155, odds
ratio (OR) 1.37] and bipolar (P < 0.0541, OR 2.26), we
identified association of rs11542228 that is only nine base
pairs away from rs11542227 with bipolar (P < 0.009138,
OR 2.90). P-value for testing the association of
rs11542228 with schizophrenia still did not reach signifi-
cance level, but close to � ¼ 0:05 (P < 0.0617, OR 2.04).
We also found that major allele at rs11542227 (P <
0.0241) and minor allele at rs11542228 (P < 0.0383)
were differentially expressed between bipolar and normal
tissues. To be noticed, we detected the co-expressed
pattern of CAMK2B and CCND3 in both schizophrenia

and bipolar networks. Interestingly, the alleles rs11542227
and rs11542228 had high canonical coefficients (see
Figures 5 and 6 for details), which contributed mostly
to the detection of the co-expressed pattern. Besides,
we identified a cis-eQTL rs56346434 in intron within
CAMK2B, which was associated with expression of
rs11542227 (P < 7.8E-03). We also observed that
rs1065359 and rs1127065 were located in CpG islands.
Minor allele at rs1065359 and major allele at rs1127065
were differentially expressed between bipolar disorder and
normal tissue samples (P < 0.0147 and P < 0.0292, re-
spectively). Interestingly, rs1127065 was reported in a
haplotype associated with fasting glucose alteration and
weight gain (66). Its cis-eQTL site, rs4724298, detected in
our study, was suspected to be a risk factor for therapeutic
effect of risperidone in a pharmacogenetic study of anti-
psychotic response (67). rs11692815, which was located in
PPP3R1, was a stop codon site. Its two alleles were dif-
ferentially expressed between bipolar disorder and normal
tissue samples (major, P < 0.0283; minor, P < 0.0377).
Nearby SNP rs875 in the intron was a cis-eQTL, which
was associated with expressions of both alleles at
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rs11692815 (major, P < 0.0044; minor, P < 0.000022).
Although there were no direct evidences for the associ-
ation of rs11692815 with bipolar disorder or schizophre-
nia, a nearby SNP rs1868402 (only �6.73 kb from
rs11692815 and +1.11 kb from rs875) was most signifi-
cantly associated with Alzheimer’s disease reported in a
GWAS study (68). SNP rs3188952 in TBL1XR1 was a
non-synonymous mutation. Its major allele was differen-
tially expressed between bipolar disorder and normal
tissues. SNP rs78060044 was associated with the expres-
sion of its major allele (P < 0.007), and SNP rs3188952
was highly significantly associated with the expression of
its minor allele (P < 1.7�10�10). Its nearby SNP
rs1564764 was associated with schizophrenia (P <
0.02247, OR 2.61). The mutation of rs362384 in PSEN1
had been reported to be involved in Alzheimer’s disease
(69). In our study, we found that a cis-eQTL site rs214260
was associated with the expression of major allele at
rs362384 in PSEN1 (P < 7.2E-04), which was also
reported to be involved with Alzheimer’s disease (70).

DISCUSSION

Allele-specific alternative splicing, polyadenylation,
allele-specific transcription start sites and differential
promoter usage generate a large variability at the

transcriptional level. RNA-seq technologies are able to
measure mRNA variation across the genes. They
provide substantially detailed biological insight than
microarray platform. RNA-seq is now opening unprece-
dented avenues to address the analysis of entire transcrip-
tomes (71). However, few statistical methods for
construction of co-expression network with RNA-seq
data are available. RNA-seq also poses great challenges
to use its remarkable features in analysis. To address these
challenges, we developed two CCA-based statistical
methods for construction of co-expression networks with
RNA-seq data. We demonstrated that the CCA can ef-
fectively use position- and allele-level information of
RNA-seq and has several remarkable features.
First, a unique strength of the CCA for construction of

co-expression networks is its ability to explore substantial
variation of mRNA expression across SNPs. The current
statistical methods for construction of co-expression
networks are designed to infer network structure using
overall gene expression and cannot allow the levels of ex-
pressions to vary across the positions and SNPs. However,
the CCA is to measure correlation between two sets of
count of sequenced reads across SNPs within the genes;
hence, it can consider genomic position and allele levels of
expressions. The CCA for construction of co-expression
networks is designed for RNA-seq data.
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Table 4. Biological characterization of typical SNPs in hub genes

SNP Gene P-values Function

Schizophrenia Bipolar cis-eQTL(in groups)

Major Minor Major Minor SNP

�14193bpa PSEN1 0.262 0.0835 0.0454 0.0296
rs362384 PSEN1 0.209 0.3571 0.8719 0.099 rs214260 (major) 7.2E-04 Non-synb

rs11692815 PPP3R1 0.7297 0.8015 0.0283 0.0377 rs875 (major) 4.4E-03 Non-syn; stop-gainb

rs875 (minor) 2.2E-05
rs9529 CCND3 0.1552 0.8015 0.1076 0.1765 rs16895130 (major) 3.2E-05 Non-synb; esec,d

rs4714522 (minor) 4.0E-05
+733bpa CCND3 0.4127 0.2174 0.0156 0.015
rs1065359 CAMK2B 0.1064 0.9904 0.7414 0.0147 rs1127065 (major) 2.0E-02 CpG: 25e

rs76804431 (minor) 1.0E-02
rs1127065 CAMK2B 0.9711 0.18 0.0292 0.5598 rs4724298 (major) 3.2E-02 CpG: 25e

rs1065359 (minor) 1.5E-02
rs11542227 CAMK2B 0.8915 0.9966 0.0241 0.0697 rs56346434 (major) 7.8E-03 esec,d

rs56256432 (major) 7.8E-03
rs3188952 TBL1XR1 0.9056 0.1264 0.0202 0.8172 rs78060044 (major) 1.7E-03 Non-synb

rs3188952 (minor) 1.7E-10

a‘�’ stands for upstream of the nearby SNP; ‘+’ stands for downstream of the nearby SNP.
bH-Inv database v 7.0.
cese is short for exonic splicing enhancer.
dGeneCard.
eSNP nexus database.
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Second, the co-expression networks constructed by the
CCA are more similar to true biological network than the
networks constructed by the current methods and overall
gene expressions. Our network topology analysis illus-
trates that the connectivity, centralization and heterogen-
eity of the co-expression networks estimated by the CCA
methods are much higher than that estimated by the
current methods (taking GLASSO as a representative)
and overall gene expressions. Simulations show that the
networks constructed by the overall gene expressions are
similar to random networks. Our analysis of lung cancer
TCGA data set also demonstrates that the co-expression
network constructed by CCA is more overlapped with the
pathways in KEGG database than the network con-
structed by GLASSO method.

Third, the major advantage of bivariate CCA for con-
struction of co-expression networks is its ability to explore
information on allelic differences of mRNA expressions.
Widespread ASE was observed (72). It may be expected
that almost every gene shows allelic differences of expres-
sions (2). ASE provides substantially detailed biological
insight into transcriptome structure. To use ASE informa-
tion, we develop novel bivariate CCA for construction
of co-expression networks. We demonstrate that the
co-expression networks constructed by ASE and bivariate
CCA in schizophrenia and bipolar RNA-seq data analysis
harbour highly connected genes with biological signifi-
cance. We observe that a number of alternative splicing
enhancer, stop codon sites, CpG island, non-synonymous
mutations in the hub genes show significant allelic differ-
ences in expressions between schizophrenia and normal
samples or between bipolar and normal samples. The
genetic variation of some of these sites are associated
with either schizophrenia or bipolar or both. We also
identify cis-eQTLs that underlie ASE variation of the
identified hub genes. The co-expression networks con-
structed by ASE data and bivariate CCA provide rich
genetic and molecular information to gain insight into
biological processes and disease mechanism. However,
the co-expression networks constructed by the GLASSO
method and overall gene expression data summarizing all
number of reads across the gene are similar to random
networks. We observed few hub genes showing biological
significance in these co-expression networks.

RNA-seq can identify different mRNA variants and
measure expressions at exon, SNP, positional and allelic
levels. Gene co-expression variations are often caused by
alternative and allele-specific splicing, alternative poly-
adenylation of pre-messenger RNA molecules and alter-
native promoter usage. The proposed CCA methods for
construction of co-expression networks take the various
transcript variants into account; hence, they can consider
complex patterns of gene expressions. Therefore, they can
accurately predict co-expressions and efficiently character-
ize regulatory processes, which finally lead to discovery
of mechanism underlying complex traits. Summarizing
number of sequence reads along transcripts into an
overall expression of the gene removes substantial
mRNA variation across the transcripts and information
on regulatory process. Substantial biological information
contained in the gene expressions will be lost in the

co-expression networks constructed by the current
methods and overall gene expressions. The CCA for
co-expression network construction with RNA-seq data
substantially outperforms the current statistical methods
for co-expression network construction with microarray
expression data or RNA-seq data based on overall gene
expression levels.
Digital transcriptome RNA-seq analysis open up unpre-

cedented avenue to address the analysis of entire transcrip-
tomes. The results in this article are preliminary. The
purpose of this article is to stimulate further discussions
regarding great challenges we are facing in developing
statistical methods and computational algorithms for
analysing large and formidably complex data sets to opti-
mally use biological information hidden in the RNA-seq
data and unravel mechanism of diseases.
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