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SUMMARY

Cullin RING E3 ubiquitin ligases (CRLs) function in
the ubiquitin proteasome system to catalyze the
transfer of ubiquitin from E2 conjugating enzymes
to specific substrate proteins. CRLs are large dy-
namic complexes and attractive drug targets for the
development of small-molecule inhibitors and chem-
ical inducers of protein degradation. The atomic
details of whole CRL assembly and interactions
that dictate subunit specificity remain elusive. Here
we present the crystal structure of a pentameric
CRL2VHL complex, composed of Cul2, Rbx1, Elongin
B, Elongin C, and pVHL. The structure traps a closed
state of full-length Cul2 and a new pose of Rbx1 in a
trajectory from closed to open conformation. We
characterize hotspots and binding thermodynamics
at the interface between Cul2 and pVHL-EloBC and
identify mutations that contribute toward a selec-
tivity switch for Cul2 versus Cul5 recognition. Our
findings provide structural and biophysical insights
into the whole Cul2 complex that could aid future
drug targeting.

INTRODUCTION

In living systems, complex signaling mechanisms and networks

continuously regulate cells. The ubiquitin proteasome system

contributes significantly to these regulation processes by deter-

mining the fate of many proteins under different cellular circum-

stances. Protein tagging with ubiquitin molecules translates into

a variety of cellular responses that are dictated by the pattern

of ubiquitination, including ubiquitin-dependent proteasomal

degradation (Hershko and Ciechanover, 1998). The ubiquitina-

tion pathway relies on the sequential action of three enzymes:

an E1-activating enzyme, an E2-conjugating enzyme, and an

E3 ligase. Cullin RING E3 ubiquitin ligases (CRLs) constitute

the major subfamily of E3 ligases that catalyze the transfer of

ubiquitin from the E2-conjugating enzyme to the target sub-

strate. CRLs account for 20% of the ubiquitin-dependent protein

turnover in cells (Petroski and Deshaies, 2005). The Cullin protein

is the core of CRLs, acting as a scaffold that brings together the

substrate and the E2-conjugating enzyme. The substrate is re-

cruited by the receptor and the E2 enzyme loaded with ubiquitin
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is recruited by the RING finger protein (Lydeard et al., 2013). The

Cullin family is composed of sevenmembers involved in ubiquitin

multi-subunit complexes (Cul1, Cul2, Cul3, Cul4A, Cul4B, Cul5,

and Cul7) which all share similar structural features (Duda

et al., 2011). To date, only Cul1 (Zheng et al., 2002), Cul4A,

and Cul4B (Fischer et al., 2011) have yielded crystal structures

of full-length protein, limiting the information available on this

important protein family. Therefore, the only structures available

of whole CRL complexes are those of CRL4ADDB2, CRL4BDDB2,

and CRL1Skp2. Limited structural information prevents full

comprehension of mechanisms of activity and functioning of

CRL multi-subunit molecular machines. Structural information

on CRLs is critical also for drug discovery as it can provide the

basis for exploring protein-protein interactions (PPIs) with small

molecules to modulate protein function (Lucas and Ciulli,

2017). For example, based on the structural knowledge of certain

PPIs, recent work has demonstrated the ability to hijack E3

ligase complexes into recruiting non-natural selective substrates

for ubiquitination and subsequent proteasomal degradation (Lu

et al., 2015; Winter et al., 2015; Zengerle et al., 2015). These

examples reinforce the importance of available structural infor-

mation but also demonstrate the power of targeting CRL com-

plexes using small molecules.

Our work focuses on the CRL2VHL ligase, a complex contain-

ing Cul2 as the scaffold protein and the von Hippel-Lindau pro-

tein (pVHL) as the substrate receptor. Cul2 recruits pVHL at its

N-terminal region through an adaptor subunit constituted by a

dimeric complex formed by Elongin B (EloB) and Elongin C

(EloC) (Pause et al., 1997), and the RING finger subunit Rbx1 at

its C-terminal region (Kamura et al., 1999). Despite the existence

of crystal structures of partially assembled complexes, namely,

structures of the trimeric complex constituted by pVHL and

EloBC (VBC) (Stebbins et al., 1999), VBC in complex with a hyp-

oxia-inducible factor 1a (HIF-1a) peptide (Min et al., 2002; Hon

et al., 2002), and the first helical bundle of Cul2 (residues

1–163) bound to VBC (Nguyen et al., 2015), the structure of the

whole CRL2VHL complex was still elusive. CRL2VHL-mediated

degradation of HIF-1a is the most widely studied function of

this E3 ligase; however, there are at least another six substrates

of the VHL ubiquitin ligase that have been identified (Cai and

Yang, 2016). Under normal levels of oxygen (normoxia), HIF-1a

is hydroxylated by oxygen-dependent prolyl hydroxylase

domain (PHD) enzymes at specific proline residues (Pro402

and Pro564). As a result, HIF-1a is recruited to the CRL2VHL com-

plex via the b domain of pVHL, which recognizes the hydroxy-

proline post-translation modification. Once bound to CRL2VHL,

HIF-1a is ubiquitinated and targeted for degradation by the
June 6, 2017 ª 2017 The Author(s). Published by Elsevier Ltd. 901
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Figure 1. Crystal Structure of the CRL2VHL

Complex

(A) Diagrams of the primary structure of each

protein subunit, illustrating the constructs used to

obtain the crystal structure.

(B) Representation of the 2Fo-Fc electron density

contoured at 1s over a portion of the model.

(C) Crystal structure of the CRL2VHL with each of

the protein subunits identified. Cul2 is divided into

N-terminal (NTD) and C-terminal (CTD) domains

and the NTD is composed of three helical bundles,

constituted by five a-helices (A–E).

(D) The three helical bundles of the NTD are su-

perposable with a maximum RMSD of 4.5 Å over

the Ca.

(E) CTD of Cul2 is organized in a four-helical bundle

(4HB), an a/b domain, and a winged-helix motif

(WH-B).
proteasome (Maxwell et al., 1999). Upon decrease of the oxygen

levels, PHD activity is inhibited and HIF-1a is no longer hydrox-

ylated, escapes E3 recognition, and accumulates in the cell, trig-

gering a transcriptional response to hypoxia (Semenza, 2007).

The CRL2VHL is considered an attractive therapeutic target in

diseases such as chronic anemia and acute ischemic disorders

where the effects of stabilization of HIF-1a in cells have proved

beneficial (Muchnik and Kaplan, 2011). Our laboratory has

recently developed potent pVHL inhibitors using structure-

guided drug design (Galdeano et al., 2014). Compound VH298

was characterized in cells as highly selective inhibitor active

on-target against pVHL, and elected as a chemical probe of

the hypoxia signaling pathway (Frost et al., 2016). Using these

pVHL-targeting ligands as a starting point, bivalent molecules

have been designed which recruit proteins into proximity of the

CRL2VHL to deplete protein levels inside cells and in vivo (Zen-

gerle et al., 2015). Targeting CRL2VHL to induce protein degrada-

tion provides an attractive chemical biology approach for target

validation (Buckley et al., 2015; Fulcher et al., 2016) and a new

therapeutic modality in drug discovery (Lai and Crews, 2017).
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Here, we present the first crystal struc-

ture of the CRL2VHL complex to 3.9 Å

resolution, revealing for the first time the

full-length Cul2 interacting with Rbx1,

which provides insights to themechanism

of the E3 ligase activity. We complement

our study with biophysical data on

CRL2VHL PPIs, revealing the basis for

Cul2 versus Cul5 recognition.

RESULTS

Crystal Structure of the CRL2VHL

Complex
To gain structural insight into the human

CRL2VHL complex, we reconstituted the

fully assembled complex composed by

Cul2, EloB, EloC, pVHL, and Rbx1 and

pursued its crystal structure (Figure 1).

To assemble the complex, we expressed
and purified independently a trimeric complex constituted by

pVHL, EloB and EloC (i.e., VBC) and a dimeric complex

composed by Cul2 and Rbx1. The first complex is obtained

routinely in the Escherichia coli expression system (Van Molle

et al., 2012), whereas the latter was expressed in Sf21 insect

cells (Bulatov et al., 2015; Kelsall et al., 2013). The two compo-

nents VBC and Rbx1-Cul2 were mixed and purified by size-

exclusion chromatography, yielding the pentameric complex.

In parallel, we prepared the same complex in the presence of

an HIF-1a 19-mer peptide (residues 559–577) bound to pVHL,

mimicking one of the natural substrates of the CRL2VHL ubiquitin

ligase. Sparse-matrix screening of both complex forms was per-

formed and hit conditions were identified for the HIF-1a contain-

ing form. After optimization of the initial hit condition by additive

screening and the introduction of streak seeding, we obtained

promising diffracting crystals to be used for data collection.

These crystals exhibited some elasticity and were to some

extent fragile; nevertheless, we collected a dataset for crystals

of the CRL2VHL complex. Calculation of theMatthews coefficient

(Matthews, 1968) retrieved a solvent percentage of 63.9%,



Table 1. Data Collection and Refinement Statistics

Data Collection

Wavelength (Å) 0.9282

Space group C2221

Cell dimensions

a, b, c (Å) 86.0, 191.0, 238.9

a, b, g (�) 90, 90, 90

Molecules/ASU 1

Resolution (Å) 95.48–3.90 (4.27–3.90)

Rmerge (%) 11.4 (73.2)

I/s(I) 10.2 (2.2)

Completeness (%) 100 (100)

Redundancy 5.7 (5.3)

CC1/2 0.857 (0.798)

Refinement

Resolution (Å) 95.48–3.9

Unique reflections 18,326

Rwork/Rfree (%) 30.15/34.61

Average B factor (Å2) 191

No. of non-hydrogen atoms 7,734

RMSDs

Bond lengths (Å) 0.003

Bond angles (�) 0.692

Ramachandran analysis

Preferred regions (%) 90.65

Allowed regions (%) 9.13

Outliers (%) 0.22

Statistics in parentheses indicate values for the highest-resolution shell.
consistent with the presence of one protomer per asymmetric

unit (ASU) arranged in a C2221 space group (Table 1). The struc-

turewas solved at 3.9 Å resolution using a combination ofmolec-

ular replacement (MR) and iterative rounds of model building and

refinement, which are described next. The structure of Cul2 was

the first fragment to be solved by MR in MrBUMP (Keegan and

Winn, 2007), using an homology model of the same protein ob-

tained through Chimera (Pettersen et al., 2004) based on the

structures of Cul1, Cul4, Cul5NTD, and Cul5CTD as template

(PDB: 1U6G, 4A0K, 4JGH, and 3DPL, respectively). Next, we

placed the dimer of EloB and EloC (EloBC) by MR in Phaser

(McCoy et al., 2007), using as template the corresponding sub-

units from a VBC-HIF-1a structure (PDB: 4AJY). Clear unmod-

eled electron density could be observed corresponding to the

Rbx1 N-terminal tail (residues 17–35). This region is conserved

in all Cullin-bound Rbx1 structures available in the PDB, allowing

its correct positioning into the structure. We next identified the

RING domain of Rbx1 by MR using as template an existing

Rbx1 structure (PDB: 2LGV [Spratt et al., 2012]) in Phaser. At

this stage, patches of positive electron density became clearly

visible in the area where pVHL was expected to be found,

according to the previous structure of VBC in complex with

Cul21-163 (Nguyen et al., 2015). Fitting in pVHL proved very chal-

lenging and despite various attempts at MR using a diversity of

template models, no satisfactory solution was found. However,
due to the unambiguous electron density, we were able to fit

manually the three-helix cluster structure of the VHL box (Ka-

mura et al., 2004) that is conserved in all the available crystal

structures. Nevertheless, for the remaining residues (54–156)

that constitute the substrate-binding domain and the 19-mer

HIF-1a peptide, no electron density was observed. Due to the

resolution of our structure, not all the side chains could be defin-

itively seen in the electron density; therefore some side chains,

particularly in the Cul2-VBC interface, were modeled according

to a higher-resolution structure (Nguyen et al., 2015). These

steps were intercalated with rounds of refinement in Refmac5

(Vagin et al., 2004) and Phenix (Adams et al., 2010), and map

sharpening by negative B-factor correction was applied to

improve the quality of the electron density maps and facilitate

successful model building (Figure 1B) (Nicholls et al., 2012).

The structure packs nicely with eight symmetry-related mole-

cules, forming extensive crystal contacts. The full-length Cul2

binding Rbx1 at the C-terminal domain and the VHL-box-EloBC

at the N-terminal domain constitute our final model (Figure 1C). It

reveals for the first time the whole Cul2 structure and the inter-

face between Rbx1 and Cul2.

Cullin-2 Structure Highlights Its Inherent Flexibility
The structure assumed by Cul2 in the CRL2VHL reveals an archi-

tecture similar to that of structures of other Cullins. It presents

the classical elongated shape divided in the N-terminal domain

(NTD) and the C-terminal domain (CTD). The NTD comprises res-

idues 1–384 arranged in three helical bundles (also called Cullin

repeats) each composed of five a helices. These three Cullin re-

peats are superposable with a root-mean-square deviation

(RMSD) for the Ca atoms of up to 4.5 Å (Figure 1D). At the other

end, the CTD (residues 385–745) is a globular domain organized

in a four-helical bundle (4HB) linked to the NTD, an a/b domain,

and a winged-helix motif (WH-B) (Figure 1E). In our structure,

some residues at the CTD (625–634 and 645–660) were disor-

dered and could not be modeled.

Cul2 was one of the members of the Cullin family lacking

structural information on the full NTD. Superposition of all the ex-

isting structures of complete Cullin NTDs highlights the flexibility

of this domain. We observed that all of the NTDs align most

closely through the second Cullin repeat, exhibiting consider-

able differences in their first and third helical bundles’ relative

position, consistent with intra-domain bending motion (Fig-

ure 2A). In addition, the structural alignment of full-length Cul1,

Cul2, and Cul4A reveals an interesting difference on how the

CTD is packed against the NTD in each of the structures (Figures

2B and 2C). In Cul2 the globular domain is considerably moved

toward the NTD relative to the other Cullins. The distances

measured between the very top residue at the CTD (the Lys

that gets modified with NEDD8, i.e., Lys689 in Cul2, Lys720 in

Cul1, and Lys705 in Cul4) and the top residue in helix a1 of the

NTD (Phe10 in Cul2, Leu17 in Cul1, and Thr62 in Cul4) are

more than 10 Å shorter in Cul2 (100 Å for Cul2, 110 Å for Cul1,

and 113 Å for Cul4). Cul1CTD is rotated by 29� compared with

Cul2CTD, whereas Cul4CTD presents an angle of rotation of about

33� compared with Cul2CTD.

In summary, these observations highlight a trapped closed

state conformation for non-neddylated full-length Cul2 and sup-

port the previously reported flexibility of the Cullin scaffold,
Structure 25, 901–911, June 6, 2017 903



Figure 2. The CRL2VHL Complex Is Dynamic

and Flexible

(A) Crystal structures of the full NTD of Cul1 (PDB:

1U6G), Cul2 (PDB: 5N4W), Cul3 (PDB: 4HXI),

Cul4A (PDB: 4A0K), Cul4B (PDB: 4A64), and Cul5

(PDB: 4JGH), illustrating the existence of hinge

points in the linkers between Cullin repeats.

(B) Full-length structures of Cul2, Cul4A, and Cul1

superposed by the CTDs reveal considerable

inter-domain flexibility through a hinge point be-

tween NTD and CTD.

(C) Close-up view of the CTDs of Cul1, Cul2, and

Cul4A with the proteins aligned by the third

Cullin repeat of the NTD, illustrating the different

relative orientations of the CTDs in the full-length

structures.
which is thought to contribute to an allosteric mechanism of

polyubiquitination of substrates (Liu and Nussinov, 2011).

Rbx1 Presents a New Orientation
Rbx1 structure presents an N-terminal tail arranged in a long

b strand that engages Cullin CTD and a variant RING finger

domain. The RING is characterized by the presence of an

extended region containing a third zinc ion coordinated by three

cysteines and one histidine, in addition to the canonical region

containing two zinc ions (Zheng et al., 2002). The structure of

the N-terminal tail of Rbx1 and its position in the complex are

conserved among different CRL structures. Conversely, the

RING domain is flexible and has been found in a number of

different orientations, even in different molecules within the

same ASU (Duda et al., 2008). Interestingly, the conformation

observed in our structure has not been reported previously. The

Rbx1 RING domain establishes mainly hydrophobic crystal con-

tacts with Rbx1-Cul2 from another ASU. These contacts extend

through an area of 363 Å2, which corresponds to about 17% of

the total area of interface of Rbx1 with Cul2 (2,122 Å2). Thus

we believe that our observed conformation of Rbx1 captures,

via the consequent crystal contacts, a significantly populated

conformation in solution. It lies between Rbx1-Cul5�NEDD8

and Rbx1-Cul5 conformations, resembling a transitory state in

a trajectory amid the two (Figure 3). The flexibility of the RING

domain has been the subject of many studies aimed at eluci-

dating the structural and mechanistic details of ubiquitin ligase

activity (Angers et al., 2006; Calabrese et al., 2011; Duda et al.,

2008; Goldenberg et al., 2004; Onel et al., 2017; Zheng et al.,

2002). Previous work has demonstrated how the RING domain

dramatically reorients its position relative to Cullin upon neddyla-

tion of Cul5 (Scott et al., 2014). This repositioning is regarded as

the enzyme adaptation for ubiquitination and, in this so-called

open conformation, the area of interface between Rbx1 and

Cul5 (1,707 Å2) is contributed solely by the N-terminal tail

(Table 2). Indeed the total areas of interface between Rbx1 and

the different Cullin subunits vary according to the orientation of

the Rbx1 RING domain. In our structure, the linker between the
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N-terminal tail and the RING domain,

albeit not completely extended, is not fully

retracted either, and the Rbx1-Cul2 PPI

covers an area of 2,122 Å2. This interface
area is larger than in the Rbx1-Cul5�N8 and the Glomulin-Rbx1-

Cul1 (Duda et al., 2012) complexes but smaller than in any of the

other structures (Table 2). These findings reveal a potential trajec-

tory of theRbx1RINGdomain from thenon-neddylated toneddy-

lated form of the complex, en route to the fully active E3 ligase.

The Interface between Cul2 and VBC
The Cul2-VBC interface, as previously described (Nguyen et al.,

2015), is established by three main contact points (Figure 4).

Firstly, the N-terminal loop of Cul2 assumes a critical role in

the interaction (Figure 4A), with Leu3 inserting into an hydropho-

bic pocket on EloC, defined by Met105 and Phe109, and Pro5

being involved in a three-way contact with Val181 in pVHL and

Met105 in EloC (Figure 4B). The importance of the N-terminal

loop in this PPI is observed in Cul2 and Cul3 (Canning et al.,

2013). In a second region of interaction there is charge comple-

mentarity at the interface between helix a5 of Cullin and the sub-

strate receptor, where residues Gln111 and Lys114 from Cul2

are interacting with residues Lys159 and Asp187 from pVHL,

respectively. These two salt bridges were thought to be respon-

sible for the selective recruitment of Cul2 to this complex over

Cul5 (Nguyen et al., 2015). Finally, helix a2 of Cul2 is packed

against pVHL and EloC surfaces, with residues Asn36, Phe39,

Tyr43, and Val47 contributing to this hydrophobic interface (Fig-

ure 4D). EloB forms no direct interaction with Cul2. The areas of

the Cul2-VBC PPI and the orientation of the VHL-box-EloBC

relative to Cul2 are consistent with those observed in the quater-

nary structure of Cul21–163-VBC (Table S1 and Figure S1). The

two structures superpose with an RMSD for the Ca atoms of

0.866 Å, suggesting this interface of the CRL complex to be

structurally rigid and conserved.

Thermodynamics of Cul2-VBC Interaction
The lack of biophysical data regarding PPIs within the CRL2VHL

complex encouraged us to pursue in-depth characterization.

Despite numerous attempts to obtain Cul2 alone as functional

protein by testing different length constructs with different solu-

bilizing tags, we failed to obtain soluble, monomeric protein that



Figure 3. Rbx1 Presents a New Orientation

Superposition of the CTDs of six Cullins—Cul1

(PDB: 1U6G), Cul2 (PDB: 5N4W), Cul4 (PDB:

4A0C), Cul5 (PDB: 3DPL), Cul5�NEDD8 (PDB:

3DQV), and Glomulin-Rbx1-Cul1 (PDB: 4F52)—

complexedwithRbx1. ThenewstructureofRbx1 in

complex with Cul2 unveils a novel orientation of its

RING domain, resembling an en route conforma-

tion between Rbx1-Cul5 and Rbx1-Cul5�NEDD8.
could form a complex with VBC. Since Cul2 needed to be co-ex-

pressed with Rbx1 to obtain soluble and functional protein, it

was not possible to investigate the PPI between these two sub-

units, so we decided to focus on the PPI between Cul2 and VBC.

We performed isothermal titration calorimetry (ITC) experiments

titrating VBC into Rbx1-Cul2 and measured an expectedly

strong binding affinity (KD = 42 nM) and large exothermic

binding enthalpy (DH = �17.2 kcal/mol) at 303 K (Figure 5).

Previously published data on other Cul5-EloBC complexes,

namely Cul5NTD-ASB9-EloBC and Cul5NTD-SOCS2-EloBC,

reported binding affinities of 140–220 nM (Muniz et al., 2013;

Thomas et al., 2013) and 7–47 nM (Babon et al., 2009; Bulatov

et al., 2015; Salter et al., 2012) and binding enthalpies of

�8.3 kcal/mol and �4.8 kcal/mol, respectively, for the corre-

sponding interactions.We next investigated temperature depen-

dence of the binding parameters and determined a change in

heat capacity, DCp = �760 cal/mol/K (Figure 5B). The change

in heat capacity is a thermodynamic parameter defined as the

change in energy (heat) with temperature (DCp = dDH/dT )

(Prabhu and Sharp, 2005). This value of DCp is significantly

greater than those determined for similar complexes (Figure 5C),

suggesting a greater buried surface area upon interaction, lead-

ing to a more stable complex. In fact, based on the crystal struc-

tures, the area buried upon interaction in Cul2-VBC is 2,621 Å2,

which is considerably greater than in Cul5-SBC (1,945 Å2) and

Cul5-VifCbFBC (1,605 Å2, Table S2). It has been shown that hy-

dration of polar and apolar groups promotes changes in the heat

capacity and this relation has been modeled by the equation

DCp
hydration = CaDSASAa + CpDSASAp, where SASA is the sol-

vent-accessible surface area (apolar and polar) buried upon

interaction and Ca and Cp are constants empirically determined,

representing the area coefficient per Å2 contribution of residues

in heat capacity change. Based on our crystal structure we

calculated the theoretical DCp values according to the different

constants Ca and Cp (Table S3) (Prabhu and Sharp, 2005). Inter-

estingly, we observed that our experimental DCp is greater than

the theoretical values in most of the cases, which could indicate

a conformational rearrangement in solution upon binding that is

not accounted for in the theoretical calculations.

The biophysical and structural data support a tight and exten-

sive PPI between the scaffold and the adaptor/receptor subunits

in the CRL2VHL complex.
Hydrophobic Contact Residues
Critical for the Cul2-VBC
Interaction
To elucidate the main drivers of the tight

PPI between Cul2 and VBC and identify

hotspots, we turned to quantifying indi-
vidual contributions of potential key residues, guided by struc-

tural analysis. To accomplish this, we mutated contact residues

involved in the PPI and assessed changes in binding affinities be-

tween mutants and wild-type proteins. We focused on the three

main locations in the Cul2-VBC interface, namely: (1) the EloC

pocket and adjacent area; (2) the helix a5-pVHL charge comple-

mentarity region; and (3) the hydrophobic contacts between he-

lix a2 and EloC. In the EloC pocket area we mutated Leu3 to Ala

to understand how important was the volume filling the EloC

pocket for the interaction. We also mutated Leu3 to Gly, consis-

tent with mutagenesis from previous work (Nguyen et al., 2015).

Additionally we mutated Pro5 to Ala, as we considered that this

residue could play a role in stabilizing the conformation of the

N-terminal loop of Cul2, which seemed important to direct the

interaction. Furthermore, Pro5 is involved in a three-way contact

with Val181 (pVHL) and Met105 (EloC). In the other subunits, we

mutated Val181 in pVHL to Gly and also mutated Met105 and

Phe109 in EloC to Ala, to assess the consequences of disrupting

the EloC hydrophobic pocket. In the helix a5 interface we

mutated Gln111 and Lys114 to Leu and Glu, respectively, and

Lys159 and Asp187 in pVHL to Glu and Lys, respectively, to un-

derstand the importance of these electrostatic interactions in the

complex formation. Finally, in the third region of the interface we

mutated residues Asn36, Phe39, Tyr43, and Val47 onCul2 to Ala,

as those residues are involved in hydrophobic contacts with

pVHL and EloC surfaces.

Initially, we screened all the mutants generated in an

AlphaLISA (Yasgar et al., 2016) assay to determine IC50 values

from dose-response curves. To do this we designed a competi-

tion experiment in which the ability of a competitor (protein with

mutation) to disrupt the interaction between the two native pro-

tein subunits of the complex is determined. VBC and Rbx1-Cul2

wild-type were also titrated for reference. The results of the

AlphaLISA show that all the mutations are disruptive to the

Cul2-VBC interaction (Figures 6 and S2), although the extent of

the disruption varies greatly.We observed that themost destruc-

tive mutations, i.e., the ones that lead to a larger increase in the

IC50 values, are mostly of residues located in the EloC pocket

area. In particular, themutation ofMet105 and Phe109 increased

the IC50 by 75- and 55-fold, respectively. Our results also show

that K114E and K159E mutations in helix a5 interface do not

interfere significantly with the IC50, whereas Q111L and D187K
Structure 25, 901–911, June 6, 2017 905



Table 2. Different Areas of Interface in Different Cullin-Rbx1

Complexes

Interaction Pair

Area of

Interface (Å2)

Rotation

Angle (�)
Shift along

the Axis (Å) PDB

Rbx1-Cul5�ND8 1,707 124 10.2 3DQV

Rbx1-Cul2 2,122 – – 5N4W

Rbx1-Cul5 2,307 118 �1.1 3DPL

Rbx1-Cul4 2,708 118 �1.9 4A0C

Rbx1-Cul1 3,396 114 �3.4 1U6G

Glomulin-Rbx1-Cul1 1,718 138 17.1 4F52

The areas of interface were calculated (PISA) as well as the rotation angle

and shift along the rotation axis (Chimera), comparing the previously pub-

lished structures with the RING domain in the new conformation.
have a more prominent effect. In the helix a2 interface, the muta-

tions led to an increase in the IC50 values by about 3-fold. Based

on these results, we picked some of the mutants for ITC exper-

iments to determine KD values. We selected the VBC mutants

V181G, M105A, F109A, K159E, and D187K to quantify the

importance of the hydrophobic environment in the EloC pocket

and of the residues involved in the electrostatic interactions. In

ITC (Table 3 and Figure S3) we observed the same trend as

observed by AlphaLISA, withmutationsM105A and F109A being

the most disruptive and leading, in these conditions, to an in-

crease of 20- and 37-fold in the KD, respectively, which was

accompanied by a significant loss of binding enthalpy. The mu-

tations of V181G and D187K decreased the binding affinity by

about 3-fold, whereas the mutation K159E resulted in a 5-fold

decrease in the affinity.

Together, the biophysical data are consistent with a ranking of

hotspots at the Cul2-VBC PPI, with the peripheral hydrophobic

pocket composed of Met105 and Phe109 from EloC identified

as the most critical among the mutations tested.

Swapping Residues and Selectivity for Cul2 or Cul5
Although explored in several publications (Kamura et al., 2004;

Mahrour et al., 2008; Nguyen et al., 2015), themechanism behind

the selectivity between recruitment of Cul2 versus Cul5 by
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EloBC-containing CRL complexes remains partly elusive. One

of the proposed hypotheses is that the electrostatic patch on

pVHL surface is responsible for recruiting Cul2 (Nguyen et al.,

2015); however, our data show that by inverting these two resi-

dues’ charge, and therefore, inverting the electrostatics patch

charge, VBC still binds to Cul2. To deepen our understanding

on what drives this selectivity, we studied in parallel the

CRL5SOCS2 complex, one of the Cul5 ligases in which SOCS2

is the substrate receptor and EloBC is the adaptor subunit

(SBC) (Bulatov et al., 2015; Bullock et al., 2006). Our choice

was supported by the existence of a crystal structure of

Cul5NTD-SBC (Kim et al., 2013). By ITC we observed that,

although using the same adaptor subunit, SBC does not bind

Cul2. Intrigued by this observation, we investigated whether by

mutating a combination of amino acid residues we could swap

the selectivity of SBC with VBC for Cullin, or, in other words, if

we could rescue the binding of SBC to Cul2 and, at the same

time, decrease the affinity for Cul5 and vice versa. The structural

analysis of Cul2-VBC versus Cul5-SBC (Figure 7A) reveals that

Arg186 in SOCS2 would clash with Gln111 in Cul2, which would

explain the lack of interaction observed, as this residue corre-

sponds to a serine in pVHL (Ser183). It also highlights that

Lys159 and Asp187 in pVHL correspond to Gln164 and Tyr190

in SOCS2, respectively. In SBC, Arg186 establishes hydrogen

bonds with the backbone of Thr117 and with Gln113 in Cul5

but the other corresponding residues, while important for

pVHL-Cul2 interaction, do not seem to be establishing any con-

tact in this case (Figure 7A). Based on these observations, we

generated triple mutants for VBC and SBC: in the first we

mutated K159Q, S183R, D187Y and (VQRYBC), and in the second

we performed the reversemutations: Q164K, R186S, and Y190D

(SKSDBC).

Initially we tested these variants in our AlphaLISA competition

assay (Figure 7B), which suggested a switch in the recruitment.

We observed not only a weakening of the interaction between

VQRYBC and Cul2 but also, pleasingly, that SKSDBC rescued to

some extent the binding to Cul2, compared with SBC. These

data encouraged us to perform ITC experiments and evaluate

the loss or gain in function, upon triple mutation (Figures 7C

and 7D). For SKSDBC, we observed a 25-fold loss in the binding
Figure 4. The Cul2-VBC Interface
(A) Contacts between Cul2NTD and VBC. As in

similar CRL complexes, helix a2 of Cullin is the

closest to the adaptor and substrate receptor

subunits, establishing hydrophobic contacts.

(B) The N-terminal tail of Cul2 plays a substantial

role in the PPI. Leu3 is accommodated in a hy-

drophobic pocket on the surface of EloC, and Pro5

is involved in a three-way interaction between

Val181 from pVHL and Met105 from EloC.

(C) Residues Asp187 and Lys159 in pVHL establish

an electrostatic network with residues Lys114 and

Gln111 in helix a5 of Cul2.

(D) Residues Asn36, Phe39, Tyr43, and Val47

participate in hydrophobic contacts at the inter-

face between helix a2 and EloC and pVHL.



Figure 5. Biophysical Characterization of the

Interaction between VBC and Cul2

(A) ITC data whereby VBC (200 mM) was titrated into

Rbx1-Cul2 (20 mM) at 303 K. Under these condi-

tions, the binding affinity of the interaction (KD) is

42 nM.

(B) Temperature dependency of the thermodynamic

parameters DH, DG and �TDS. The change in

heating capacity,DCp, was derived from the change

in enthalpy with the temperature.

(C) Comparison of DCp values for similar CRL

systems.
affinity to Cul5 (KD from 10 nM to 250 nM), whereas, on the other

hand, we were able to partially rescue binding to Cul2 (KD =

2.5 mM). Consistently, for VQRYBCwe observed total loss of bind-

ing to Cul2 upon triple mutation and partial rescue of binding to

Cul5 (KD = 2.9 mM). The rescued non-native interactions

confirmed a switch in the ability to recruit Cullin, albeit with KD

valuesweaker than the onesmeasured for the native interactions

(Figure 7E). Interestingly, the loss of binding affinity of SKSDBC to

Cul5 was accompanied by an increase in the enthalpy of the re-

action, suggesting an interaction with a thermodynamic profile

closer to that of Cul2-VBC (Figure S4).

Together, thesefindingsshine light on the selectivityofVBCand

SBC for Cul2 and Cul5, respectively, identifying amino acid posi-

tions that dictate this selectivity and mutations that contribute

toward switching Cullin recruitment within these CRLs.

DISCUSSION

Ubiquitin ligases catalyze the transfer of ubiquitin to target pro-

teins, and from this tagging event a variety of cellular responses

can result. Progress has been achieved in recent years toward un-

derstanding the mechanisms underlying E3 ligase function, regu-

lation, and ubiquitination activity (Buetow and Huang, 2016).
data showing representative displacers from the three interaction areas in comparison with VBC

in quadruplicate and the results are an averaged value. The error bars represent the SD of each point.
CRLs in particular play important roles in

cellular homeostasis by controlling the

abundance of many regulatory proteins.

This process is deregulated in many dis-

eases including cancer, motivating the
search for chemical probes targeting CRLs (Jia and Sun, 2011;

Zhao and Sun, 2013). The emerging role of CRLs as targets for

induced protein degradation by glue molecules (Petzold et al.,

2016) and PROTACs (proteolysis targeting chimeras) (Deshaies,

2015) highlight their potential as therapeutic targets (Bulatov and

Ciulli, 2015; Lamsoul et al., 2016). Despite the advances, detailed

understanding at atomic level of the structure and function of

whole CRL machines remains limited. Our new structure of the

CRL2VHL complex provides insights that contribute to the under-

standing of the ubiquitinationmechanism. The structure highlights

the flexibility of the centralCul2 scaffold,which has beenobserved

in other Cullins (Goldenberg et al., 2004) and supports the exis-

tence of hinge bending within the protein. The hinge points identi-

fied underline this flexibility, which is deemed key for the ligase ac-

tivity (Liu and Nussinov, 2011). Hinge points located in the linkers

between the Cullin repeats allow the first and third helical bundles

tocomecloseorapart, alternatingbetween anelongatedandcon-

tracted shape. Another hinge point is located between the NTD

and CTD. In our Cul2 structure the CTD is considerably tilted to-

ward the NTD, in comparison with other CRL structures. Recent

molecular dynamics studies have proposed a relationship be-

tween Cullin and Rbx1 dynamics and the ubiquitin chain length

and topology built on the substrate (Onel et al., 2017). Structural
Figure 6. Residues in the EloC Hydrophobic

Pocket Reveal Criticality for the Strong

Binding Affinity of Cul2-VBC

(A) Plot of the log(IC50) values resulting from the

AlphaLISA competition experiment where mutant

constructs of VBC or Cul2 were used to displace

the native interaction between bead-bound wild-

type protein. Mutations at the EloC pocket are

highlighted in yellow, mutations at helix a5 inter-

face are highlighted in purple, and mutations

at helix a2 interface are highlighted in green.

The fitting and calculation of IC50 values was

performed with GraphPad Prism 7 software, and

the error bars represent the error in the fitting

function.

(B) Dose-response curves of the raw AlphaLISA

wild-type (wt). The experiments were performed
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Table 3. Isothermal Titration Calorimetry

VBC KD (nM) Temperature (K) DG (cal/mol) DH (cal/mol) TDS (cal/mol) N

wt 10 ± 3 298 �10,958 ± 198 �12,700 ± 177 �1,742 ± 266 1

K159E 54 ± 9 298 �9,920 ± 94 �11,900 ± 174 �1,930 ± 198 0.9

D187K 27 ± 9 298 �10,339 ± 197 �11,300 ± 264 �961 ± 330 0.8

V181G 28 ± 7 298 �10,315 ± 154 �9,868 ± 174 447 ± 232 0.9

wt 9 ± 1 303 �11,017 ± 63 �14,800 ± 61 �3,783 ± 88 0.9

M105A 317 ± 39 303 �8,873 ± 74 �9,870 ± 141 �993 ± 159 0.9

F109A 177 ± 16 303 �9,221 ± 53 �9,260 ± 79 �41 ± 95 1

KD values and thermodynamic parameters for the interactions between VBC variant proteins and Rbx1-Cul2 determined by ITC. VBC proteins (100 mM)

were titrated into 10 mM Rbx1-Cul2. ITC titrations performed in the exact same conditions were compared. VBC M105A and F109A titrations were

performed at 303 K to obtain better-quality data, as their interactions are of lower affinity, hence lower DH. The errors in the table reflect the quality

of the fitting function.
studies of CRLs in complex with the COP9 signalosome have also

highlighted the inherent Cullin flexibility (Cavadini et al., 2016; Mo-

sadeghi et al., 2016). We present for the first time the interface

between E2-recruiting RING, Rbx1, and Cul2, in which Rbx1

adopts a new orientation. Comparison with other Rbx1-Cullin

structures suggests a pose in a trajectory from a closed to an

open form; in other words, from inactive to active conformation

of the complex.

CRLs must function as highly dynamic multi-subunit com-

plexes. CRL flexibility is required to bring together substrate and

ubiquitin that would otherwise be >50 Å apart, as found in some

crystal structures (Zheng et al., 2002). Flexibility is also required

to accommodatemultiple attachment of ubiquitin at distinct posi-

tions in the chain during catalytic elongation cycles. The relative
Figure 7. Swapping Residues and Selectivity for Cul2 or Cul5

(A) Structures of Cul5-SBC and Cul2-VBC aligned by the EloC subunit show resid

and Cullin, in both cases.

(B) AlphaLISA data show loss of binding affinity of VQRYBC toward Cul2 and re

quadruplicate and the results are an averaged value. The error bars represent the

(C and D) ITC data. Titrant solution (200 mM) was diluted into 20 mM titrate over 19

Titration of Cul5NTD into VQRYBC and VBC.

(E) Summary of the results obtained in the biophysical experiments.
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organization and dynamics of CRL subunits and their ability

to work in concert are critical in achieving such flexibility. We

consider that our new CRL2VHL structure recapitulates many

such dynamic features in addition to the intra- and the inter-sub-

unit movements, observed in comparison with other CRL struc-

tures. For instance, the fact that we could not obtain crystals in

the absence of the HIF-1a 19-mer peptide hints that the presence

of the substrate may have been required to confer a conforma-

tional arrangement that facilitates crystallization. On the other

hand, the lack of substantial electron density for the substrate-

binding domain of pVHL suggests that this domain is highly flex-

ible andmight be present in more than one orientation in the crys-

tal. Albeit not captured by the single-structure crystallographic

model, this observation suggests functionally important dynamics
ues involved in the electrostatic network created between substrate receptor

scue of binding of SKSDBC toward Cul2. The experiments were performed in

SD of each point. The fitting was performed with GraphPad Prism 7 software.

injections of 2 mL at 303 K. (C) Titration of SBC and SKSDBC into Rbx1-Cul2. (D)



of pVHL that may be driven by the presence of bound substrate.

Work published by Nussinov and others (Liu and Nussinov,

2008; 2009) has elucidated pVHL’s inter-domain flexibility by the

presenceof a linker regioncontainingaconservedproline residue,

which acts as a hinge and allows the rotation of the substrate-

binding domain to position the substrate accurately for ubiquitina-

tion. The high average B factors observed after refinement for the

overall structure also corroborate these dynamics. The resolution

of our structure limits the information that can be extracted and,

despite intensive efforts to improve the quality of the crystals, it

was not possible to obtain a better-quality dataset.

We also report extensive biophysical data, which elucidate a

key PPI interface of CRL complexes. The Cul2 interface with

the adaptor and receptor subunits is conserved and character-

ized by a large buried surface area. The structural features are

reflected in characteristic thermodynamic signatures, including

enthalpy-driven interaction, tight binding affinity, and a large

and negative change of heat capacity. We show that the

interaction is contributed over extended regions, suggesting a

spreading of hotspot residues across the interface. Emerging

as largest contributors to the PPI affinity are hydrophobic resi-

dues in a distal pocket on EloC that recognizes the N-terminal

tail of Cul2. This information could guide the design of molecules

to target this specific region within CRL2VHL.

Selectivity of Cullin recruitment in EloBC-containing com-

plexes is an intriguing feature due to the similarities of the two

PPIs in Cul2 and Cul5 CRLs. Kamura et al. (2004) were the first

to demonstrate the importance of the entire Cul-box region

(about 20 amino acids) of the substrate recognition subunit in

determining the selectivity for Cul2 versus Cul5 recruitment.

Here, by swapping only three topologically conserved residues

at the receptor-scaffold interface in VBC and SBC, we were suc-

cessful in modifying the ability of these proteins to bind Cul5 and

Cul2, respectively. This result provides proof of concept for

switching Cullin recruitment within CRLs by mutating individual

amino acids, which, to our knowledge, is unprecedented. It

could also lead to interesting applications for elucidating CRL

biology and contribute to validating them as drug targets. It is

likely that other residues could contribute to fine-tune Cullin

selectivity, in addition to those identified by our work, which

are not strictly conserved across all known Cul2 or Cul5 binders.

For instance, it is known that themutation of Trp53 in Cul5 results

in a 30-fold loss of affinity to SBC (Kim et al., 2013). In Cul2, the

corresponding residue to Trp53 is Ala48, and this could explain

why the binding affinity of VQRYBC to Cul5 is not equal to the

native Cul5-SBC interaction.

In conclusion, the new structural and biophysical data pro-

vided by our work shine new light on the structural assembly

and dynamics functioning of CRLs and unveil mechanistic de-

tails and selectivity determinants for the Cul2-receptor PPI. It is

anticipated that our findings will stimulate drug targeting of

native, full-length CRL complexes, by aiding the development

of novel chemical probes acting as either specific inhibitors or

hijackers of CRL activity for targeted protein degradation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli BL21(DE3) Alessio Ciulli Lab N/A

Escherichia coli DH10Bac Alessio Ciulli Lab N/A

Chemicals, Peptides, and Recombinant Proteins

Celfectin II ThermoFisher Scientific 10362100

KOD Hotstart polymerase EMD Millipore 71086

DpnI enzyme New England Biolabs R0176S

Critical Commercial Assays

Biotinylation kit EZ-link NHS-biotin ThermoFisher Scientific 20217

Deposited Data

Coordinated and structure factors have been deposited

in the Protein Data Bank

This study PDB ID: 5N4W

Experimental Models: Organisms/Strains

Insect cells: Spodoptera Frugiperda 21 MRC-PPU, Dundee N/A

Oligonucleotides

Primers used for site-directed mutagenesis

can be consulted in Table S6

Sigma Aldrich N/A

Recombinant DNA

pVHL plasmid (to express His-tagged pVHL54-213) Alessio Ciulli Lab pIVM02

SOCS2 plasmid (to express His-tagged SOCS232-198) SGC SOCS2A-c016

EloB1-104/EloC17-112 plasmid (to co-express with

pVHL or SOCS2)

Alessio Ciulli Lab pIVM26

Cullin-51-386 plasmid (to express His-tagged Cul5NTD) SGC CUL5a-c001

Rbx1–Cullin-2 plasmid (pFastBacDUAL, for

expression of full-length Rbx1 and DAC-tagged Cullin-2)

MRC-PPU, Dundee DU23263

Software and Algorithms

Aimless (Evans and Murshudov, 2013) http://www.ccp4.ac.uk/html/aimless.html

Refmac5 (Vagin et al., 2004) http://www.ccp4.ac.uk/html/refmac5/

description.html

Phenix (Adams et al., 2010) https://www.phenix-online.org/

Coot (Emsley and Cowtan, 2004) https://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

Molprobity (Chen et al., 2010) http://molprobity.biochem.duke.edu/

GetArea (Fraczkiewicz and Braun, 1998) http://curie.utmb.edu/getarea.html

Chimera (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

download.html

MicroCal Origin 7.0 Malvern Instruments N/A

GraphPad Prism Software GraphPad Software, Inc. https://www.graphpad.com/scientific-

software/prism/

Other

Anti-6xHis AlphaLISA acceptor beads Perkin Elmer AL128M

Streptavidin AlphaLISA donor beads Perkin Elmer 6760002
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alessio

Ciulli (a.ciulli@dundee.ac.uk)
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METHOD DETAILS

Expression and Purification of VBC, SBC and Cul5NTD

VBC and SBC ternary complexes and variant proteins were purified as described previously (Bulatov et al., 2015; Van Molle et al.,

2012). BL21(DE3) E. coli cells were co-transformed with the plasmid for expression of pVHL/SOCS2 and the plasmid for expression

of Elongin B and Elongin C. A single colony of transformant was used to inoculate LB media for bacterial culture. Protein expression

was induced with 0.3 mM IPTG at 24�C for 18 hours. Co-expression of these proteins resulted in the formation of the respective

trimeric complex (VBC/SBC) that was then purified by affinity chromatography, followed by ion-exchange chromatography and

finally by size-exclusion chromatography. Following this protocol the yield of protein was about 15-20 mg per litre of culture.

Cul5NTD (residues 1–386) was also expressed in BL21(DE3) E. coli cells (Thomas et al., 2013). After transformation and inoculation

of LB media for bacterial growth, protein expression was induced with 0.5 mM IPTG at 18�C for 18 hours. His-tagged Cul5NTD was

purified by affinity chromatography and by size-exclusion chromatography with a yield of �40 mg of protein per litre of culture.

Expression and Purification of Rbx1-Cul2
Rbx1-Cul2 containing an N-terminal Dac-tag (Lee et al., 2012) in Cul2 was expressed in Sf21 insect cells. The recombinant bacmid

and the resulting recombinant baculovirus were generated using protocols adapted from the Bac-to-Bac� system. Sf21 cells at a

density of 1.5x106 cells/ml were infected with the P1 virus in a 1:100 ratio and incubated at 27�C, 135 rpm, in the dark for 72 hours.

The cells were harvested by centrifugation, the pellet was re-suspended in lysis buffer containing 50 mM HEPES pH 8.0, 250 mM

NaCl, 2 mM TCEP and 0.2% Triton-X and the cells were lysed by French press. The lysate was clarified by centrifugation and the

supernatant wasmixed with ampicillin-modified sepharose resin. After 1 hour incubation at room temperature, the resin was washed

three times with 20 mM HEPES pH 8.0, 100 mM NaCl, 5% glycerol, 2 mM TCEP. At the last wash step the resin was suspended in

the same buffer and incubated with TEV enzyme for 2.5 hours at room temperature. The cleaved Rbx1-Cul2 was recovered through

filtration and the filtrate was loaded on a Superdex 200 gel filtration column (GEHealthcare) after concentration for further purification.

The protein’s identities were confirmed by electrospray mass spectrometry analysis.

Site Directed Mutagenesis
pVHL, SOCS2, Elongin C and Cul2 mutants were prepared by PCR-basedmethod using the respective expression vectors encoding

for the wild type proteins as template. The amplification of the expression vectors was performed using the KOD hot-start DNA

polymerase (EMD Millipore), following the manufacturer guidelines and specific pairs of primers (Table S6) were used for the

introduction of the desired mutation. PCR products were treated with DpnI enzyme (New England Biolabs) and transformed in

DH5a E.coli cells. The mutations were confirmed by DNA sequencing.

Crystallization
VBCwas incubated with an HIF-1a 19-mer peptide (residues 559-557) and the resulting complex (VBCH) was purified on a Superdex

75 gel filtration column (GE Healthcare). VBCH and Rbx1-Cul2 were mixed in equimolar ratio and incubated for 30 min at room

temperature. The CRL2VHL complex was buffer-exchanged to 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM DTT in a Superdex

200 Increase gel filtration column (GE Healthcare). The pentameric complex was concentrated to 4.2 mg/ml. Equal volumes of

CRL2VHL:HIF complex and liquor solution were mixed in the hanging-drop vapour diffusion method at 20�C. The liquor solution

contained 0.1 M Tris pH 7.6, 0.15 M ammonium sulfate, 15% polyethyleneglycol 4000 and 3% 1,4-dioxane or 4% acetonitrile as

additive. After equilibration, the drop was streaked with seeds of disrupted CRL2VHL:HIF crystals. Crystals would generally appear

within 48 hours. Crystals were cryoprotected with 20% ethyleneglycol or 20% glycerol and screened using an in-house Rigaku

M007HF X-ray generator and Saturn 944HG+ CCD detector.

Data Collection and Structure Solving
X-ray data were collected at 100 K and a wavelength of 0.9282 Å at Diamond Light Source beamline I04-1. Indexing and integration

of reflections was performed usingDIALS, and scaling andmergingwith AIMLESS in CCP4i (Evans andMurshudov, 2013;Winn et al.,

2011). The Cul2-VBC interface was modeled taking advantage of the higher resolution structure available [PDB 4WQO, (Nguyen

et al., 2015)]. The isomorphous dataset was refined using REFMAC5 (Vagin et al., 2004) and COOT (Emsley and Cowtan, 2004).

MOLPROBITY (Chen et al., 2010) server was used to validate the geometry and steric clashes in the structures.

AlphaLISA
For the AlphaLISA experiments Anti-6xHis acceptor beads and Streptavidin donor beads (PerkinElmer) were used. Competition

assay was performed in a 384-well plate by mixing V6xHisBC (500 nM) and biotinylated Rbx1-Cul2 (EZ-link NHS-biotin ThermoFisher

Scientific) (150 nM) and the competitor in a concentration range from 6.25 mM to 35 nM (final concentration). The mixture was

incubated for 1 hour at room temperature. Next, the anti-6xHis beads were added to the mixture in the dark and the mixture was

incubated for another hour. Finally, the streptavidin beads were added, followed by another hour of incubation. The final volume

of each well was 20 ml. The plate was then read in a PHERAstar FS (BMG LABTECH). Each of the competitors was titrated in

quadruplicate.
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Isothermal Titration Calorimetry
Isothermal titration calorimetry (ITC) experiments were carried in an ITC200 microcalorimeter (Malvern). VBC (wild type and variant

proteins), SBC (wild type and variant proteins) were titrated into Rbx1-Cul2. For the experiments with Cul5NTD the latter was titrated

against VBC (wild type and variant proteins) or SBC (wild type and variant proteins). Titrations consisted of 19 injections of 2 ml each

(120 seconds spacing and 600 rpm stirring speed). All protein solutions were dialysed into 100 mM Bis tris propane pH 8.0, 50 mM

NaCl, 2 mM TCEP prior to the titrations. Control experiments were performed subtracted to the relevant experiment to account for

heat of dilution. Data analyses for the ITC experiments were performed using the MicroCal Origin 7.0 software package. Binding

enthalpy, dissociation constants, and stoichiometry were determined by fitting the data using a one-set-of-sites binding model.

The experiments were performed twice for consistency.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in the figure and table legends. ITC experiments were performed in duplicate. The data

was fitted using the one-set-of-sites model in Origin 7.0 software. AlphaLISA experiments were performed in quadruplicate and the

fitting was performed using the average ± standard deviation. The fitting of the data was performed using GraphPad Prism 7.

DATA AND SOFTWARE AVAILABILITY

Data Resources
Coordinates and structure factors have been deposited in the Protein Data Bank (PDB) with the accession code 5N4W.
e3 Structure 25, 901–911.e1–e3, June 6, 2017


	Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex
	Introduction
	Results
	Crystal Structure of the CRL2VHL Complex
	Cullin-2 Structure Highlights Its Inherent Flexibility
	Rbx1 Presents a New Orientation
	The Interface between Cul2 and VBC
	Thermodynamics of Cul2-VBC Interaction
	Hydrophobic Contact Residues Critical for the Cul2-VBC Interaction
	Swapping Residues and Selectivity for Cul2 or Cul5

	Discussion
	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Method Details
	Expression and Purification of VBC, SBC and Cul5NTD
	Expression and Purification of Rbx1-Cul2
	Site Directed Mutagenesis
	Crystallization
	Data Collection and Structure Solving
	AlphaLISA
	Isothermal Titration Calorimetry

	Quantification and Statistical Analysis
	Data and Software Availability
	Data Resources




