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The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) causes the new coronavirus disease 2019
(COVID-19). This disease is a severe respiratory tract infection that spreading rapidly around the world. In this
pandemic situation, the researchers' effort is to understand the targets of the virus, mechanism of their cause, and
transmission from animal to human and vice-versa. Therefore, to support COVID-19 research and development,

Sz(\)l\{/sn-)c-i\g/-z we have proposed approaches based on graphene and graphene-derived nanomaterials against COVID-19.
ACE2
Introduction reported that lipid bilayer of feline coronavirus is adsorbed on the

The entry of SARS-CoV-2 in human relies on its Spike-protein (S-
protein) interaction with human Angiotensin-Converting Enzyme 2
(ACE2), a human cell surface receptor that facilitates viral entry and
replication, which is similar in pathogenesis to that of SARS-CoV [1].
The advancement of nano-based antiviral agents gained the popularity
to be used for the treatment of COVID-19 [2]. Several studies have used
immunomodulator proteins encapsulated nanoparticles against SARS-
CoV, which can also be assessed to eradicate SARS-CoV-2 [3,4]. Gra-
phene and graphene-derived (graphene oxide (GO), reduced graphene
oxide (rGO), and graphene quantum dots (GQDs)) nanomaterials have
wide biomedical applications. Graphene is a hydrophobic material, and
its two-dimensional structure represents a sheet of sp2-hybridized
carbon atoms [5]. In contrast, the GO is hydrophilic in nature and has
electronic properties [6]. The reduction of GO through the thermal
process produces rGO, which is a highly hydrophilic material with
lesser oxygen content [7]. Besides, in stacked graphene, the layers stick
together on top of each other through m-m-stacking interactions [8].
However, this spacing is significantly increased due to intercalated
oxygen groups in the interlayers of GO and rGO [9]. Interestingly, these
graphene and graphene-derived nanomaterials have both antimicrobial
and antiviral efficiency [10-12]. The antibacterial properties of gra-
phene [13], and graphene-derivatives [14,15], are mainly because of
their electron movement towards bacteria. This migration causes cy-
toplasmic efflux, decreases metabolism, affects lipid membrane, in-
duces oxidative stress, produces reactive oxygen species (ROS), loss of
glutathione, and finally causes bacterial death [16]. It has been
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surface of GO and rGO through hydrogen bonding and electrostatic
interactions [17]. Among graphene-derived materials, GO has the
highest negative charge, which can have a higher affinity for positively
charged viruses. Subsequently, the binding of these graphene-derived
materials destroyed the viral membrane [18,19], and confirmed the GO
efficacy against viruses [20]. However, the graphene surface can also be
modified by conjugating with the negatively charged antivirals such as
heparin, drugs, and heparan sulfate [21,22]. This increases the mod-
ified graphene affinity with positively charged residues of the viruses,
which has been used to develop a diagnostic or therapeutic product
[23]. Similarly, rGO modified with sulfate derivatives effectively ex-
terminate herpesvirus strains, swine fever, and orthopoxvirus [24].
Recently, a company, Bonbouton developed an economical and reu-
sable graphene mask [25]. Another company, Zen Graphene Solutions
Ltd. has proposed a composite ink of GO and silver nanoparticles that
effectively eradicates other strains of coronavirus [26]. Moreover, a
graphene-based air purification technology is under-development that
could help to kill coronaviruses [27]. Thus, identification and devel-
opment of possible treatments and approaches are required globally,
either to block S-protein or to eradicate the SARS-CoV-2.

Central principle

To emphasize the molecular mechanism underlying the interaction
between S-protein and nanoelectromechanical materials such as gra-
phene and graphene-derivatives (GO, rGO, and GQDs) to block SARS-
CoV-2 interaction with human ACE2.
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Fig. 1. Schematic representation of graphene, and graphene-derived nanomaterials interaction with SARS-CoV-2 and their applications. The identification of as-
sociation (binding) or dissociation (repelling) capability of nanomaterials with SARS-CoV-2 can be verified primarily computationally and then experimentally. The
interaction analysis helps to decide the development of the product such as nanoparticles, mist spray, surface cleaning wipes, nano-drugs, PPE (Personal Protection
Equipment), or air filters. SARS-CoV-2 image source: https://phil.cdc.gov//PHIL Images/23311/23311.tif.

Hypothesis and conclusion

Owing to electroconductive properties, graphene and its derivatives
can interact with several biomolecules, translocate within the endo-
some or lysosome, cross the plasma membrane, and regulates mi-
tochondrion, nucleus, and the cytoskeleton. Notably, the hydro-
phobicity of graphene increases with an increased number of graphene
layers [28]. Therefore, considering all these features, we have sug-
gested a potential graphene-based therapeutic approach, and to de-
termine whether it can be virucidal, it would likely be proven as an
economical and efficient treatment against COVID-19 (Fig. 1). Pri-
marily, the affinity and stability of single and multilayer graphene and
graphene-derived nanomaterials for SARS-CoV-2 can be computation-
ally elucidated using docking and molecular dynamics (MD) simula-
tions studies, respectively. Afterward, the findings can be verified using
molecular and cell biology assays to determine the associations com-
pared to SARS-CoV-2 and ACE2 complex (control). The mono or multi
layered graphene and graphene-derivatives can be used as products in
the form of mist spray to block the entry of coronaviruses or can be
applied to fabrics for substantially enhanced protection. Therefore,
personal protective equipment (PPE) should be coated with increased

layers of graphene or graphene-derived materials to keep PPE dry that
will prevent or repel the aerosol transmission of SARS-CoV-2. All these
graphene-based composites would likely be facilitated to combat
against the COVID-19 pandemic. The information comprised in this
perspective provides a hypothetical approach that would likely help in
preventing COVID-19 infection using graphene-based products. Several
products can be developed by considering the electroconductive and
hydrophobic properties of graphene and graphene-derived nanoma-
terials, or their affinity with SARS-CoV-2. GO and silver nanoparticles
composite conjugated with antivirals can potentially trap and kill SARS-
CoV-2. The mist spray can be used to clean any object's surface and for
human body sanitization. However, it can also be used as a nasal or
mouth spray to block/mask the S-protein of SARS-CoV-2 substantially.
Also, surface cleaner wipes coated with graphene or graphene-derived
nanomaterials can be a better option to disinfect the infected area. The
graphene-based nano-drugs conjugated with antivirals can be an ef-
fective and successful formulation. Reusable PPE coated with modified
nanomaterials with enhanced capacity to repel the SARS-CoV-2 is ne-
cessarily required to prevent aerosol transmission in medical healthcare
workers. The SARS-CoV-2 present in the environment can be filtered by
introducing the multiple layer nanomaterials with modified positive
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charge filters in the air purification and air-conditioning devices, cap-
able of killing SARS-CoV-2.
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