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Abstract

Coronavirus disease 2019 (COVID-19) has been spread out all over the world. Although a

real-time reverse-transcription polymerase chain reaction (RT-PCR) test has been used as

a primary diagnostic tool for COVID-19, the utility of CT based diagnostic tools have been

suggested to improve the diagnostic accuracy and reliability. Herein we propose a semi-

supervised deep neural network for an improved detection of COVID-19. The proposed

method utilizes CT images in a supervised and unsupervised manner to improve the accu-

racy and robustness of COVID-19 diagnosis. Both labeled and unlabeled CT images are

employed. Labeled CT images are used for supervised leaning. Unlabeled CT images are

utilized for unsupervised learning in a way that the feature representations are invariant to

perturbations in CT images. To systematically evaluate the proposed method, two COVID-

19 CT datasets and three public CT datasets with no COVID-19 CT images are employed.

In distinguishing COVID-19 from non-COVID-19 CT images, the proposed method achieves

an overall accuracy of 99.83%, sensitivity of 0.9286, specificity of 0.9832, and positive pre-

dictive value (PPV) of 0.9192. The results are consistent between the COVID-19 challenge

dataset and the public CT datasets. For discriminating between COVID-19 and common

pneumonia CT images, the proposed method obtains 97.32% accuracy, 0.9971 sensitivity,

0.9598 specificity, and 0.9326 PPV. Moreover, the comparative experiments with respect to

supervised learning and training strategies demonstrate that the proposed method is able to

improve the diagnostic accuracy and robustness without exhaustive labeling. The proposed

semi-supervised method, exploiting both supervised and unsupervised learning, facilitates

an accurate and reliable diagnosis for COVID-19, leading to an improved patient care and

management.

Introduction

A global pandemic of coronavirus disease 2019 (COVID-19), declared by the World Health

Organization (WHO), has been reported to affect over 19 million patients in >200 countries

as of August 9, 2020. COVID-19, caused by the acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is the 7th known coronavirus to infect humans [1], believed to be a zoonotic
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infection similar to severe acute respiratory syndrome (SARS) and Middle East respiratory

syndrome (MERS) [2]. Fever and dry cough are the most common clinical symptoms of the

disease [3], similar to many other viral syndromes. Nonspecific symptoms, including dyspnea,

headache, muscle soreness, and fatigue, have been also observed. About 20% of the patients

experience severe symptoms, and mortality is approximately 3% [4]. Elderly patients, in partic-

ular, have a higher chance of experiencing severe symptoms with increased mortality [5].

Therefore, there is a high demand for the immediate diagnosis, treatment, and management of

the disease.

A real-time reverse-transcription polymerase chain reaction (RT-PCR) test has been devel-

oped and used in clinics for the diagnosis of COVID-19. Even though it serves as the reference

standard for the diagnosis, there is a growing number of evidence that CT could replace or

complement to RT-PCR test for an improved patient care [6]. Several studies have identified

imaging features for COVID-19 on CT [7]. Common CT features include bilateral and periph-

eral ground-glass and consolidative pulmonary opacities with or without vascular enlarge-

ment, interlobular septal thickening, and air bronchogram sign [8, 9]. A longer time of

infection has been also associated with more frequent CT findings, including greater total lung

involvement, linear opacities, crazy-paving pattern, and the reverse halo sign [9], i.e., CT may

be able to monitor and visualize the early, progressive, and severe status of COVID-19. More-

over, CT findings have shown to be effective in identifying COVID-19 for the patients with an

initial false-negative result from RT-PCR test [10, 11]. However, the enormous number of

cases overwhelms the capacity of hospitals and radiologists, potentially leading to an inaccurate

diagnosis. An automated, accurate, objective, and robust computerized system for COVID-19

diagnosis could aid in improving the diagnostic accuracy and yield and patient management

and care.

Deep learning has been successfully applied to a wide range of problems in medical image

processing and analysis [12, 13]. For example, it can automatically detect abnormalities on

head CT scans [14]; diabetic retinopathy and related eye disease can be identified in retinal

images with high accuracy [15]; it is also able to detect lymph node metastases [16] as well as

segment tissues [17] in pathology images. One of the immediate challenges in deep learning is

to obtain a sufficient number of samples with pertinent labels. The capability of deep learning

in dealing with a high quantity and quality of samples has been already proved in many appli-

cations [18]. Many of previous deep learning methods for medical imaging, in particular, have

been mainly developed in a supervised fashion, requiring extensive data annotations by

experts. However, it is fairly hard to acquire a large-scale dataset for COVID-19 with accurate

labels in regard to the shortage of radiologists in clinics, the emergency of the disease, and etc.

With a limited amount of samples, the performance of such methods is in question. Prior

knowledge on the disease could aid in extracting useful features for the diagnosis, and thus

alleviating the problem of lack of the labeled data. The level of the clinical and scientific under-

standing of COVID-19 is still immature, i.e., difficult to incorporate prior knowledge in devel-

oping a CT diagnostic system for COVID-19.

Several research efforts have been made to develop deep learning methods that can identify

patients with COVID-19 in CT images [19]. Previous works can be roughly grouped into two

types: 1) slice-level classification and 2) patient-level classification. Slice-level classification

approaches conduct the classification either per CT image or per region in CT images. For

example [20], proposed a deep learning framework for the classification of COVID-19, other

pneumonia, and no pneumonia. [21] utilized an image processing technique to extract lung

regions, a 3D CNN to select candidate regions, and a classification model to categorize the

regions into COVID-19, Influenza-A-viral-penumonia, and irrelevant-to-infection. Many of

patient-level classification approaches have adopted multiple neural networks for the diagnosis

PLOS ONE Semi-supervised learning for COVID-19 diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249450 April 1, 2021 2 / 13

Competing interests: The authors have declared

that no competing interests exist

https://doi.org/10.1371/journal.pone.0249450


of COVID-19. For instance, two CNNs for lung/lobe segmentation and COVID-19 classifica-

tion [22–24] and an attention-based 3D multiple instance network [25] and and a dual-sam-

pling attention network [26] for COVID-19 diagnosis. Moreover [27], conducted the slice-

level infection segmentation for COVID-19 and [28] utilized a deep learning method to quan-

tify lung burden changes in patients with COVID-19 from serial CT scans.

Semi-supervised learning is an approach where both labeled and unlabeled data could be

utilized in a cooperative manner [29]. The amount of unlabeled data keeps increasing in medi-

cal imaging. Semi-supervised learning provides a way to utilize the unlabeled data without the

cost of data annotation, which is a bottleneck of the technical advances. Its effectiveness in

medical imaging has recently been demonstrated in several applications, including cardiac seg-

mentation [30], lung nodule classification [31], and Sclerosis lesion segmentation [32]. As for

CT images of COVID-19, although the amount of the labeled data is insufficient, there exists a

great deal of lung CT datasets available to the public. Such lung CT datasets may contain CT

images obtained from healthy subjects and patients with various types of diseases, including

lung cancer, pulmonary nodules, and etc. By utilizing both CT images from the COVID-19

dataset and lung CT dataset, the diagnostic system for COVID-19 could explore more diverse

and complicated patterns of lesions in lung, leading to an improved ability of characterizing

and analyzing CT images. Therefore, semi-supervised learning could be beneficial to the devel-

opment of the diagnostic system for COVID-19.

Herein, we present a deep learning-based system for COVID-19 diagnosis in CT images.

The system is built upon advanced deep convolutional neural networks (CNNs) to extract and

characterize latent features of infected lesions in CT images and to detect COVID-19 infection.

During training, both COVID-19 and public lung CT datasets are used to train the deep learn-

ing system in a semi-supervised fashion. To assess the importance of semi-supervised learning,

we conduct a number of comparative experiments with supervised and semi-supervised learn-

ing. The experimental results demonstrate the effectiveness and efficiency of the proposed

method in identifying COVID-19 in CT images.

The main contributions of our work are summarized as follows:

• We propose a semi-supervised learning-based deep neural network for COVID-19 diagnosis

in CT images that can extensively explore a wide range of CT images with and without the

ground truth label.

• We employ two COVID-19 CT datasets and three public lung CT datasets without COVID-

19 to train, validate, and test the proposed diagnostic system in a rigorous manner.

• Utilizing the advanced deep learning techniques and semi-supervised learning, we achieve

an accuracy of 99.83%, sensitivity of 0.9286, specificity of 0.9832, and positive predictive

value (PPV) of 0.9192 in distinguishing COVID-19 from non-COVID-19 CT images. In the

classification between COVID-19 and common pneumonia CT images, 96.98% accuracy,

0.9968 sensitivity, 0.9548 specificity, and 0.9248 PPV are obtained.

Materials and methods

Fig 1 illustrates the proposed diagnostic system for COVID-19. The proposed method utilizes

a CNN to identify lung CT images with COVID-19. The network is trained and tested using

the labeled COVID-19 dataset in a supervised fashion. To improve the stability and precision

of the network, additional public CT datasets as well as an unsupervised learning approach

have been adopted. Suppose that D ¼ fðxi; yiÞgNi¼1
is a set of N labeled CT images and U ¼

fx̂igMi¼1
is a set ofM unlabeled CT images where xi is the ith labeled CT image, yi2{0,1} is the
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ground truth label, and x̂i is the ith unlabeled CT image. A CNN ψ represents a mapping func-

tion ψ: x!y. ψ consists of L functions or stages c ¼ ffl; ylg
L
l¼1

where fl and θl indicate the lth
operation and the corresponding parameters, respectively. We also note that ψm represents the

set of the firstm stages, i.e., cm ¼ ffl; ylg
m
l¼1

.

Network architecture

The proposed network adopts the architecture of efficientNet-b0 [33]. The network is com-

posed of 20 stages (Fig 2). The first stage (f1) simply conducts a convolution operation with a

kernel size of 3x3. From f3 to f17, each stage utilizes a mobile inverted bottleneck convolution

(MBConv) block, which consists of a series of an expand point-wise convolution (1x1 convolu-

tion that expands the number of channels), a depth-wise separable convolution (a single con-

volution per channel), and a project point-wise convolution (1x1 convolution to project

features to a low-dimensional space). f2 omits the expand point-wise convolution. Each fl BN

block has a shortcut connection between the input and the output of the block except f3, f5, f7,

and f13 blocks. A squeeze-and-excitation scheme is also utilized to incorporate the channel-

wise interdependencies. The squeeze-and-excitation scheme aims to aggregate the global

information of feature maps via a global average pooling (squeeze) and to recalibrate the fea-

ture maps via a combination of a sigmoid function, RELU function, and convolutions (excita-

tion). The last stage, including a 1x1 convolution layer, an average pooling layer, and a fully-

connected layer, conducts the classification. Swish function, instead of ReLU, is adopted as the

activation function of the network. We can divide the whole network into two parts–a feature

extractor (up to 19th stage) and a classifier (20th stage).

Loss functions

The set of the parameters of the proposed network fylg
L
l¼1

is optimized by utilizing the loss

function L defined as:

L ¼ LCE þ lLCons ð1Þ

where LCE is a standard cross entropy loss function for supervised learning, LCons is a consis-

tency loss function for unsupervised learning, and λ is a weighting factor for LCons. For LCE,

only the labeled data is utilized. As for LCons, both labeled and unlabeled data can be used,

ignoring the ground truth label for the labeled data.

Fig 1. Overview of the proposed diagnostic system for COVID-19.

https://doi.org/10.1371/journal.pone.0249450.g001
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LCE is adopted to calculate the total entropy between p and y as follows:

LCE p; yð Þ ¼ �
1

N

XN

i¼1

ðyilogpi þ ð1 � yiÞlogð1 � piÞÞ ð2Þ

where pi is the output of the CNN ψ as given the input image xi, i.e., pi = ψ(xi; θ1,. . .,θL). During

training, LCE is minimized using the labeled CT images in a supervised manner.

To improve the consistency and robustness of the CNN ψ, we force the CNN ψ to be invari-

ant to a perturbation in an input image. Given an unlabeled input image x̂ i, ψL−1, i.e., a feature

extract, produces a high-dimensional feature vector oi ¼ cL� 1ðx̂i; y1; . . . ; yL� 1Þ 2 R
m

. Suppose

that there exists a set of augmentation functions T ¼ fti : i ¼ 1; . . . ; kg that can deform the

image x̂i while maintaining its intrinsic structural and functional characteristics where k is the

number augmentation functions. Then, x̂i and T ðx̂iÞ carry the same or similar latent informa-

tion. There should be no or minimal difference between the two high-dimensional feature vec-

tors cL� 1ðx̂i; y1; . . . ; yL� 1Þ and cL� 1ðT ðx̂iÞ; y1; . . . ; yL� 1Þ. We define a consistency loss as:

LCons xð Þ ¼ �
1

M

XM

i¼1

jcL� 1ðx̂
i; y1; . . . ; yL� 1Þ � cL� 1ðT ðx̂

iÞ; y1; . . . ; yL� 1Þj: ð3Þ

Fig 2. Network architecture. (a) The details of the network architecture and (b) MBconv block are shown.

https://doi.org/10.1371/journal.pone.0249450.g002
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Implementation details

Given an input image, we resize its spatial size to 256 x 256 pixels. Then, a number of data aug-

mentation techniques are applied to transform the shape of the image as follows: 1) a random

scaling in a range of [0.8, 12]; 2) a random translation within 1% of the width and height of the

image; 3) a random shearing in a range of [-5˚, 5˚]; 4) a random horizontal flip with a probabil-

ity of 0.5. Following the center-crop of size 224 x 224 pixels, one of three operations–a Gauss-

ian blur, a median blur, and an additive Gaussian noise–are randomly selected and applied to

make slight changes in the intensities of the image: 1) a Gaussian blur uses a Gaussian kernel

with σ whose value is randomly chosen in a range of [0.0, 3.0]; 2) a median blur has a random

kernel size with one of 3, 4, and 5; 3) an additive Gaussian noise is added to each channel that

is randomly sampled from a Gaussian probability density function with μ = 0 and σ is a ran-

dom value in a range of [0.0, 12.75]. Finally, the lightness of the image is adjusted by adding a

random value in a range of [–20, 20] per pixel.

We use Adam optimizer with a mini-batch size of 12 and a weight decay of 0. The number

of training epochs is set to 50 and the learning rate is set to 1.0e-4. Dropout layers are imple-

mented with the probability of 0.2. The weighting factor λ is set to 0.3. The networks are imple-

mented in PyTorch.

Dataset

This study employs two CT datasets of COVID-19. The first dataset (DataCOV), acquired from

CT COVID-19 challenge (https://covid-ct.grand-challenge.org), contains 349 CT images from

216 COVID-19 patients and 463 CT images from 55 non-COVID-19 patients. The second

dataset (DataCOV-CV), obtained from the COVID-19 and common pneumonia chest CT data-

set, consists of 416 CT scans from 206 COVID-19 patients and 412 CT scans from 412 patients

with common pneumonia (CP), including viral pneumonia, bacterial pneumonia, and fungal

pneumonia [34].

DataCOV is split into three disjoint sets by the challenge organizer, including a training set

(TrainCOV), validation set (ValidationCOV), and test set (TestCOV). The training set, validation

set, and test set consists of 425 images (191 COVID-19, 234 non-COVID-19), 118 images (60

COVID-19, 58 non-COVID-19), and 203 images (98 COVID-19, 105 non-COVID-19),

respectively. The dataset is collected from a number of online sources, including medRxiv,

bioRxiv, NEJM, JAMA, Lancet, and etc. Similarly, DataCOV-CP is divided into a training set

(TrainCOV-CP; 328 COVID-19 and 320 CP CT scans), validation set (ValidationCOV-CP; 46

COVID-19 and 42 CP CT scans), and test set (TestCOV-CP; 42 COVID-19 and 40 CP CT scans).

We extend the two COVID-19 CT datasets by introducing three publicly available lung CT

datasets:

1. Lung CT Segmentation Challenge 2017 (LCTSC): This dataset is composed of CT scans

from 60 patients that are collected from three institutions. CT scans may include inflated

and collapsed, fibrotic and emphysematic lungs, but lung tumor is most likely excluded.

We split this dataset into the training set and the test set, of which each contains 30 CT

scans.

2. Reference Image Database to Evaluate Therapy Response (RIDER): This dataset consists of

CT scans from 32 patients with non-small cell lung cancer. Two CT scans are collected

from each patient with 15-minutes time gap. Both CT scans are utilized in this study and

divided into the training set with 16 patients and the test set with 16 patients. The training

set has 32 CT scans and the test set has 31 scans since one CT scan is missed for one patient.
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3. LUNGx SPIE-AAPM-NCI Lung Nodule Classification Challenge (LUNGx): LUNGx con-

tains 70 CT scans from patients with malignant and benign nodules. 70 CT scans are split

into 34 CT scans (17 benign and 17 malignant nodules) for training and 36 CT scans (18

benign and 18 malignant nodules) for test.

For these three public, called as DataPUB, we manually select a number of slices that can

clearly visualize a lung. In the training set (TrainPUB), we randomly select 5 slices per scan for

efficient training and balance with DataCOV. In the test set (TestPUB), all the slices are utilized.

The details of the training set, validation set, and test set are available in Table 1. Some exem-

plary CT images are shown in Fig 3.

Experimental setup

To evaluate the proposed diagnostic system for COVID-19, we conduct two types of experi-

ments. The first type of the experiments, employing DataCOV and DataPUB, is to test if the

Table 1. Details of the datasets.

Dataset Type Training set Validation set Test set

DataCOV COVID-19 191 60 98

non-COVID-19 115 28 52

DataCOV-CP COVID-19 35299 3719 2789

Common Pneumonia 45558 4754 5004

DataPUB LCTSC 160 - 1577

RIDER 170 - 3216

LUNGx 786 - 4099

Total 82279 8561 16835

Each number represents the number of slices

https://doi.org/10.1371/journal.pone.0249450.t001

Fig 3. Exemplary CT images of the COVID-19 and public datasets.

https://doi.org/10.1371/journal.pone.0249450.g003
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proposed system could distinguish COVID-19 CT slices from non-COVID-19 CT slices. The

second type of the experiments, including DataCOV-CP and DataPUB, attempts to assess whether

the proposed system could discriminate between COVID-19 CT slices and CP CT slices.

For the first type of the experiments, we train the proposed diagnostic system using both

TrainCOV and TrainPUB, select the best model based upon the performance on ValidationCOV,

and test the best model on TestCOV and TestPUB. During the training phase, TrainCOV is used to

compute both LCE (as labeled data) and LCons (as unlabeled data) and TrainPUB is used to calcu-

late LCons only. In the testing phase, all the slices from TestPUB are treated as negative. To fur-

ther assess the effectiveness of semi-supervised learning, we conduct a series of comparative

experiments. First, the diagnostic system is trained in a supervised manner using TrainCOV

only. Second, both TrainCOV and TrainPUB are used for supervised learning only. Third, we

train the diagnostic system using TrainCOV in a supervised and unsupervised fashion. Last,

both TrainCOV and TrainPUB are used for supervised and unsupervised training. In summary,

the first two experiments are to compare semi-supervised learning with supervised-learning.

The latter two experiments are to investigate the relationship between semi-supervised learn-

ing and the datasets. For all the experiments, the best model is chosen using ValidationCOV

and is tested on TestCOV and TestPUB.

Similarly, DataCOV-CP and DataPUB are used to train the diagnostic system, select the best

model, and test on the test set in the second type of the experiments. For the training purpose,

LCE is computed using TrainCOV-CP and LCons is calculated using both TrainCOV-CP and Train-
PUB. In the testing phase, TestPUB is omitted since it includes CT scans from healthy subjects

and patients with other diseases such as cancer. As for the comparative experiments, we con-

duct the first and third comparative experiments since TestPUB cannot be adopted as negative

sample in this type of experiments.

Results

Detection of COVID-19 in CT images

In distinguishing COVID-19 CT slices from non-COVID-19 slices, the proposed semi-super-

vised learning method obtained an overall accuracy of 99.83%, sensitivity of 0.9286, specificity

of 0.9991, and positive predictive value (PPV) of 0.9192 on TestCOV and TestPUB as shown in

Table 2. In regard to the COVID-19 challenge dataset only (TestCOV), 94.67% accuracy, 0.9286

sensitivity, 0.9808 specificity, and 0.9891 PPV were achieved. On the public dataset (TestPUB)

where only negative (non-COVID-19) slices are included, the proposed method acquired

0.9835 specificity. Moreover, the proposed method was able to discriminate between COVID-

19 CT slices and CP CT slices. The method achieved an accuracy of 97.32%, sensitivity of

0.9971, specificity of 0.9598, and PPV of 0.9326 on TestCOV-CP (Table 3).

Comparative experiments: Supervised learning

In comparison to the COVID-19 detection model (first type of experiments), two models were

built via supervised learning–one uses TrainCOV only and the other uses both TrainCOV and

TrainPUB. Using TrainCOV only, the performance of COVID-19 detection decreased by>0.6%

in accuracy, >0.03 in sensitivity, >0.07 in specificity, and>0.44 in PPV on TestCOV and Test-
PUB. When it was tested on TestCOV only, the performance degradation was even severer; >5%

in accuracy. >0.03 in sensitivity, and >0.09 in specificity. Utilizing unsupervised learning, the

ability of the classification model was substantially improved, in particular for the detection of

COVID-19 samples.

Using both TrainCOV and TrainPUB in a supervised fashion, there was a marginal improve-

ment in the overall classification performance; for instance, ~0.05% in accuracy, ~0.02 in
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sensitivity, and ~0.02 in PPV. However, the performance on TestCOV was inferior to the pro-

posed semi-supervised method; 2%, ~0.1, and ~0.05 decrease in accuracy, specificity, and

PPV, respectively, leading to a substantial increase in false positive cases.

As for the classification of COVID-19 vs. CP CT slices (second type of experiments), the

similar observations were made with the first type of experiments. one supervised learning

model was built on TrainCOV-CP and compared to the semi-supervised learning model. Similar

to the result of the COVID-19 detection, there was a performance drop by the supervised

model such as>0.6% in accuracy,>0.01 in specificity, and>0.01 PPV.

Comparative experiments: Semi-supervised vs. supervised learning

In distinguishing COVID-19 from non-COVID-19 CT slices, each of the supervised methods

was compared to its semi-supervised counterpart. Using TrainCOV in a semi-supervised man-

ner, the accuracy, specificity, and PPV were improved by >0.3%, ~0.004, and ~0.15, respec-

tively, on TestCOV and TestPUB, in comparison to the supervised method. On TestCOV only, 2%,

>0.05, and>0.03 improvement in accuracy, specificity, and PPV, respectively, were observed.

On TestPUB only, the semi-supervised method showed better performance in the specificity by

>0.03. Similarly, using both TrainCOV and TrainPUB, the semi-supervised method, by and

large, outperformed the supervised counterpart. Moreover, we attained a performance gain by

>0.03% in accuracy, >0.005 in specificity, and >0.008 in PPV as utilizing TrainCOV-CP in a

semi-supervised manner on TestCOV-CP. These results demonstrate the effectiveness of semi-

supervised learning in comparison to supervised learning for both classification tasks.

For both classification tasks, the semi-supervised method that uses either TrainCOV or

TrainCOV-CP for both supervised and unsupervised learning was compared to the proposed

Table 2. Classification results: COVID-19 vs. non-COVID-19 CT slices.

Test LCE TrainCOV TrainCOV TrainCOV TrainCOV & TrainPUB TrainCOV & TrainPUB

LCons - TrainCOV TrainCOV & TrainPUB - TrainCOV & TrainPUB

TestCOV & TestPUB ACC 99.18% 99.52% 99.83% 99.88% 99.89%

Sens 0.8980 0.8980 0.9286 0.9490 0.9388

Spec 0.9928 0.9963 0.9991 0.9993 0.9996

PPV 0.5789 0.7273 0.9192 0.9394 0.9583

TestCOV ACC 89.33% 91.33% 94.67% 92.67% 93.33%

Sens 0.8980 0.8980 0.9286 0.9490 0.9388

Spec 0.8846 0.9423 0.9808 0.8846 0.9231

PPV 0.9362 0.9670 0.9891 0.9394 0.9583

TestPUB Spec 0.9935 0.9966 0.9992 1.0000 1.0000

ACC: accuracy, Sens: sensitivity, Spec: specificity, PPV: positive predictive value

https://doi.org/10.1371/journal.pone.0249450.t002

Table 3. Classification results: COVID-19 vs. common pneumonia CT slices.

Test LCE TrainCOV-CP TrainCOV-CP TrainCOV-CP

LCons - TrainCOV-CP TrainCOV-CP & TrainPUB

TestCOV-CP ACC 96.65% 96.98% 97.32%

Sens 0.9975 0.9968 0.9971

Spec 0.9492 0.9548 0.9598

PPV 0.9163 0.9248 0.9326

ACC: accuracy, Sens: sensitivity, Spec: specificity, PPV: positive predictive value

https://doi.org/10.1371/journal.pone.0249450.t003
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semi-supervised method that additionally utilizes TrainPUB in an unsupervised manner, i.e.,

computing LCons. Using the extra TrainPUB, the accuracy, sensitivity, specificity, and PPV were

improved in all the experiments. Furthermore, adopting TrainPUB in a supervised learning as

negative samples (first type of experiments), the classification performance was slightly

improved in all the experiments except the accuracy, specificity, and PPV on TestCOV.

Discussions

A rapid, reliable, and accurate detection of COVID-19 has a direct bearing on the global

healthcare due to the prevalence of the disease and its impact on the society. Although CT

images have shown to be useful in detecting COVID-19, the limited understanding and lack of

relevant COVID-19 data pose a difficulty in developing diagnostic tools. The proposed semi-

supervised learning approach demonstrates an alternative manner to develop an accurate and

robust diagnostic tool for COVID-19 that can utilize both COVID-19 CT images and non-

COVID-19 CT images.

The proposed semi-supervised method was able to detect COVID-19 CT images with high

accuracy. On the public CT images, including both healthy lungs and lungs with other types of

diseases, the method was successfully applied. Even though the pubic CT images miss

COVID-19, the good classification performance guarantees that there would be no or minimal

misdiagnosis on healthy subjects with respect to COVID-19, lowering the burden and cost of

healthcare. The additive value of the proposed method will be apparent as it is implemented as

a pre-screening mechanism. For instance, the proposed method will mis-classify <1% of non-

COVID-19 CT images as positive (at specificity of 0.9991), significantly lowering the workload,

whereas 7.14% of COVID-19 CT images (at sensitivity of 0.9286) will be missed and ~8% of

the positive CT images will include non-COVID-19 CT images (at PPV of 0.9192). In regard

to CP,<1% of COVID-19 CT images will be missed, while <5% of the CP CT images will

make it through the screening and these CP CT images will occupy <8% of the positive CT

images. We note that a direction comparison with the RT-PCT test may be misleading since

the proposed method is applied to a per CT slice not per patient. Each CT scan per patient

includes a number of CT images and a lesion may present in multiple CT images. The chance

of mis-classifying multiple CT images, i.e., missing COVID-19 patients, will be likely lower

than what reported here.

In comparison to the supervised methods, the effectiveness and efficiency of the proposed

semi-supervised method have been demonstrated. The supervised method, trained on either

TrainCOV or TrainCOV-CP, was inferior to the proposed method. The proposed semi-supervised

method is capable of not only improving the diagnostic accuracy on COVID-19 CT images

but also lowering the rate of misdiagnosis rate for non-COVID-19 CT images. However, the

supervised method, utilizing both the COVID-19 dataset (TrainCOV) and public dataset

(TrainPUB), was generally superior to the proposed semi-supervised method by a small margin.

Since supervised learning requires labeled data and labeling is, in general, costly and time-con-

suming, it is hard to further extend the approach. There is a trade-off between the performance

and the labeling cost. The proposed semi-supervised method allows us to improve the classifi-

cation performance as close as the supervised method without the high cost of data labeling.

The effect of semi-supervised learning was not dependent on the training dataset. For both

supervised methods–one uses TrainCOV only and the other uses both TrainCOV and TrainPUB,

the adoption of unsupervised learning approach, i.e., calculating LCons, gives rise to the

improvement in the classification performance in general. This indicates that the proposed

method enhances the utility of the available dataset, leading to an improved performance in

disease diagnosis.
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In semi-supervised learning, the classification performance varies depending on the train-

ing strategy. Although the same dataset (TrainCOV or TrainCOV-CP) is used for supervised train-

ing, the addition of the extra dataset (TrainPUB) for unsupervised training results in an

improved ability of COVID-19 detection, emphasizing the importance of the amount and

diversity of the dataset in unsupervised training. Furthermore, we gained a slight performance

gain by adding the labeled dataset (TrainPUB) in supervised training while the training dataset

(TrainCOV and TrainPUB) remains the same for unsupervised training. As we discussed above,

this requires an extensive labeling for all available datasets, which is impractical and inefficient

in many of medical imaging domains.

This study has several limitations. A limited amount of CT images with COVID-19 were

utilized in this study. The reported performance should be understood with respect to the

characteristics of the dataset used here. A follow-up study should be conducted to further vali-

date the accuracy and utility of the proposed method. The proposed method detects COVID-

19 per CT slice. Localization of COVID-19 in a CT slice could aid in analyzing the disease and

the classification results. The improved learning ability via the proposed semi-supervised

approach should be applicable to the localization of COVID-19 on CT images.

Conclusions

Herein, we propose an advanced, diagnostic tool for COVID-19 in CT images. The approach

adopts a semi-supervised learning scheme that exploits both supervised and unsupervised

learning. The experimental results show that the proposed semi-supervised method is able to

detect CT images with COVID-19 in an accuracy and robust manner. Adopting the public CT

images in an unsupervised fashion, in particular, the proposed method achieves a substantial

performance gain, indicating that the proposed method is able to utilize the non-COVID-19

CT images for an improved COVID-19 diagnosis. The approach is generic and can be applica-

ble to other types of diseases and datasets in other domains to enhance the learning capability

of the classification model and to extend the utility of the dataset.
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