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Simple Summary: The five-year survival rate of non-small-cell lung cancer (NSCLC), which accounts
for 85% of all lung cancer cases, is only 10–20%. A reliable prediction model of overall survival
(OS) that integrates imaging and clinical data is required. Overall, 492 patients with NSCLC from
two hospitals were enrolled in this study. The compensation method was applied to reduce the
variation of imaging features among different hospitals. We constructed a deep learning prediction
model, DeepSurv, based on computed tomography radiomics and key clinical features to generate a
personalized survival curve for each patient. The results of DeepSurv showed a good performance
in discriminating high and low risk of survival. Furthermore, the generated personalized survival
curves could be intuitively applied for individual OS prediction in clinical practice. We concluded
that the proposed prediction model could benefit physicians, patients, and caregivers in managing
NSCLC and facilitate personalized medicine.

Abstract: Patient outcomes of non-small-cell lung cancer (NSCLC) vary because of tumor heterogene-
ity and treatment strategies. This study aimed to construct a deep learning model combining both
radiomic and clinical features to predict the overall survival of patients with NSCLC. To improve the
reliability of the proposed model, radiomic analysis complying with the Image Biomarker Standard-
ization Initiative and the compensation approach to integrate multicenter datasets were performed
on contrast-enhanced computed tomography (CECT) images. Pretreatment CECT images and the
clinical data of 492 patients with NSCLC from two hospitals were collected. The deep neural network
architecture, DeepSurv, with the input of radiomic and clinical features was employed. The perfor-
mance of survival prediction model was assessed using the C-index and area under the curve (AUC)
8, 12, and 24 months after diagnosis. The performance of survival prediction that combined eight
radiomic features and five clinical features outperformed that solely based on radiomic or clinical
features. The C-index values of the combined model achieved 0.74, 0.75, and 0.75, respectively, and
AUC values of 0.76, 0.74, and 0.73, respectively, 8, 12, and 24 months after diagnosis. In conclusion,
combining the traits of pretreatment CECT images, lesion characteristics, and treatment strategies
could effectively predict the survival of patients with NSCLC using a deep learning model.
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1. Introduction

In 2020, the cancer incidence and mortality data released by the American Cancer
Society showed that lung cancer is the second most common malignant tumor with the
highest morbidity and mortality in the United States, which accounted for 11.4% of all
cancers and 18% of the total cancer deaths [1]. The 5-year survival rate of non-small-cell
lung cancer (NSCLC), which accounts for 85% of all lung cancer cases, is only 10–20% [2,3].
Despite the development of state-of-the-art therapy, there has been little improvement in
the survival rate. In patients with NSCLC, the same type of tumor can display different
responses to therapy and prognoses in various individuals. The main factors contributing
to these differences are tumor heterogeneity and the various conditions of affected patients.

Personalized medicine plays a key role in improving treatment effects; moreover, it
can improve patient survival. In 2012, Lambin et al. proposed the use of radiomics to
identify tumor heterogeneity [4]. Radiomic analysis is a method to mathematically extract
features from medical images using statistics, imaging filters, and wavelet transforms [5].
Generally, three categories of features can be obtained, including the histogram (first-
order statistics), geometry, and texture, which quantify tumor size, shape, heterogeneity,
and microenvironment. In the past decade, radiomics was widely applied for diagnosis,
prognosis prediction, and therapeutic response monitoring based on cancer imaging [6–8].

A considerable number of studies have been published on the prognosis prediction
of NSCLC based on computed tomography (CT) radiomics [9]. However, some studies
have demonstrated various results because of the instability and low reproducibility of
radiomic features. Berenguer et al. demonstrated that CT radiomics can be affected by
the tube voltage, tube current, section thickness, pixel size, reconstruction kernel, contrast
enhancement, and even the use of different scanners with the same setting [10]. The lack
of reproducibility and validation of radiomic studies are considered major challenges in
the field. Recently, the Image Biomarker Standardization Initiative (IBSI) has established
a reference framework for commonly used radiomic features to improve the robustness
and application of radiomics [11]. Moreover, CT images acquired from different hospitals
may have wide variations and can therefore cause potential biases in multicenter studies.
Multicenter adjustment of images is essential to improve the predictive performance of
applications based on radiomics. In a genomics study, to deal with batch effects caused by
the acquistition from different dates, sources, and techniques, Johnson et al. introduced the
ComBat compensation method to correct the variations [12]. Similar approaches have been
effectively validated for positron emission tomography images [13], CT images [14,15], and
even magnetic resonance images that have no standard intensity values [16]. Orlhac et al.
concluded that the use of realigned features will enable multicenter studies to pool data
from different sites and build reliable radiomic models based on large databases [14]. In
this study, we applied our IBSI-complied radiomic analysis with ComBat compensation to
the data collected from two hospitals. Accordingly, CT radiomic features can be pooled
without being adversely impacted by the variability of multiple sources. To the best of our
knowledge, this is the first study to present an IBSI-complied radiomics analysis combined
with the ComBat compensation method to predict the survival of patients with NSCLC.

Studies on CT radiomics showed promising results in the survival prediction, treat-
ment planning, and follow-up at all stages of NSCLC, indicating that informative imaging
biomarkers could be translated into clinical practice [9]. However, most studies enrolled
patients who underwent non-enhanced contrast CT (NCECT) or a mixture of both NCECT
and contrast-enhanced CT (CECT) [9]. Kakino proposed that because of radiomic differ-
ences between NCECT and CECT, pooling data together may cause additional bias in
NSCLC studies [17]. Gao demonstrated that CECT produces more accurate diagnoses
based on the enlargement of solid portions in lung nodules and elevated Hounsfield units
(HU) in ground-glass nodules [18]. In clinical practice, CECT is the main imaging modality
used to diagnose NSCLC and evaluate its treatment response. However, several open-
source CT databases mainly contained NCECT data, such as The Cancer Genome Atlas
Lung Adenocarcinoma and The Cancer Genome Atlas Lung Squamous Cell Carcinoma.
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Theoretically, CECT is widely used in the routine diagnosis and regular follow-up of pa-
tients with NSCLC. Hence, we aimed to develop a CECT dataset from two local hospitals
for survival prediction based on CT radiomics.

Studies have proposed the feasibility of CT radiomics to predict the overall survival
(OS). Hong et al. reported that a combination of optimal radiomic signatures and clinical
predictors outperformed the use of radiomics signatures only in survival prediction (con-
cordance index [C-index] = 0.799 vs. C-index = 0.746) in NSCLC [19]. Furthermore, Yang
et al. reported similar results for the combined model (C-index = 0.742) compared with the
use of clinical features only (C-index = 0.617) [20]. The combination of radiomics features,
a traditional staging system, and other clinicopathological risk factors could improve the
predictive accuracy and treatment policies in oncology [21,22]. However, clinical data,
such as the clinical stage, histological type, and tumor size, reported in previous studies
are limited.

To improve the reliability of the survival prediction in NSCLC, we aimed to apply the
IBSI-complied radiomics analysis on the pretreatment CECT, ComBat compensation for
aligning multicenter datasets, and comprehensive clinical data as inputs for the training of
a deep learning prediction model.

2. Materials and Methods
2.1. Patients

In this study, we enrolled 338 and 154 patients with NSCLC from Cathay General
Hospital (CGH) and Sijhih Cathay General Hospital (SCGH), respectively. The inclu-
sion criteria were as follows: (a) patients with histologically or cryptologically confirmed
NSCLC; (b) those who underwent CECT before treatment; (c) those whose image quality
was sufficient to identify and quantify the tumors; and (d) those for whom survival time
was recorded. Pretreatment CECT and clinical data, including age, gender, clinical stage,
OS time, survival status, and treatment, were collected. This study was approved by the
Institutional Review Board of CGH (CGHIRB: CGH-P109087), and the requirement of
informed consent was waived because of the retrospective nature of this study.

2.2. Computed Tomography Data Acquisition

Patients from CGH underwent CECT protocols using a 64-slice multidetector CT
(MDCT) scanner (Brilliance 64, Philips Healthcare, Amsterdam, The Netherlands) or
320-slice dynamic volume CT (Aquilion ONE; Toshiba Medical Systems, Otawara-shi,
Japan). CECT images collected from SCGH were acquired using a 16-slice MDCT scan-
ner (Somatom Emotion 16, Siemens Healthcare, Erlangen, Germany). For both hospitals,
the CT scan coverage was similar, ranging from the thoracic inlet to the upper abdomen.
CT images were reconstructed with a slice thickness of 5 mm. Pixel sizes ranged from
0.35 × 0.35 mm2 to 0.58 × 0.58 mm2. Each slice had a matrix size of 512 × 512 pixels with
a 16-bit gray-scale resolution in HU. The peak tube voltage was 120 kVp, and the tube
current was decided by automatic dose modulation ranging from 60 to 200 mA.

2.3. Tumor Segmentation and Radiomic Feature Extraction

The workflow of the building prediction model is displayed in Figure 1. For patients
with multiple lesions, the largest tumor was selected as the target lesion. For each patient,
the regions of interest (ROIs) were delineated by a well-trained radiological technologist
and checked by one of three experienced radiologists. The image resolution was adjusted
to resample all voxel sizes as an isotropic 2 × 2 × 2 mm3. Wavelet analysis with a three-
dimensional low (L) or high (H) spatial frequency filter was applied on the preprocessed
images. The radiomic features, including 16 first-order (histogram) features, eight shape-
and-size features, and 49 textural features (including a gray-level co-occurrence matrix,
gray-level run-length matrix, and local binary pattern [LBP]) with a discretization of
32 bins, were calculated on the original CECT and eight wavelet-filtered images. Overall,
593 features were acquired to quantify tumor characteristics for each patient with NSCLC.
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The image preprocessing and extraction of radiomic features were performed using our
previously published multimodal radiomics platform (available online: https://cflu.lab.
nycu.edu.tw/MRP_MLinglioma.html (accessed on 1 June 2022), which complied with the
IBSI on the MATLAB R2020a environment [7].
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Figure 1. Workflow of the prediction model. First, radiomic features were extracted from CT images
using multimodal radiomics platform. To remove the centric effect, we applied ComBat realignment
on the radiomic features. Second, the dimension feature was reduced with feature selection to avoid
the overfitting effect. The remained features after feature selection were applied to build a model
based on DeepSurv. Finally, the assessment of model performance relied on group-wise survival
curves, C-index, and time-dependent ROC curves.

2.4. Realignment of Multicenter Radiomic Datasets

The multicenter effect was evaluated by comparing the distribution of each CECT
radiomic feature between the two hospitals. The feature distribution, y, can be represented
as follows (1):

yijk = αk + Xijβk + γik + δikεijk. (1)

where i indicates the ith hospital, j indicates the jth patient, and k represents the kth
features; α is the average of each feature; X indicates the biological covariates; β is the
linear regression coefficient for the covariant matrix X; γ estimates the multicenter effect; δ
measures the effects of various scanners and protocols; and ε indicates individual variance.
To reduce (compensate for) the multicenter effect, the ComBat compensation method was
applied [13–16]. The following equation was used to realign feature distribution (2):

yComBat
ijk = (yijk − αek − Xijβek − γeik)/δeik + αek (2)

Estimators, αek, βek, γeik, and δeik, were calculated based on the maximum likelihood.
To correct the multicenter effect, the realigned features (yComBat

ijk ) were calculated by adding

the personal variance (εijk) to the average value (αek). In this study, we considered the
clinical stage as the biological covariant for the realignment. The processing was performed
using the ComBat function developed by Orlhac et al. on MATLAB R2020a [16].

2.5. Selection of Survival Predictors

After the realignment of the CGH and SCGH datasets, 30% of the patients were
assigned as the test dataset. The remaining data were used as the training dataset for
the subsequent feature selection and model training. This study was designed to predict
the survival probability of patients with NSCLC 8, 12, and 24 months after diagnosis. To
effectively differentiate the survival status during the 8 and 24 months, we performed the
feature selection based on the patients with OS within this period (n = 169) in the training

https://cflu.lab.nycu.edu.tw/MRP_MLinglioma.html
https://cflu.lab.nycu.edu.tw/MRP_MLinglioma.html
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dataset. In the feature selection, the univariate Cox regression (p ≤ 0.1, |b| ≥ 2) was used
to select radiomic features for survival prediction. The coefficient, b, was used to estimate
the Cox proportional hazard of OS duration on each radiomic feature. A large absolute
value of b indicates a high influence on survival. Patients with an OS longer than 12 months
were defined as the good survival group; those with an OS shorter than 12 months were
assigned to the poor survival group. The categorical clinical features were selected based
on the chi-square test (p ≤ 0.1) regarding the survival groups. Then, we input the selected
features to train the prediction model using the full training dataset (n = 345).

2.6. Survival Prediction with Deep Neural Networks

A prediction model was constructed based on the DeepSurv architecture, a deep neural
network, using R programming (version 4.1.1). DeepSurv integrated the Cox proportional
regression and deep neural network, which contained input, multilayer hidden, and output
layers [23]. The prediction model output the hazard risk function to generate personalized
survival curves. The coefficients of the hazard risk function for predictors were determined
based on the weights of hidden layers. The average negative log partial likelihood of the
Cox function was applied as the loss function to optimize the network (3):

l(θ) = ∑(i:E=1)

(
heθ(Xi)− log

(
∑jεR(Ti) ·e

(heθ(xj))
)

/NE = 1 + λ× θ2
2 (3)

where x is the input features, NE=1 indicates the number of patients with an observable
event, R(Ti) presents patients with survival longer than Ti, λ is the L2 regularization
parameter, and θ represents the model weights. Gradient descent optimization was used to
minimize l(θ).

We developed a DeepSurv model with a five-layer neural network to predict the
hazard function. Fully connected layers with 20, 26, 32, 26, and 20 nodes were applied in
five hidden layers, respectively. We applied a rectified linear unit as the activation function,
followed by a batch normalization layer to avoid the risk of internal covariate shift for
each hidden layer. The dropout rate for the input and hidden layers was 0.4 to prevent
overfitting. The following parameters were applied for model training: initial learning rate,
0.01; epoch number, 400; momentum, 0.8; and the Adam optimizer.

2.7. Statistical Analysis

To assess the inter-observer variation of ROI delineation, 20 NSCLC tumors were
randomly selected, and the ROIs of each tumor were separately delineated by the three
radiologists. The intraclass correlation coefficient (ICC) and overlapping rate were sub-
sequently calculated (Figure S1), and the ICC of radiomic features were also provided
(Table S1). The ICC was applied to measure the observation bias in radiomic features.
Radiomic features with a high ICC (R ≥ 0.75) indicated high consistency among the three
observers. The overlapping rate indicated the observation bias in contours among the
three observers.

To assess the personalized survival curve to differentiate the high and low risk of OS,
the test dataset was divided into two groups based on the 12-month OS. We calculated
the mean and standard deviation of the predictive survival probability of each group, and
the log-rank test was used to investigate the difference in personalized survival curves
between the two groups. To evaluate the overall performance of the prediction model, the
C-index and time-dependent receiver operating characteristic (ROC) curves were estimated
at 8, 12, and 24 months. The optimal thresholds could be further determined based on
the time-dependent ROC curves for three selected time points, respectively. Then, the
reference risk curve was constructed based on the curve fitting passing through the three
time-dependent thresholds using the Weibull probability distribution function [24]. The
risk levels of death could be estimated using the area between the personalized survival
curve and reference risk curve at the following periods: <8, 8–12, 12–24, and >24 months.
A negative risk level represented that the segment of the personalized survival curve
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was below the reference risk curve, indicating a high risk of event occurrence within the
period. The prediction performance among the combined (radiomic + clinical), radiomic,
and clinical models was assessed and compared using AUC and C-index values with the
bootstrap resampling 100 times, respectively.

3. Results
3.1. Demographic Data of Multicenter Datasets

The clinical data collected from the CGH and SCGH are listed in Table 1. The data, such
as the tumor laterality, clinical T stage, clinical stage, histology, surgery, and survival status,
showed no significant difference between the two hospitals. However, data on radiotherapy,
alcohol use, betel nut use, and the survival period showed significant differences between
the two hospitals. The CGH dataset included patients with better survival (p < 0.001)
compared with the SCGH dataset. The identified significant differences between the two
hospitals reflected data variation, which could be commonly observed in multicenter
studies and real-life situations. This phenomenon highlighted the importance of building
a prediction model by pooling multicenter datasets with sufficient variation to ensure
model generalization. The complete demographic data from CGH and SCGH are listed in
Supplementary Table S1.

Table 1. Characteristics of non-small-cell lung cancer cases from CGH and SCGH.

Characteristics CGH
(n = 338)

SCGH
(n = 154) p Value

Age (y) 66.98 ± 12.24 66.62 ± 11.84 0.56
Gender 0.75

Male 183 (54.14%) 81 (52.60%)
Female 155 (45.86%) 73 (47.40%)

Histology 0.16
Adenocarcinoma 218 (64.50%) 111 (72.08%)

Squamous cell carcinoma 73 (21.60%) 23 (14.94%)
Adenosquamous carcinoma 11 (3.25%) 1 (0.65%)

Large cell cancer 4 (1.18%) 2 (1.30%)
Other NSCLC 32 (9.47%) 17 (11.04%)

Clinical T stage 0.47
0 1 (0.30%) 0 (0.00%)
1 40 (11.83%) 18 (11.69%)
2 93 (27.51%) 32 (20.78%)
3 70 (20.71%) 39 (25.32%)
4 134 (39.64%) 65 (42.21%)

Clinical N stage 0.59
0 108 (31.95%) 54 (35.06%)
1 27 (7.99%) 11 (7.14%)
2 85 (24.85%) 44 (28.57%)
3 118 (34.91%) 45 (29.22%)

Clinical M stage 0.07
0 110 (32.54%) 63 (40.91%)
1 228 (67.46%) 91 (59.09%)

Clinical stage 0.16
I 48 (14.20%) 23 (14.94%)
II 12 (3.55%) 11 (7.14%)
III 50 (14.79%) 29 (18.83%)
IV 228 (67.46%) 91 (59.09%)

Surgery 0.66
None 250 (73.96%) 111 (72.08%)
Yes 88 (26.04%) 43 (27.92%)

Chemotherapy 0.06
None 202 (59.76%) 78 (50.65%)
Yes 136 (40.24%) 76 (49.35%)
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Table 1. Cont.

Characteristics CGH
(n = 338)

SCGH
(n = 154) p Value

Radiation therapy 0.02 *
None 217 (64.20%) 115 (74.68%)
Yes 121 (35.80%) 39 (25.32%)

Targeted therapy 0.36
None 215 (63.61%) 104 (67.53%)
Yes 123 (36.39%) 50 (32.47%)

Smoke 0.91
None 188 (55.62%) 88 (57.14%)
Yes 138 (40.83%) 66 (42.86%)

Not available 12 (3.55%) 0 (0.00%)
Betel nut use <0.001

None 300 (88.76%) 114 (74%)
Yes 27 (7.99%) 22 (14.3%)

Not available 11 (3.25%) 18 (11.7%)
Alcohol use <0.001

None 240 (71.01%) 92 (59.74%)
Quit drinking 33 (9.76%) 18 (11.69%)

Sometimes 20 (5.92%) 11 (7.14%)
Always 34 (10.06%) 15 (9.74%)

Not available 11 (3.25%) 18 (11.69%)
Survival Status 0.20

Alive 97 (28.70%) 53 (34.42%)
Dead 241 (71.30%) 101 (65.58%)

Duration (months) 20.15 ± 19.95 12.75 ± 11.70 <0.001
Median 12 11

Note: p values are the results of the χ2 test for categorized variables and t-test for continuous variables. * p < 0.05.

3.2. Variation Estimation of Lesion Contouring and Radiomic Features

The overlapping rate was used to determine the observation bias of lesion con-
touring. Almost all patients showed high consistency in lesion contouring (overlap-
ping rate = 0.78 ± 0.18). We demonstrated the image and contour of the 20 patients in
Supplementary Figure S1. The observation bias in radiomic features was evaluated using
the ICC. We calculated the mean and standard deviation of the ICC of 19 feature categories
(Supplementary Table S2). All radiomic features showed sufficiently high consistency with
average ICC values of greater than 0.819 among the three observers. Texture features with
LLL, LLH, LHL, HLH, and HHH wavelet filters also exhibited high consistency with ICC
values of greater than 0.868 among the three observers. These results indicated that the
radiomic features are highly stable.

3.3. Selected Radiomic and Clinical Features for the Prediction Model (ICC)

Eight radiomic and five clinical features were selected as predictors for model building
(Table 2). Radiomic predictors were selected from texture features with LLL, LLH, LHL,
HLL, HLH, and HHH wavelet filters. Positive b values were observed in LHL_Homogeneity
(b = 2.0202), HLL_Homogeneity (b = 2.5763), HLH_Inverse variance (b = 3.4462), and
HHH_Correlation (b = 3.0696), which indicated negative correlations between these fea-
tures and OS. Radiomic features, including LLL_LBP_Uniformity and Short Run Emphasis
with LLH, HLL, and HLH wavelet filters, showed negative b values of less than −2.2332.
Negative b values indicated decreased hazard and increased survival times. Clinical fea-
tures, including histology, clinical T stage, clinical N stage, clinical stage, and surgery, were
selected in model building.
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Table 2. Predictors for model building. Eight radiomic features and five clinical features were selected
as predictors for model building.

Radiomic Features Good Outcome
(n = 83)

Poor Outcome
(n = 86) b Value p Value

LLL_LBP_Uniformity 0.18 ± 0.05 0.20 ± 0.05 −4.57 0.03
LLH_Short Run Emphasis 0.86 ± 0.08 0.88 ± 0.08 −2.23 0.04

LHL_Homogeneity 1 0.46 ± 0.11 0.40 ± 0.12 2.02 0.02
HLL_Homogeneity 1 0.41 ± 0.09 0.37 ± 0.09 2.58 0.01

HLL_Short Run Emphasis 0.90 ± 0.05 0.92 ± 0.04 −4.22 0.04
HLH_Inverse variance 0.34 ± 0.07 0.29 ± 0.09 3.45 0.01

HLH_Short Run Emphasis 0.90 ± 0.04 0.92 ± 0.04 −4.77 0.02
HHH_Correlation 0.04 ± 0.06 0.05 ± 0.06 3.07 0.05

Clinical Features Good Outcome
(n = 83)

Poor Outcome
(n = 86) chi2 Value pValue

Histology 1 [1–2] 1 [1–2] 8.22 0.08
Clinical T stage 3 [2–4] 3 [2–4] 50.47 <0.001
Clinical N stage 2 [2–3] 1 [0–2] 15.74 0.03

Clinical stage IV [III–IV] IV [II–IV] 17.17 0.02
Surgery 0 [0–0] 0 [0–1] 7.18 0.07

Cox regression was applied on radiomic features, and clinical features were assessed using the chi-square test. The
b coefficients were assessed by Cox regression. Negative coefficients indicated decreased hazard and increased
survival times. L represents a low-pass filter, and H represents a high-pass filter of the wavelet decomposition.
The combination of L and H letters stands for the filter type applied to the three image axes in order. LBP, local
binary pattern.

3.4. Representative Cases for Predicting Personalized Survival Curves

Figure 2 shows the CT images, predicted survival curves, and risk levels of five rep-
resentative cases. The reference risk curve (dashed curve) was also plotted to intuitively
represent the risk of death. Case #1, with an OS of 3 months, had a 3.5-cm lesion located
in the left upper lobe with adjacent pleural thickening. The predicted survival curve gen-
erated by the DeepSurv model was far below the reference risk curve, indicating poor
survival. The risk level of Case #1 showed a negative value (−0.54) in the first period
(<8 months) (Figure 2f). Case #3, with an OS of 17 months, had a 3-cm mass located in
the left upper lobe with a shadow with small air density. The predicted survival curve
generated by the DeepSurv model intersected the reference risk curve at the 12–24-month
period, demonstrating poor survival over the duration (Figure 2c). The risk level for Case
#3 showed a negative value (−0.60) at the third period (12–24 months) (Figure 2f). Case
#5, with an OS of 68 months, had a solitary lobulated pulmonary nodule located in the
left upper lobe. The predicted survival curve generated by the DeepSurv model was far
above the reference risk curve, revealing good survival (Figure 2e). The risk level for Case
#5 showed positive values at the four periods (Figure 2f).

3.5. Superior Performance of the Prediction Model Based on Combined Features

To compare model performance based on combined (radiomic + clinical), radiomic,
and clinical feature sets, we applied a bootstrap resampling on the test dataset 100 times.
The combined model (C-index = 0.74, 0.75, and 0.75 at 8, 12, and 24 months, respectively)
significantly outperformed the clinical (C-index = 0.70, 0.70, and 0.71, respectively) and
radiomic (C-index = 0.64, 0.65, and 0.65, respectively) models, indicating that combining
radiomic predictors with clinical predictors could improve survival prediction (Figure 3a).
Similarly, the combined model displayed significantly higher AUCs at the three time points
(AUCs = 0.76, 0.74, and 0.73, respectively) than the radiomic (AUCs = 0.66, 0.66, and 0.63,
respectively) and clinical (AUCs = 0.69, 0.64, and 0.67, respectively) models, reflecting an
improvement in the prediction efficacy (Figure 3b).
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Figure 2. Demonstration of the predictive survival curve, AUC difference, and CT images in five pa-
tients. Five predictive survival curves (a–e) were displayed with OS of 3, 12, 17, 34, and 68 months.
The first and second rows display lung and soft tissue windows of lung CT images (pink ROIs
indicate the segmented tumors). The third row shows personalized survival prediction (color line)
and referenced risk curves (dash line). For the colored line, blue segments indicate that the patients
were at a low risk during the period, and red segments demonstrate that the patients were at a high
risk during the period. (f) lists the risk levels of the five patients during four periods (<8, 8–12, 12–24,
and >24 months).

The detailed performance of the combined model is displayed in Figure 4. Figure 4a
shows the time-dependent ROC curves, AUC values, sensitivity, specificity, and optimal
probability threshold at the three time points. The predicted survival curves for the poor
survival group (blue line and area) quickly dropped down at the beginning (Figure 4b).
In contrast, the predicted survival curves for the good survival group (red line and area)
showed a gradual reduction in survival probability, indicating a better prognosis than the
poor survival group. A significant difference in the mean predicted survival curves was
observed between the two groups (p = 0.0015).
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Figure 3. Comparison of model performance among the combined, radiomic, and clinical models.
AUCs and C-indices based on the three optimal probabilities were evaluated with bootstrap resam-
pling 100 times. Red, green, and blue lines correspond to C-index from the combined, radiomic,
and clinical models, respectively. (a) AUCs in the combined model have the best performance at
three time points. The combined model showed significantly higher AUCs than the other models.
(b) C-indices in the combined model have the best performance at three time points. The combined
model showed a significantly higher C-index than the other models. 95% CI: 95% confidence interval;
Red: 8 months; Green: 12 months; Blue: 24 months; ***: p < 0.001.
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Figure 4. Detailed performance of the combined model (radiomic + clinical features). (a) Time-
dependent ROC curves at 8, 12, and 24 months. Red, green, and blue lines correspond to ROC curves
while predicting patients’ survival duration longer than 8, 12, and 24 months, respectively. The red,
green, and blue dots are located with the values of “1-specificity” and “sensitivity,” which were
estimated with the three optimal probability thresholds (0.65, 0.51, and 0.35) at 8, 12, and 24 months,
respectively. (b) The mean survival curves from the good (red) and poor (blue) survival groups
were displayed. The significance of the predicted survival probability between the two groups was
assessed using a log-rank test.

4. Discussion

This study included 492 patients with NSCLC at all stages. In our results, the perfor-
mance (estimated by the C-index and AUC) of the model combining clinical and radiomic
features is better than that of the models using radiomic or clinical features alone at the
three time points. We analyzed similar studies that included all NSCLC stages; Huang
et al. developed models that predicted OS in the anaplastic lymphoma kinase (ALK+) set,
which achieved a C-index of 0.649 (95% confidence interval, 0.640–0.658) [25]. Timmeren
et al. proposed a radiomic model that contained only radiomic features; this model reached
a C-index of 0.63 for OS prediction using cone beam CT [26]. Yang et al. compared the
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performance of 2D and 3D radiomics in predicting the survival of patients with NSCLC,
and the results demonstrated that the combined 2D and 3D features (C-index = 0.742)
showed a better prognostic performance than 2D (C-index = 0.687) or 3D features alone
(C-index = 0.736) [20]. Li et al. applied a predictive nomogram in the external test cohort,
and the C-index reached 0.660 [27]. In this study, we included more patients with com-
prehensive clinical and radiomic features to predict personalized survival curves with a
superior performance.

Survival prediction in NSCLC is important but challenging for patients and physicians.
In this study, we proposed a deep learning prediction model to evaluate the survival
probability. The superior performance of our proposed model may be attributed to the
following factors. First, the features extracted from CECT were more discriminate in
outcome prediction than those extracted from NCECT [28]. Second, the comprehensive
clinical features (i.e., age, gender, clinical stages, histological types, tumor size, smoking
status, and alcohol use) combined with quantitative radiomics included in this study
can build a dependable prediction model. Third, our image preprocessing and feature
extraction methods were in accordance with the IBSI recommendations [16]. Because of the
standardization of radiomics, the reliability and reproducibility of the prediction models
showed a satisfactory performance. Fourth, the multicenter dataset for assessing model
performance ensured the generalization of the results of this study for future applications.
Besides, the ComBat compensation method further compensated for the variations in
datasets acquired from different sources. Finally, the applied DeepSurv model incorporated
the multilayer architecture to handle high-dimensional feature sets, resulting in a superior
performance in survival prediction.

Radiomics has been used to explore tumor heterogeneity, pattern, and microenvi-
ronment and is promising in assessing and predicting histopathological characteristics,
treatment response, and clinical outcomes in NSCLC [9,11,20]. The performance of ra-
diomics analysis based on CECT images could provide the density distribution on the
intratumoral physiology of blood supply. Chen et al. proposed that CECT images showed
better diagnostic capability than NCECT images because CECT images can supply more
information on intratumoral microvascular density [29]. This study also demonstrated that
CECT radiomics combined with clinical features could discriminate prognosis in NSCLC.
Additionally, most hospitals considered CECT as the primary protocol for regular follow
up in NSCLC.

In this study, extraction of radiomic features only from the largest lesion was attributed
to three reasons. First, multiple lesions might possess different image traits. Using an appro-
priate aggregation method of radiomic features extracted from different lesions is critical
for subsequent model building. A recent study proposed by Chang et al. investigated four
aggregation methods of radiomics, including the largest lesion, weighted average of three
largest lesions based on volume, weighted average of all lesions, and simple average of all
lesions, for patients with brain metastases [30]. They concluded that the largest lesion and
the weighted average of the three largest lesions provided the best performance of survival
prediction. This result indicated that radiomic features extracted from the largest lesion
might contain sufficient and critical information for survival prediction. Considering only
the largest lesion (usually the most representative one) could further eliminate the potential
variation and “averaging effect” of the feature aggregation from multiple lesions. Second,
the clinical data such as the histological type and clinical T stage were mostly investigated
based on the largest/primary tumor lesion. Accordingly, combining the radiomic features
extracted from the largest lesion and clinical data provided good consistency to character-
ize the patient status. Finally, our combined model also included the clinical T stage and
overall clinical stage. These two clinical features reflected the presence of multiple lesions
and invasion of the disease. Based on the abovementioned reasons and our results, we
suggested that the radiomic features based on the largest lesion and clinical staging data
could provide critical information for survival prediction.
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Survival prediction models combining radiomic and clinical features outperformed the
model only depending on clinical or radiomic features alone. Regarding clinical features,
five clinical features, including histology, clinical T stage, clinical N stage, clinical stage, and
surgery (Table 2), were selected as survival predictors. However, the use of chemotherapy
was not selected. This might be because the chemotherapy guidelines have varied during
the past decade due to the rapid development of chemotherapy regimens. The development
of systemic therapy grew quickly in chemotherapy, targeted therapy, and immunotherapy.
Nowadays, the guidelines for chemotherapy are still undergoing dynamic changes in
NSCLC [31]. Due to the different implementation in chemotherapy regimens, we could
only stratify the application of chemotherapy into “yes” or “none” in our study. This binary
stratification might cause the result that chemotherapy showed no significant difference
(p = 0.20) between the good and poor survival groups and therefore was not selected as
a predictor. Regarding radiomic features, eight texture features were selected to build
prediction models. Studies had proposed that texture features are correlated with OS
because they can reflect tumor heterogeneity [28,32,33]. These findings are consistent with
those reported in this study. With the good reflection of tumor heterogeneity, texture
features have higher survival predictive power in NSCLS [34], particularly those with
wavelet filters.

Based on previous studies and experience in clinical practice, multiple factors could
interactively influence patient survival. We took the targeted therapy as the example.
Supplementary Table S3 compares the clinical features between patients with and without
targeted therapy. In the targeted therapy group, 89.6% of patients (155 of 173 patients)
belonged to the adenocarcinoma type, 92.5% of patients (160 of 173 patients) had stage IV
NSCLC, 93.1% of patients (161 of 173 patients) did not receive surgery, and 70.5% of patients
(122 of 173 patients) had a known epidermal growth factor receptor (EGFR) mutation. These
ratios were all significantly higher (p < 0.001) than those in the non-targeted therapy group.
Even though the targeted therapy might benefit the outcome in the advanced NSCLC
group with an EGFR mutation, the higher clinical stage and inaccessible to surgery limited
patient survival. Accordingly, no significant difference (p = 0.13) in OS between targeted
therapy (19.51 ± 19.01 months) and non-targeted therapy (16.93 ± 17.55 months) groups
was observed. Instead of focusing on a single factor, we collected comprehensive data to
evaluate the overall/interactive effects of features on OS. We believed that the proposed
prediction model based on the clinical and imaging features for patients with stage I to IV
NSCLC could benefit the clinical management.

The robustness of reliability and reproducibility is the main problem in implementing
diagnosis or treatment prediction in clinical practice [35]. Our systems of image preprocess-
ing and feature extraction were in accordance with the IBSI recommendations [11]. The IBSI
provided a standard reference for each essential step in radiomics analysis, including image
preprocessing, lesion segmentation, feature extraction, and validation. In this study, the
ICC of each radiomic feature among the three observers was higher than 0.75, and the ROI
overlapping rate was high (78%), indicating the robustness of radiomics. Recently, the Food
and Drug Administration has declared 10 guiding principles for evaluating good machine
learning practice [1]. One of the principles is that training datasets are independent of
test datasets, indicating that training and test datasets are selected and maintained to be
appropriately independent of one another [36]. Besides, evaluating the performance of
artificial intelligence devices across multiple clinical sites is important to ensure that the
algorithms perform well across reprehensive populations [1]. Another technical consid-
eration of multicenter studies is the data heterogeneity between different sites. With the
ComBat compensation method, datasets from two sites/scanners can be adjusted to reduce
potential biases. To our knowledge, our method is the first to combine the IBSI and ComBat
compensation method to standardize radiomics. In this study, the performance of the
training and test datasets were good, indicating that our algorithm is stable.

DeepSurv is a modern Cox proportional hazards, deep neural network proposed
by Katzman in 2018 [23]. DeepSurv can predict model interactions between a patient’s
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covariates and treatment effectiveness, which can provide personalized treatment recom-
mendations. Their results showed that DeepSurv outperformed other survival analysis
methods on survival data with linear or nonlinear effects from covariates [23]. In our results,
DeepSurv showed good performance in discriminating high and low risk of survival. The
reason for this is that DeepSurv could combine clinical and radiomic features to develop
a superior model. Personalized survival curves could be applied for individual survival
prediction in clinical practice. Clinical physicians could make therapeutic plans in refer-
ence to predictive survival curves before treatment begins. For patients whose predictive
survival curve was under the reference risk curve in the early period, indicating a poor
prognosis (Figure 2a), modification of their treatment strategy should be considered by
their physicians. Otherwise, if patients’ predictive survival curve was above the referenced
risk curve, physicians would be more confident of a good prognosis from the arranged
treatment (Figure 2e). In summary, personalized survival curves derived from a DeepSurv
model combining both radiomic and clinical features may improve the clinical management
of patients with NSCLC.

This study had several limitations. First, our samples included uneven patient pop-
ulations in terms of clinical stage of NSCLC. High clinical stages of IV and III comprised
70–80% of the patients in our study cohort. This was because most patients underwent CT
examination and received subsequent treatment after the occurrence of symptoms. Second,
our prediction model did not include the patients’ genetic profile, such as the EGFR and
anaplastic lymphoma kinase (ALK) status. Only 52% and 14% of the recruited patients had
the EGFR mutant and ALK status, respectively. The main reason for the shortage of this
information was because the percentage of adenocarcinoma in these two hospitals was only
approximately 60–70%. The EGFR gene test was mainly performed in patients with ade-
nocarcinoma. Third, our validation had not included international datasets. Considering
that most open-source databases included only NCECT datasets, future data collection of
CECT may be required to further validate our proposed model. Another challenge is that
our study included complete clinical data; however, most open-source databases included
limited clinical information. Future studies with a comprehensive clinical dataset and
international CECT database should be considered to generate a more generalized model
for clinical implementation.

5. Conclusions

In conclusion, this study employed robust and reproductive radiomics combined with
clinical data to build a DeepSurv prediction model. We found that personalized medicine
based on the OS prediction using DeepSurv was feasible, which could benefit physicians,
patients, and caregivers in managing NSCLC.
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