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Abstract

Identifying differentially expressed genes is difficult because of the small number of avail-

able samples compared with the large number of genes. Conventional gene selection meth-

ods employing statistical tests have the critical problem of heavy dependence of P-values

on sample size. Although the recently proposed principal component analysis (PCA) and

tensor decomposition (TD)-based unsupervised feature extraction (FE) has often outper-

formed these statistical test-based methods, the reason why they worked so well is unclear.

In this study, we aim to understand this reason in the context of projection pursuit (PP) that

was proposed a long time ago to solve the problem of dimensions; we can relate the space

spanned by singular value vectors with that spanned by the optimal cluster centroids

obtained from K-means. Thus, the success of PCA- and TD-based unsupervised FE can be

understood by this equivalence. In addition to this, empirical threshold adjusted P-values of

0.01 assuming the null hypothesis that singular value vectors attributed to genes obey the

Gaussian distribution empirically corresponds to threshold-adjusted P-values of 0.1 when

the null distribution is generated by gene order shuffling. For this purpose, we newly applied

PP to the three data sets to which PCA and TD based unsupervised FE were previously

applied; these data sets treated two topics, biomarker identification for kidney cancers (the

first two) and the drug discovery for COVID-19 (the thrid one). Then we found the coinci-

dence between PP and PCA or TD based unsupervised FE is pretty well. Shuffling proce-

dures described above are also successfully applied to these three data sets. These

findings thus rationalize the success of PCA- and TD-based unsupervised FE for the first

time.

Introduction

In genomic sciences, selecting a limited number of differentially expressed genes (DEGs)

among as many as several tens of thousands of genes is a critical problem. Unfortunately, this
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is a very difficult task as the number of genes, N, is usually much larger than the number of

available samples, M. However, as this is not a mathematically solved problem, it has most fre-

quently been tackled empirically using statistical test-based feature selection strategies [1, 2].

Despite huge efforts along this direction, these statistical test-based feature selection strategies

cannot be said to work well.

Selection of biologically informative genes including DEGs is essentially performed as fol-

lows (For simplicity,
P

ixij ¼ 0;
P

ix
2
ij ¼ N and M samples are composed of multiple classes

having an equal number of samples). Suppose that we have properties y 2 RM
attributed to M

samples. We would like to relate a matrix form of some omics data, e.g., gene expression pro-

files, X 2 RN�M to y. The overall purpose is to derive b 2 RN whose absolute values represent

the importance of the ith gene. The first and the most popular strategy outside genomic sci-

ences is a regression strategy that requires minimization of

ðy � bXÞ2 ð1Þ

resulting in

b ¼ yXTðXXTÞ
� 1
: ð2Þ

The regression approach, Eq (2), is less popular in genomic sciences than in other scientific

fields, possibly because of N�M, which always results in exactly (y − bX)2 = 0 with an infi-

nitely large number of b. Thus, it is useless to select a limited number of important features

among the total N features. Although adding the regulation term of L2 norm to Eq (1) as

ðy � bXÞ2 þ lb2 ð3Þ

with the positive constant λ> 0 enables selection of a unique b by minimizing Eq (3) as

b ¼ yXTðXXT þ lIÞ� 1
; ð4Þ

because it does not satisfy (y − bX)2 = 0 anymore, it is not an ideal solution. Although the solu-

tion using the Moore-Penrose Pseudoinverse [3]

b ¼ yXy ð5Þ

might be better as it satisfies (y − bX)2 = 0 under the condition of minb b
2
, it is unclear whether

minb b
2

is a good constraint from the biological viewpoint. Adding the regulation term of L1

norm [4] to Eq (1)

ðy � bXÞ2 þ ljbj ð6Þ

can yield at most M variables, which is not effective when N�M, because variables larger

than M might be biologically informative and should not be neglected. Moreover, addition of

L1 norm is known to be a poor strategy when X is not composed of independent vectors,

which are very common in genomic science.

The second strategy is a projection strategy

b ¼ yXT ð7Þ

that is equivalent to the maximization of

y � bX �
1

2
b2 ð8Þ

and is employed in PCA- and TD-based unsupervised FE (see below). Through the concept of
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projection pursuit [5] (PP), it is understood that seeking the projection vector b maximizes

interestingness

HðbXÞ ð9Þ

which is Eq (8) in this study. As H(bX) is a function of b, it is also denoted as I(b), which is

called projection index. I(b) can be any other function, but its selection should be decided such

that the biologically most meaningful results are obtained. Upon obtaining b that maximizes I
(b), we can select i having a larger absolute bi as mentioned above. In the framework of PP, in

a high dimensional system, almost all b have finite projections [6]. Thus, the only the point is if

it is accidental or biologically meaningful.

In genomic science, projection strategy, Eq (7), is also unpopular. Although the reason for

the unpopularity of the projection strategy, Eq (7), is unclear, this may be explained by the

ignorance of the contribution perpendicular to y, jðxi � ŷÞŷ � xij, where ŷ is a unit vector paral-

lel to y and is defined as y/|y|. Nevertheless, in contrast to the regression strategy requiring the

computation of (XXT)−1, Eq (7) can be always computable even if N�M, which is a great

advantage of the projection strategy when compared with the regression strategy.

Instead of these two strategies, feature selection based on statistical tests [1, 2] is more popu-

lar in genomic sciences as mentioned above. They try to identify genes whose expression is sig-

nificantly distinct between classes. Despite its popularity, feature selection based on statistical

tests has critical problems; in particular, significance is heavily dependent on sample size, M.

Even in the case of a small distinction, more significant results are obtained when more sam-

ples are considered; this is not applicable biologically because determination of whether gene

expression between classes differs significantly should not be a function of sample size. To

compensate this heavy sample dependence of significance, other criteria such as fold change

between classes are often employed. Thus, feature selection based on statistical tests is at best,

the best among the worst approaches. If better strategies can be employed, there will be no rea-

son to employ strategies based on statistical tests.

Despite the unpopularity of projection strategy, it was sometimes evaluated as more effec-

tive [7, 8] than the standard feature selection strategy based on statistical tests. Thus, it can be a

candidate strategy that can be replaced with feature selection based on statistical tests. In this

paper, we try to understand why PCA-based unsupervised FE and TD-based unsupervised FE

[3] are effective in feature selection based on projection strategy, since PCA-like as well as TD-

like methods were successfully applied in other fields, too [9–11]. We consider the cases bio-

marker identification of kidney cancer [12] as well as SARS-CoV-2 infection problem [13]; in

these studies, despite unsuccessful results obtained by conventional feature selection based on

statistical tests, TD-based unsupervised FE identified biologically reasonable genes (for more

details about how PCA- and TD-based unsupervised FE are superior to statistical test-based

feature selection tools in these specific examples, see these previous studies [12, 13]).

Materials and methods

Sample R cods is available in https://github.com/tagtag/peoj.

Expression profiles

mRNA, miRNA, and gene expression profiles in the first, second, and third data sets can be

downloaded from TCGA as well as GEO. Their availability is described in detail in previous

studies [12, 13].

PLOS ONE Projection in genomic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0275472 September 29, 2022 3 / 20

https://github.com/tagtag/peoj
https://doi.org/10.1371/journal.pone.0275472


Excluding low expressed miRNAs, mRNAs, and genes

To draw Figs 1(B), 2(B) and 3(B), low expressed miRNAs, mRNAs, and genes were screened

out. For this, we rank them using ∑j |xij|, ∑j |xik|, ∑jkm |xijkm| and only selected the top ranked

ones.

QQplot

QQplot [14] was used to visualize the coincidence between two distributions that do not

always have same number of elements. The qqplot function implemented in R [15] was

employed to draw QQplots (Figs 4 and 5) in this study.

Null distribution

The null distributions used for computing P-values in Figs 1–3 and 6 were generated by gene

order shuffling as follows. First, the order of i was shuffled within each xij or within each xijkm
and that of k was shuffled within each xkj. Thus, the order of mRNAs, miRNAs, and genes was

Fig 1. Histogram of raw P-values computed using the null distribution generated by shuffling when miRNAs in

the first data set were considered. (A) All miRNAs (B) Top 500 most expressive miRNAs.

https://doi.org/10.1371/journal.pone.0275472.g001

Fig 2. Histogram of raw P-values computed using the null distribution generated by shuffling when the mRNAs

in the first data set were considered. (A) All mRNAs (B) Top 3000 most expressive mRNAs.

https://doi.org/10.1371/journal.pone.0275472.g002

PLOS ONE Projection in genomic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0275472 September 29, 2022 4 / 20

https://doi.org/10.1371/journal.pone.0275472.g001
https://doi.org/10.1371/journal.pone.0275472.g002
https://doi.org/10.1371/journal.pone.0275472


Fig 3. Histogram of raw P-values computed using the null distribution generated by shuffling when genes in the

third data set were considered. (A) All genes (B) Top 2780 most expressive genes.

https://doi.org/10.1371/journal.pone.0275472.g003

Fig 4. QQplot between P-values computed by TD-based unsupervised FE and projection (A) mRNA in the first

data set (B) miRNA in the first data set (C) mRNA in the second data set (D) miRNA in the second data set.

https://doi.org/10.1371/journal.pone.0275472.g004
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shuffled such that they differed between samples. Then SVD or TD was applied to xijk or xijkm
and u2i and u2k from SVD and u5i from TD were generated one hundred times. The null distri-

butions were composed of the generated singular value vectors and P-values were computed.

Results

Fig 7 shows the work flow of this study. In PP, the projection direction is predefined by y in a

supervised manner while if we do not want to set projection directions in advance we can use

Fig 5. QQplot of P-values between TD-based unsupervised FE and PP (the third data set).

https://doi.org/10.1371/journal.pone.0275472.g005

Fig 6. Histogram of raw P-values computed using the null distribution generated by shuffling when the second

data set were considered. (A) All miRNAs (B) All mRNAs.

https://doi.org/10.1371/journal.pone.0275472.g006

PLOS ONE Projection in genomic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0275472 September 29, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0275472.g005
https://doi.org/10.1371/journal.pone.0275472.g006
https://doi.org/10.1371/journal.pone.0275472


those determined by PCA or TD, which we call unsupervised FE. There are some advantages

of PCA and TD, which are not shared with PP. For example, projection directions not related

to the label y may have additional information. In that case, PCA and TD can capture what PP

cannot. PCA and TD can be applicable even if pre-defined y is not provided. Thus, PCA and

TD have more potential to be applied to wide range of data sets that PP.

PCA-based unsupervised FE

Before starting to rationalize PCA- and TD-based unsupervised FE, we briefly summarize how

they work. The purpose of PCA- and TD-based unsupervised FE is to select biologically sound

features (typically genes) based on the given omics data such as gene expression profiles, in an

unsupervised manner. In this subsection, we introduce PCA-based unsupervised FE; TD-

based unsupervised FE is an advanced version of PCA-based unsupervised FE and will be

introduced in the next subsection.

Suppose that we have gene expression data in a matrix form, X 2 RN�M for N genes mea-

sured across M samples. First, we need to standardize X as ∑ixij = 0 and
P

ix
2
ij ¼ N as we will

attribute principal component (PC) scores to genes whereas PC loading will be attributed to

samples. The ℓth PC score attributed to the ith gene, uℓi, can be obtained as the ith component

of the ℓth eigenvector, u‘ 2 R
N

, of a gram matrix XXT 2 RN�N
, where XT is a transpose matrix

of X, as

XXTu‘ ¼ l‘u‘ ð10Þ

Fig 7. Discussion of work flow used in this study. Tensor decomposition (HOSVD) was applied to tenors and using obtained singular value vectors

assumed to obey Gaussian distribution, P-values are attributed to genes. The genes associated with adjusted P-values less than 0.01 are selected. P-values are

also computed by shuffling and the genes associated with adjusted P-values less than 0.1 are well coincident with the genes selected by HOSVD. The

correspondence between singular value vectors and K-means applied to unfolded matrices is also discussed.

https://doi.org/10.1371/journal.pone.0275472.g007
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where λℓ is the ℓth eigenvalue. Further, the ℓth PC score attributed to the jth sample, vℓj, can be

obtained as the jth component of the vector v‘ 2 R
M

defined as

v‘ ¼ XTu‘: ð11Þ

Notably, vℓ is also an eigenvector of the covariance matrix, XTX 2 RM�M because

XTXv‘ ¼ XTXXTu‘ ¼ Xtl‘u‘ ¼ l‘v‘: ð12Þ

PCA-based unsupervised FE works as follows. First, we need to identify the vℓ of interest.

The vℓ of interest depends on the problem. It might be the one coincident with the samples

cluster, or the one with monotonic dependence on some external parameter such as time.

After identifying the vℓ of interest, we try to attribute P-values to genes assuming that the com-

ponents of the corresponding uℓ follow a normal distribution

Pi ¼ Pw2 >
u‘i
s‘

� �2
" #

ð13Þ

where Pχ2[> x] is the cumulative χ2 distribution that the argument is larger than x and σℓ is the

standard deviation. Computed P-values are adjusted based on the BH criterion [3] and features

associated with adjusted P-values less than a specified threshold value can be selected. The rea-

son for the proper working of such a simple procedure is explained later.

Finally, we would like to emphasize the equivalence between singular value decomposition

(SVD) and PCA. Suppose we have the SVD of X as

xij ¼
XminðN;MÞ

‘¼1

l‘u‘iv‘j: ð14Þ

It is straight forward to show

XXTu‘ ¼ l‘u‘ ð15Þ

XTXv‘ ¼ l‘v‘ ð16Þ

where uℓ = (uℓ1, uℓ2, � � �, uℓN)T and vℓ = (vℓ1, vℓ2, � � �, vℓM)T. Thus, SVD and PCA are mathemat-

ically equivalent problems.

TD-based unsupervised FE

TD-based unsupervised FE works quite similar to PCA-based unsupervised FE. Instead of

PCA, we apply TD to xijk 2 R
N�M�K

, that is, for example, the expression of the ith gene mea-

sured in the kth tissue of the mth person (even though we consider a three-mode tensor here,

extension to the higher mode tensor is straightforward). To obtain TD, we specify the higher-

order singular decomposition [3] (HOSVD) as

xijk ¼
X

‘1

X

‘2

X

‘3

Gð‘1‘2‘3Þu‘1 ju‘2ku‘3i ð17Þ

where Gð‘1‘2‘3Þ 2 R
M�K�N

is a core tensor, and u‘1 j 2 R
M�M

, u‘2k 2 R
K�K

, u‘3 i 2 R
N�N

are sin-

gular value matrices. After identifying the u‘1j and u‘2k of interest, for instance, the distinction

between healthy controls and patients as well as tissue specific expression, we seek ℓ3 associated

with G(ℓ1ℓ2ℓ3) having the largest absolute value given as ℓ1, ℓ2. Then using the identified ℓ3, we
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attribute P-values to the ith feature as in the case of PCA-based unsupervised FE,

Pi ¼ Pw2 >
u‘3 i
s‘3

 !2" #

ð18Þ

where s‘3 is the standard deviation. Computed P-values are adjusted based on the BH criterion

and features associated with adjusted P-values less than a specified threshold value can be

selected. The reason for the proper working of such a simple procedure is explained later.

Rationalization of PCA- and TD-based unsupervised FE

To explain why PCA- and TD-based unsupervised FE work rather well, we consider two recent

works [12, 13], in which the superiority of PCA- and/or TD-based unsupervised FE over con-

ventional statistical methods was shown; in these studies, conventional statistical test-based

methods failed to select a reasonable number of genes whereas TD-based unsupervised FE suc-

cessfully selected a biologically reasonable restricted number of genes.

In the first study [12], two independent sets of data including the mRNA and miRNA

expression of kidney cancer and normal kidney were analyzed in an integrated manner using

PCA as well as TD-based unsupervised FE.

The first data set. The first data set comprised M = 324 samples including 253 kidney

tumors and 71 normal kidney tissues. The expression of N mRNAs and K miRNAs was for-

matted as matrices as xij 2 R
N�M

and xkj 2 R
K�M

, respectively. The three mode-tensor xijk 2
RN�M�K was generated as

xijk ¼ xijxkj: ð19Þ

As the data were too large to be loaded into the memory available in a standard stand-alone

server, it was impossible to obtain TD

xijk ¼
X

‘1

X

‘2

X

‘3

Gð‘1‘2‘3Þu‘1 iu‘2 ju‘3k: ð20Þ

Instead, we generated

xik ¼
X

j

xijk ð21Þ

and SVD was applied to xik as

xik ¼
XminðN;KÞ

‘¼‘1¼‘3

l‘u‘1 iu‘3k ð22Þ

to obtain u‘1 i and u‘3k approximately. Missing singular value vectors attributed to mRNA and

miRNA samples were approximately recovered using the equations

umRNA
‘1 j

¼
XN

i¼1

xiju‘1 i ð23Þ

umiRNA
‘3 j

¼
XK

k¼1

xkju‘3k ð24Þ

respectively. Although we do not intend to insist that these approximations are precise enough,

we decided to employ them as since they turned out to work well empirically. After
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investigating the obtained umRNA
‘1 j

and umiRNA
‘3j

, we realized that ℓ1 = ℓ3 = 2 are coincident with the

distinction between tumors and normal tissues; therefore, we attributed P-values to mRNA

and miRNA using u2i and u2k, respectively with the equations

Pi ¼ Pw2 >
u2i

s2

� �2
" #

ð25Þ

Pk ¼ Pw2 >
u2k

s0
2

� �2
" #

: ð26Þ

These P-values were corrected by the BH criterion and we selected 72 mRNAs and 11 miRNAs

associated with adjusted P-values less than 0.01, respectively.

The second data set. The second data set comprised M = 34 samples including 17 kidney

tumors and 17 normal kidney tissues. The same procedures applied to the first data set were

also applied to the second data set and we selected 209 mRNAs and 3 miRNAs associated with

adjusted P-values less than 0.01, respectively. Although various biological evaluations were

performed for mRNAs and miRNAs selected using the first data set, the most remarkable

achievement was that all three miRNAs selected using the second data set were included in the

11 miRNAs selected using the first data set, and there were as many as 11 common mRNAs

selected between the first and second data sets. If we consider that there are as many as several

hundred miRNAs and a few tens of thousand mRNAs available, these overlaps are a great

achievement as these two data sets are completely independent of each other.

Comparisons with PP. To understand why such simple procedures can work well in the

framework of PP, we replaced the singular value vectors attributed to samples with projections.

For this, we applied PP as mentioned above.

yj ¼

�
M
MN

; j � NN

M
MT

; j > NN

8
>>><

>>>:

ð27Þ

where MN, MT are the numbers of normal tissues and cancer samples, respectively, and MN +

MT = M. Then we applied PP as

bi ¼
XM

j¼1

xijyj ð28Þ

bk ¼
XM

j¼1

xkjyj: ð29Þ

Since bis and bks are expected to play the roles of u2i and u2k in Eqs (25) and (26), respectively,

we used the absolute values of bi and bk to select mRNAs and miRNAs that are presumably

coincident with the distinction between tumors and normal tissues. P-values are attributed to
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mRNA and miRNA as

Pi ¼ Pw2 >
bi
sb

� �2
" #

ð30Þ

Pk ¼ Pw2 >
bk
sb

� �2
" #

: ð31Þ

These P-values are corrected by the BH criterion and we selected 78 mRNAs and 13 miRNAs

for the first data set and 194 mRNAs and 3 miRNAs for the second data set, associated with

adjusted P-values less than 0.01, respectively.

We try to estimate the coincidence of genes between TD and PP; Tables 1–4 list the com-

parisons of genes between TD-based unsupervised FE and PP, Eqs (30) or (31) and demon-

strate a high coincidence with each other. Fig 4 show the comparisons of Pi and Pk between

TD-based unsupervised FE and PP, Eqs (30) or (31). It is obvious that smaller P-values used

for gene selection as well as the overall distributions of P-values are coincident between TD-

based unsupervised FE and PP, Eqs (30) or (31).

Equivalence between K-means and PCA. To understand these excellent and unexpected

coincidences between TD-based unsupervised FE and PP, we first considered the relationship

between PCA and PP and later related it with TD. PCA was known to be equivalent to K-

means [3]; the space spanned by centroids of optimal sample clusters can be reproduced by the

PC score attributed to the features. Suppose that we have xij 2 R
N�M

which is the value of the

ith feature of the jth sample. M samples are supposed to be clustered into S clusters. The cen-

troid of sth cluster, ms 2 R
N

is defined as

ms ¼
1

ns

X

j2Cs

xj ð32Þ

Table 1. Confusion matrix of selected mRNAs between TD-based unsupervised FE and PP in the first data set. P-value computed by Fisher’s exact test is 1.90 × 10−149.

PP

adjusted Pi> 0.01 adjusted Pi< 0.01

TD based unsupervised FE adjusted Pi > 0.01 19447 17

adjusted Pi < 0.01 11 61

https://doi.org/10.1371/journal.pone.0275472.t001

Table 2. Confusion matrix of selected miRNAs between TD-based unsupervised FE and PP in the first data set. P-value computed by Fisher’s exact test is 2.76 × 10−23.

PP

adjusted Pk> 0.01 adjusted Pk< 0.01

TD based unsupervised FE adjusted Pk> 0.01 812 2

adjusted Pk< 0.01 0 11

https://doi.org/10.1371/journal.pone.0275472.t002

Table 3. Confusion matrix of selected mRNAs between TD-based unsupervised FE and PP in the second data set. P-value computed by Fisher’s exact test is 0.0 within

numerical accuracy (i.e., smaller than the possible smallest number given numerical accuracy).

PP

adjusted Pi> 0.01 adjusted Pi< 0.01

TD based unsupervised FE adjusted Pi > 0.01 33781 8

adjusted Pi < 0.01 23 186

https://doi.org/10.1371/journal.pone.0275472.t003
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where xj ¼ ðx1j; x2j; � � � ; xNjÞ
T
2 RN , Cs is a set of js that belong to the sth cluster, ns is the size

of the sth cluster. Here we define the projection of any vector x 2 RN
onto the centroid sub-

space as

Sbx ¼
XS

s¼1

nsðm
T
s � xÞ ð33Þ

where

Sb ¼
XS

s¼1

nsms �mT
2
2 RN�N

ð34Þ

where� is the Kronecker product. Sb is also known to be represented as

Sb ¼
XS

s¼1

Xhs � hT
s X

T ¼ X
XS

s¼1

hs � hT
s

 !

XT ð35Þ

where hs 2 R
M is

hjs ¼

1
ffiffiffiffins
p j 2 Cs

0 j=2Cs

;

8
><

>:
ð36Þ

which take non-zero values only when the jth sample belongs to the sth cluster. K-means is an

algorithm to find clusters that minimize

JS ¼
XS

s¼1

X

j2Cs

ðxj � msÞ
2
: ð37Þ

Minimization of Jk is known to be equivalent to the maximization of TrSb, which means the

trace of matrix Sb. It is known that

min
fhsg

Sb ¼
XS� 1

‘¼1

l‘u‘ � uT
‘

ð38Þ

where u‘ 2 R
N is the vector whose components are ℓth PC scores attributed to the features and

eigenvector of the gram matrix as

XXTu‘ ¼ l‘u‘: ð39Þ

If we compare Eq (35) with Eq (38), we can notice that
PS

s¼1
Xhs � hT

s X
T corresponds to

PS� 1

‘¼1
l‘u‘ � uT

‘
, and PCA can give us an optimal centroid subspace, Sb, even without realizing

the clusters by K-means, i.e., in a fully unsupervised manner.

Table 4. Confusion matrix of selected miRNAs between TD based unsupervised FE and PP in the second data set. P-value computed by Fisher’s exact test is

1.87 × 10−7.

PP

adjusted Pk> 0.01 adjusted Pk< 0.01

TD based unsupervised FE adjusted Pk> 0.01 316 0

adjusted Pk< 0.01 0 3

https://doi.org/10.1371/journal.pone.0275472.t004
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At first, when the clusters are the solution of K-means, the centroid subspace can be repre-

sented by the PC score which can also be expressed by X hs. hs is clearly coincident with yj
defined in Eq (27). This means that PP employing uℓ as b should result in projection onto the

centroid subspace when yj is coincident with the clusters. Here we define yj, Eq (27), such that

it can represent distinction between tumors and normal tissues, which should be detected by

K-means. This explains why TD-based unsupervised FE works well and why PP can be

replaced with TD-based unsupervised FE. To our knowledge, this is the first rationalization on

why TD- and PCA-based unsupervised FE work well.

One might wonder whether the above explanation is applicable to PCA while TD was

applied to the first and second data sets. This gap can be explained as follows. Tensor xijk, was

generated as the product of xij and xkj. Suppose these two are decomposed as

xij ¼
X

‘

l‘u‘iv‘j ð40Þ

xkj ¼
X

‘

l
0

‘
u‘kv

0

‘j: ð41Þ

If v‘j ¼ v0
‘j then

xik ¼
X

j

xijxjk ¼
X

j

X

‘

l‘u‘iv‘j
X

‘0

l
0

‘0
u‘0kv‘0 j ð42Þ

¼
X

‘

X

‘0

l
0

‘0
l‘u‘iu‘0k

X

j

v‘jv‘0j ð43Þ

¼
X

‘

X

‘0

l
0

‘0
l‘u‘id‘‘0 ¼

X

‘

l‘l
0

‘
v‘iv‘k: ð44Þ

This means that if v‘j ¼ v0
‘j, the SVD of xik gives uℓi and uℓk that are obtained when SVD is

applied to xij and xkj. Here umRNA
2j is highly correlated with umiRNA

2j [12]. This is coincident with

the requirement v‘j ¼ v0
‘j. As SVD is equivalent to PCA, this might explain why TD-based

unsupervised FE works well even though the above rationalization is applied only to PCA.

The third data set. Next, we would like to extend the above discussion to TD. Therefore,

we consider a third data set analyzed in another study [13] where we performed in silico drug

discovery for SARS-CoV-2 by applying TD-based unsupervised FE to the gene expression pro-

files of human cell lines infected with SARS-CoV-2. The third data set comprises five cell lines

infected with either mock (control) or SARS-Cov-2, including three biological replicates. It is

formatted as tensor, xijkm 2 R
N�5�2�3, that represents the expression of the ith gene of the jth

cell line from the infected (k = 1) or control (k = 2) group in the mth biological replicate.

HOSVD was applied to xijkm and we got

xijkm ¼
X5

‘1¼1

X2

‘2¼1

X3

‘3¼1

XN

‘4¼1

Gð‘1‘2‘3‘4Þu‘1 ju‘2ku‘3mu‘4 i: ð45Þ

In this study, we selected ℓ1 = 1, ℓ2 = 2, ℓ3 = 1 based on biological discussions. We then realized

that G(5, 1, 2, 1) has the largest absolute value given ℓ1 = 1, ℓ2 = 2, ℓ3 = 1. Thus, u5i was used to

attribute P-values to gene i using

Pi ¼ Pw2 >
u5i

s5

� �2
" #

ð46Þ
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and the obtained P-values were corrected using the by BH criterion; further, 163 genes associ-

ated with adjusted P-values less than 0.01 were selected. We now relate TD to the above discus-

sion about PCA. Because of the HOSVD algorithm, u‘4 i can also be obtained by applying SVD

to the unfolded matrix, X 2 RN�30. Here 30 columns correspond to one of 30 combinations of

j, k, m. Here we select ℓ1 = 1, ℓ2 = 2, ℓ3 = 1 so that the gene expression is independent of the cell

lines and biological replicates and has opposite signs between the control and infected cells.

Thus, two clusters are expected, each of which corresponds to either the control or infected

cell lines. The reason why ℓ4 = 5 is selected is simply because u5i is composed of the centroid

subspace coincident with two clusters. Thus, in this sense, the above discussion about PCA can

be directly applied to this result.

To confirm this, yj was taken to be

yjkm ¼ ajbkgm ð47Þ

aj ¼ 1 ð48Þ

bk ¼ ð� 1Þ
k ð49Þ

gm ¼ 1 ð50Þ

such that it represented the distinction between k = 1 and k = 2 (i.e. that between infected and

control cell lines), where yjkm 2 N
5�2�3; aj 2 N

5; bk 2 N
2; and gm 2 N

3. Then PP was per-

formed as

bi ¼
X

j;k;m

xijkmyjkm: ð51Þ

P-values were attributed to genes as

Pi ¼ Pw2 >
bi
sb

� �2
" #

ð52Þ

and 155 genes associated with corrected P-values less than 0.01 were selected, where bi is

expected to play a role of u5i in Eq (46). Table 5 lists high coincidence of selected genes

between TD-based unsupervised FE and PP. Fig 5 shows the overall coincidence of distribu-

tions of P-values between TD-based unsupervised FE and PP. Thus, why TD based unsuper-

vised FE can work well is explained by the ability of singular value vectors to generate a

centroid subspace of clusters coincident with control and infected cell lines.

One might wonder why TD is needed if u‘4 i can be computed by applying SVD to the

unfolded matrix. To understand this, we compared v5(ijk) obtained by applying SVD to an

unfolded matrix, and corresponding to u5i as well as u1ju2ku1m with yikm. While u1ju2ku1m is

well coincident with yjkm, v5(jkm) is not (Fig 8). Thus, we need to apply TD to xijkm to obtain sin-

gular value vectors attributed to samples, which are coincident with two clusters but cannot be

obtained when SVD is applied to an unfolded matrix.

Table 5. Confusion matrix of selected genes between TD-based unsupervised FE and PP in the third data set. P-value computed by Fisher’s exact test is 1.40 × 10−241.

PP

adjusted Pi> 0.01 adjusted Pi< 0.01

TD based unsupervised FE adjusted Pi > 0.01 21582 52

adjusted Pi < 0.01 60 103

https://doi.org/10.1371/journal.pone.0275472.t005
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Rationalization of threshold P-values. As we have successfully shown that TD as well as

PCA are equivalent to PP that aims to maximize projection onto the subspace centroid of clus-

ters coincident with the desired distinction (cancer vs. normal tissue or control vs. infected cell

lines), we would next like to rationalize the P-values computed by the χ2 distribution and

threshold values of P = 0.01, which have long been employed to select DEGs with PCA- and

TD-based unsupervised FE. Because distribution of projection in the infinite sample number

limits is proven to be always Gaussian [6], this null hypothesis might seem reasonable. None-

theless, the individual distribution of gene expression is far from Gaussian and is rather close

to negative signed binomial distribution and when the number of samples is not large enough,

the distribution of projection does not converge with a Gaussian distribution at all. Thus, a

more straightforward rationalization is needed. Therefore, we generated a null distribution by

shuffling i in each sample and recomputed the singular value vectors, u‘1 i (for mRNA in the

first and the second data sets), u‘3k (for miRNA in the first and the second data sets), and

u‘5 i(for genes in the third data set). Then P-values were recomputed using the generated null

distribution and were corrected using the BH criterion to obtain genes associated with signifi-

cant adjusted P-values. In the following, we apply the shuffling to three data sets, the first, the

second, and the third data set, and select genes using P-values obtained by shuffling. Coinci-

dence of selected genes and distribution of P-values between PCA or TD and shuffling is esti-

mated. These evaluations enable us to discuss the suitability of threshold P-values.

Fig 1(A) shows the histogram of raw P-values computed using the null distribution gener-

ated by shuffling one hundred times when the miRNAs in the first data set were considered.

As it is obvious that there are too many P-values near 1, we excluded some miRNAs with low

values to obtain a P-value distribution more coincident with the null distribution. Fig 1(B)

shows the histogram of raw P-values computed to be restricted to the top 500 more expressive

miRNAs; this seems more coincident with the null distribution. We then found that twelve

miRNAs are associated with adjusted P-values less than 0.1. Table 6 lists the comparison of

selected miRNAs between TD-based unsupervised FE and the null distribution generated by

shuffling. Although the threshold P-values differ between the two, the selected miRNAs are

quite coincident. A threshold P-value 0.01 was empirically employed for PCA- and TD-based

unsupervised FE as it often gave us biologically reasonable results. P = 0.01 in Gaussian distri-

bution is assumed as the null hypothesis corresponding to P = 0.1 when the null distribution is

generated by shuffling. Although this discrepancy must be fulfilled in the future, we conclude

that their performances are quite similar.

Fig 2(A) shows the histogram of raw P-values computed using the null distribution gener-

ated by shuffling one hundred times when mRNAs in the first data set were considered. As it is

Fig 8. Comparisons between yjkm and either v5(jkm) or u1ju2ku1m. Red straight lines indicate linear regressions.

https://doi.org/10.1371/journal.pone.0275472.g008
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obvious that there are too many P-values near 1, we excluded some mRNAs with low values to

obtain a P-value distribution more coincident with the null distribution. Fig 2(B) shows the

histogram of raw P-values computed to be restricted to the top 3000 more expressive mRNAs;

this seems more coincident with the null distribution. We then found that 69 mRNAs are asso-

ciated with adjusted P-values less than 0.1. Table 7 lists the comparison of selected mRNAs

between TD-based unsupervised FE and the null distribution generated by shuffling. Although

threshold P-values differ between the two, the selected mRNAs are quite coincident. A thresh-

old P-value 0.01 was empirically employed for PCA- and TD-based unsupervised FE as it often

gave us biologically reasonable results. P = 0.01 in a Gaussian distribution is assumed as the

null hypothesis corresponding to P = 0.1 when the null distribution is generated by shuffling.

Although this discrepancy must be fulfilled in the future, we conclude that their performances

are quite similar.

Fig 6(A) shows the histogram of raw P-values computed using the null distribution gener-

ated by shuffling one hundred times when miRNAs in the second data set were considered. As

it is unlikely to get significant P-values, we did not select miRNAs associated with significant

P-values. Fig 6(B) shows the histogram of raw P-values computed for mRNAs in the second

data set; there are no peaks around P = 1. We then found that 262 mRNAs are associated with

adjusted P-values less than 0.1. Table 8 lists the comparison of selected mRNAs between TD-

based unsupervised FE and the null distribution generated by shuffling. Although threshold P-

values differ between the two, the selected mRNAs are well coincident. A threshold P-value

0.01 was empirically employed for PCA- and TD-based unsupervised FE as it often gave us

biologically reasonable results. P = 0.01 in a Gaussian distribution is assumed as the null

hypothesis corresponding to P = 0.1 when the null distribution is generated by shuffling.

Although this discrepancy must be fulfilled in the future, we conclude that their performances

are quite similar.

Table 6. Confusion matrix of selected miRNAs between TD-based unsupervised FE and shuffling in the first data set. P-value computed by Fisher’s exact test is

1.28 × 10−21.

shuffling

adjusted Pk> 0.1 adjusted Pk< 0.1

TD based unsupervised FE adjusted Pk> 0.01 488 1

adjusted Pk< 0.01 0 11

https://doi.org/10.1371/journal.pone.0275472.t006

Table 7. Confusion matrix of selected mRNAs between TD-based unsupervised FE and shuffling in the first data set. P-value computed by Fisher’s exact test is

2.69 × 10−137.

shuffling

adjusted Pi > 0.1 adjusted Pi < 0.1

TD based unsupervised FE adjusted Pi> 0.01 2928 0

adjusted Pi< 0.01 3 69

https://doi.org/10.1371/journal.pone.0275472.t007

Table 8. Confusion matrix of selected mRNAs between TD-based unsupervised FE and shuffling in the second data set. P-value computed by Fisher’s exact test is 0.0

within numerical accuracy (i.e., smaller than the possible smallest number given numerical accuracy).

shuffling

adjusted Pi > 0.1 adjusted Pi < 0.1

TD based unsupervised FE adjusted Pi> 0.01 33736 53

adjusted Pi< 0.01 0 209

https://doi.org/10.1371/journal.pone.0275472.t008
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Fig 3(A) shows the histogram of raw P-values computed using the null distribution gener-

ated by shuffling one hundred times when considering the genes in the third data set. As there

were too many P-values less than 0.2, we excluded some mRNAs with low values to obtain a P-

value distribution more coincident with the null distribution. Fig 3(B) shows the histogram of

raw P-values computed to be restricted to the top 2780 more expressive mRNAs; this seems

more coincident with the null distribution. We then found that 48 mRNAs are associated with

adjusted P-values less than 0.1. Table 9 lists the comparison of selected mRNAs between TD-

based unsupervised FE and the null distribution generated by shuffling. Although threshold P-

values differ between two, selected mRNAs are well coincident. A threshold P-value 0.01 was

empirically employed for PCA- and TD-based unsupervised FE as it often gave us biologically

reasonable results. P = 0.01 in a Gaussian distribution is assumed as the null hypothesis corre-

sponding to P = 0.1 when the null distribution is generated by shuffling. Although this discrep-

ancy must be fulfilled in the future, we conclude that their performances are quite similar.

Discussion

In the previous section, we explained why PCA- and TD-based unsupervised FE work well

(because singular value vectors correspond to projection onto the centroid subspace obtained

by K-means) and how the criterion to select genes associated with adjusted P-values less than

0.01, which was computed assuming the null hypothesis that singular value vectors obey

Gaussian distribution, is empirically coincident with another criterion to select the genes asso-

ciated with adjusted P-values less than 0.1, which are computed assuming the null distribution

generated by shuffling.

There are many points to be discussed. In the above example, we only dealt with the case

wherein only two clusters could be distinguished in a one-dimensional space (i.e., only one

singular value vector). Considering cases with more clusters might be challenging, projections

onto subspace centroids do not have a one-to-one correspondence with singular value vectors

as the coincidence between the projection to the subspace centroid and singular value vectors

stands only between the spaces spanned by them, and not between themselves. Despite this,

TD- and PCA-based unsupervised FE applied to more than two classes is known to work

rather as well as in the case with only two clusters [16].

On the contrary, although we could only discuss cases with a finite number of clusters,

PCA- and TD-based unsupervised FE are also known to work in detecting parameter depen-

dence, e.g., time development [17, 18]. Extending the discussion here to regression analysis

without any clusters will be the next step.

One might also wonder whether we need TD if singular value vectors attributed to genes

are common between TD and PCA. At first, in the integrated analysis of mRNA and miRNA,

TD-based unsupervised FE could outperform PCA-based unsupervised FE [12]. Similarly,

TD-based unsupervised FE outperformed PCA-based unsupervised FE in the integrated analy-

sis of gene expression and DNA methylation [19]. Thus, TD-based unsupervised FE is

required when integrated analysis is targeted. Even when no integrated analysis was targeted,

Table 9. Confusion matrix of selected genes between TD-based unsupervised FE and shuffling in the third data set. P-value computed by Fisher’s exact test is

5.00 × 10−63.

shuffling

adjusted Pi > 0.1 adjusted Pi < 0.1

TD based unsupervised FE adjusted Pi> 0.01 2617 0

adjusted Pi< 0.01 115 48

https://doi.org/10.1371/journal.pone.0275472.t009
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TD based unsupervised FE can give singular value vectors that are more coincident with bio-

logical clusters (Fig 8). Thus, despite the apparent equality of singular value vectors attributed

to genes between TD and PCA, TD-based unsupervised FE is a more useful strategy than

PCA-based unsupervised FE.

Although we did not clearly denote this, conventional gene selection strategies based on sta-

tistical tests are known to fail when applied to the first, second, and third data sets [12, 13];

they always selected too many or too few genes, mRNAs, and miRNA, which is in contrast to

TD-based unsupervised FE that could always select a restricted number of genes, from tens to

hundreds.

One might also wonder why we did not employ the null distribution generated by shuffling

instead of the un-justified Gaussian distribution, with PCA- and TD-based unsupervised FE.

As can be seen above, employment of null distribution generated by shuffling is not straight-

forward; in some cases, e.g, the first and the third data sets mentioned above, we needed to

exclude low expressed genes manually whereas this was not required for the second data set.

No miRNAs that were significantly expressed distinctly between controls and cancers in the

second data sets were detected with the null distribution generated by shuffling. In addition,

the number of low expressed genes to be removed cannot be decided uniquely. On the con-

trary, the criterion that genes associated with adjusted P-values less than 0.01 assuming the

null hypothesis that singular value vectors obey a Gaussian distribution is more robust. This

often can give a restricted number of genes without excluding low expressed genes. Although

why this works so well must be explored in the future, it is an empirically more useful strategy

than the null distributions generated by shuffling.

One may also wonder why we did not employ the centroid subspace, Sb, instead of singular

value vectors if these two are equivalent for optimal clusters and the meaning of centroid sub-

space is easier to understand compared to singular value vectors. At first, we needed to apply

K-means which often fail in unbalanced data sets composed of clusters with a very distinct

number of samples. Next, K-means always identifies the primary cluster. Nevertheless, in the

case of SARS-CoV-2 (the third data set), distinction between infected cell lines and control cell

lines was detected using the fifth singular value vectors whose contribution will probably be

neglected by K-means because of its too small contribution. In addition, singular value vectors

can be computed in a fully unsupervised manner that does not require any labeling. Consider-

ing these advantages, it is reasonable to use singular value vectors instead of a centroid sub-

space despite its apparent usefulness. Further, as the yj used to compute projection b is decided

manually, even if some biological features that yj assumes, such as clusters, do not exist, b can

be computed. This might result in wrong conclusions. However, if there are no clusters at all,

because no corresponding singular value vectors attributed to samples and coincident with yj
are obtained, we can have an opportunity to realize any misunderstanding. Thus, usage of sin-

gular value vectors but not projection b might be advantageous.

One might also wonder why other more frequently used TD such as CP decomposition [3]

have not been employed instead of HOSVD. This might be understood as follows. In the

above description, we could relate the singular value vectors obtained by HOSVD to the cen-

troid subspace, because singular value vectors attributed to genes are common between

HOSVD and PCA. This equivalence will be broken if HOSVD is replaced with other TDs.

When we invented TD-based unsupervised FE, though we also tested other TDs [3], HOSVD

always outperformed other TDs when used for feature selections. The equivalence of HOSVD

and PCA might explain why HOSVD could outperform other popular TDs as a feature selec-

tion tool.

Another possible concern is that only one hundred times shuffling was performed for the

computation in Figs 1 to 3 whereas we considered P-values equal to 0.01; nevertheless, it is not
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problematic at all because of the following two reasons. First of all, the P-values we considered

were not raw P-values but corrected P-values. Thus total number of probabilities computed

are much larger than one hundred. Since the numbers of computed P-values are as many as

those of mRNAs and miRNAs, they are as many as 103 or 104. Thus, the number of shuffling,

one hundred, is not directly related to P-values of 0.01 at all. Second, individual P-values are

not related to the number of shuffling at all; what we have performed was to generate P-values

whose number is equal to that of miRNAs or mRNAs, i.e., 103 or 104. Thus, individual P-values

can take much smaller values than 0.01, say 10−3 and 10−4 for miRNAs and mRNAs, respec-

tively. Increasing or decreasing the number of shuffling does not affect the absolute values of

P-values at all. The number of shuffling is only related to the reproducibility; if we can com-

pute P-values based upon only one shuffling, it might heavily fluctuate. On the other hand, if

we take average of P-values over one hundred shuffling, their outcome is expected to be more

stable. The purpose of taking average over one hundred shuffling is simply because of stability

of outcome. Apparent relationship between P = 0.01 and one hundred times shuffling does not

make any sense. In conclusion, even if we take P = 0.01 as a threshold for one hundred times

shuffling, it is not a problem at all.

Based upon the studies presented in the above, we emphasize that the usages of PCA or TD

based unsupervised FE are recommended, since generally we do not know to which direction

we project the data sets. PCA and TD turned out to have ability to give the directions of projec-

tions in an unsupervised manner. When projections directions are trivial, e.g., distinction

between two classes, PCA and TD can correctly give us the directions. Even if the data sets are

more complicated, we can employ higher mode tensors to tackle more complicated data sets.

PCA and TD based unsupervised methods will be promising methods.
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