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Abstract: Immunotherapy by using immune checkpoint inhibitors (ICI) has dramatically improved
the treatment options in various cancers, increasing survival rates for treated patients. Nevertheless,
there are heterogeneous response rates to ICI among different cancer types, and even in the context
of patients affected by a specific cancer. Thus, it becomes crucial to identify factors that predict the
response to immunotherapeutic approaches. A comprehensive investigation of the mutational and
immunological aspects of the tumor can be useful to obtain a robust prediction. By performing a
pan-cancer analysis on gene expression data from the Cancer Genome Atlas (TCGA, 8055 cases and
29 cancer types), we set up and validated a machine learning approach to predict the potential for
positive response to ICI. Support vector machines (SVM) and extreme gradient boosting (XGboost)
models were developed with a 10×5-fold cross-validation schema on 80% of TCGA cases to predict
ICI responsiveness defined by a score combining tumor mutational burden and TGF-β signaling.
On the remaining 20% validation subset, our SVM model scored 0.88 accuracy and 0.27 Matthews
Correlation Coefficient. The proposed machine learning approach could be useful to predict the
putative response to ICI treatment by expression data of primary tumors.

Keywords: immunology-pancancer; immune checkpoint inhibitor; machine learning

1. Introduction

In recent years, immunotherapy has dramatically improved the treatment options in
various cancers increasing the survival rates for treated patients. Among the most promising
immunotherapeutic approaches there is the pharmacological manipulation of the physiologic immune
checkpoints [1–4]. Immune-checkpoint blockade is the basis for the clinical antitumor activity of the
most promising currently approved antibodies targeting the checkpoint molecules CTLA4 (Cytotoxic
T-Lymphocyte Antigen 4) , PD1 (Programmed Cell Death 1) and PD-L1 (Programmed cell death
ligand 1).Nevertheless, there are heterogeneous response rates to immune checkpoint inhibitors
(ICI) [4–6] among the different cancer types, and also in the context of patients affected by a specific
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cancer. Moreover, only a minority of patients with advanced/metastatic cancer respond to ICI, thus
exposing the remaining patients to potentially ineffective, toxic and costly treatments. Thus, it becomes
crucial to identify predictive factors determining the response to the immunotherapeutic approaches.
Intra-tumoral PD-L1 expression, evaluated by immunohistochemistry, is among the first proposed
predictive biomarkers but it is not frequently successful [3,7,8]. This lack of success could be explained
by the fact that a complex scenario characterized by genomic features, immune systemic state, tumor
microenvironment interactions and tumor immune cell interactions is heavily involved in the efficacy
of ICI [9–13]. Thus, it has become clear that a more robust prediction needs to involve a comprehensive
investigation of the mutational and immunological aspects of the tumor diseases. Evaluation of
tumor mutational burden (TMB) by whole-exome sequencing has also been proposed but it has not
been demonstrated to sufficiently predict long term clinical benefits [3,4]. On the other hand, three
distinct immunological phenotypes, i.e., immune inflamed, immune excluded or immune desert were
proposed to categorize the majority of solid tumors in an attempt to explain their different capability to
respond to ICI [8,14–16]. These three different immunological subtypes were associated with different
transcriptomic profiles based on tumor/tumor microenvironment/immune system cell interactions.
In particular: (i) immunogenomics analyses of over 10,000 tumors identified six immune subtypes,
encompassing multiple cancer types, that were hypothesized to define different patterns of immune
system response with predictive/prognostic relevance [17]; (ii) an immune infiltration score and a T
cell infiltration score were proposed by analyzing gene expression signatures of different cancer types
to define immunogenicity and potential capability to respond to ICI [18]; (iii) a tumor inflammation
signature was proposed to measure pre-existing but suppressed adaptive immune response in different
tumors [19]; (iv) a lack of response to ICI was associated with a signature related to transforming
growth factor β (TGF-β) signaling in tumors which showed exclusion of CD8+ effector T cells from
the tumor parenchyma with, on the other hand, these cells mainly located in fibroblast and collagen
reach peritumoral stroma. This TGF-β signature was mainly driven by fibroblasts present in the
tumor microenvironment [20]. Overall considered, this previous evidence suggested that pre-existing
T cell immunity, TMB and TGF-β signaling could affect response to immunotherapy with immune
checkpoint blockade. In the present study, by performing a pan-cancer analysis on gene expression
data from the Cancer Genome Atlas (TCGA, 8055 cases belonging to 29 cancer types), we set up and
validated a machine learning approach to predict the potential for positive response to ICI.

2. Results

The study included 8055 primary tumor cases for 29 cancer types from The Cancer Genome Atlas
(TCGA) cohort. The number of primary tumor cases for each project is reported in Table 1.

The distribution of TMB of the primary cases across the cancer projects are shown in
Figure A1. Previous studies showed that a high TMB is associated with positive response to ICI
treatments [5,8]. On the other hand, active TGF-β signaling is associated with a lack of response to ICI
treatments [17,20,21]. Following this line of reasoning, we chose to classify as potentially responsive
to ICI (hereafter TMB/TGF-β score positive) those cases that simultaneously had a TMB above the
third quartile and the TGF-β score under the median value (TGFB_score_21050467 as described in
Thorsson et al. [17]). The distribution of cases classified as responsive is reported in Table 1. Of note
the tumor type with the highest number of TMB/TGF-β score positive cases was HNSC and the cancer
type with the lowest number was GBM (15.57% to 4.08%). By using this TMB/TGF-β score cut off,
we evaluated the overall survival (OS), disease specific survival (DSS) intervals and progression free
interval (PFI) of all the cases included in the study, simultaneously considering all the TCGA projects
using the last revision of the TCGA clinical data (Figure A2) [22]. Notably, as shown in Figure 1,
TMB/TGF-β score positive cases showed significantly longer OS than TMB/TGF-β score negative
cases (Table 2). The strongest associations were found when DSS were considered (Table 2). Moreover,
TMB/TGF-β score positive cases showed significantly longer PFI (Table 2). When cases belonging to
each project were considered separately different trends were observed (Table A1).
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Table 1. Cases included in the study from The Cancer Genome Atlas (TCGA) cohorts for 29 cancer
types and frequency of TMB/TGF-β score positive cases in the context of each cancer type.

Cohort Cancer Type Full Name Number
of Cases

Percentage of TMB/TGF-β
Score Positive Cases

HNSC head and neck squamous cell carcinoma 488 15.57
LUSC lung squamous cell carcinoma 476 14.71
LIHC liver hepatocellular carcinoma 350 14.29
UCEC uterine corpus endometrial carcinoma 511 14.29

CESC
cervical squamous cell carcinoma and
endocervical adenocarcinoma 282 14.18

BLCA bladder urothelial carcinoma 397 14.11
STAD stomach adenocarcinoma 349 13.75
PRAD prostate adenocarcinoma 401 13.72
KIRP kidney renal papillary cell carcinoma 267 13.48
BRCA breast invasive carcinoma 970 13.30
ESCA esophageal carcinoma 151 13.25
MESO mesothelioma 77 12.99
SKCM skin cutaneous melanoma 103 12.62
UCS uterine carcinosarcoma 56 12.50
UVM uveal melanoma 80 12.50
READ rectum adenocarcinoma 126 11.90
THCA thyroid carcinoma 481 11.85
COAD colon adenocarcinoma 383 11.75
PAAD pancreatic adenocarcinoma 146 11.64
CHOL cholangiocarcinoma 35 11.43
TGCT testicular germ cell tumors 143 11.19
PCPG pheochromocytoma and paraganglioma 177 10.73
LUAD lung adenocarcinoma 450 10.22
SARC sarcoma 201 9.95
KICH kidney chromophobe 64 9.38
LGG brain lower grade glioma 501 7.98
OV ovarian serous cystadenocarcinoma 165 7.88

ACC adrenocortical carcinoma 78 7.69
GBM glioblastoma multiforme 147 4.08

Liu et al. [22] presented a curated and filtered analysis for clinical and survival outcome data
defining the assessment and recommended use of the endpoints. Noteworthy, TMB/TGF-β score
positive cases showed significantly longer OS, DSS and PFI than TMB/TGF-β score negative cases when
using a restricted subgroup from 29 cancer types as recommended by Liu et al. [22] (Figure A3A–C).

To evaluate the immune-related features of gene expression signatures of TMB/TGF-β score
positive cases, we classified the cases included in the study according to the six immune subtypes
defined in Thorsson et al. [17], where a multi-omic analysis of TCGA datasets allowed the definition of
subtypes ( C1 (wound healing), C2 (IFN-γ dominant), C3 (inflammatory), C4 (lymphocyte depleted),
C5 (immunologically quiet), C6 (TGF-β dominant) ) useful to classify cancer cases across different
cancer types according to distinct immune signatures.

To perform this classification we used an implemented version of the tool proposed in [23].
The number of cases found in each subtype by performing this analysis is reported in Table A2.
TMB/TGF-β score positive cases were found enriched in the C2 subtype (IFNγ dominant) characterized
by highly mutated tumors. Moreover, while constructing our classification score, we observed a
very low number of cases of TMB/TGF-β score positive cases in the C6 (TGF-β dominant) subtype
(Table A2) [17]. By considering the entire TCGA cohort, clinical outcomes were in line with those
reported in [17] (Figure 2). Notably, within both the favorable prognosis group Cluster 2 and the
unfavorable prognosis group Cluster 4, TMB/TGF-β score positive cases showed significantly longer
OS intervals than the TMB/TGF-β score negative counterparts (Table 3). Moreover, in Cluster 2,
again TMB/TGF-β score positive cases showed significantly longer OS intervals than the TMB/TGF-β
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score negative counterparts by considering only the subgroup of 20 cancer types according to the
recommendations reported in [22] (Figure A4).

To select the optimal classification model, two machine learning algorithms were used: Support
Vector Machines (SVM) and optimized distributed gradient boosting (XGboost). Following the
approach depicted in Figure A5, the TCGA transcriptomics data was split into training and test sets.
The training set was used for model development, within a 10×5fold Stratified Cross Validation [24],
and the test set was used for assessing the model performance. As evaluation metrics, accuracy (ACC)
and the Matthews correlation coefficient (MCC) [25,26] were used.

The classifiers were trained using the genes extracted in [17] (2387 genes grouped in
160 signatures). The SVM model achieved a mean cross-validation MCC of 0.296 (95% boostrapped
confidence interval: 0.287-0.306), significantly higher than the XGBoost model with a mean
cross-validation MCC of 0.260 (0.250-0.269) (Kruskal-Wallis p = 0.001; Table 4, Figure A6). On the test
set, the SVM model achieved MCC = 0.271 (Table 4).

Table 2. Univariate Cox regression analysis of OS, DSS, PFI in the entire cohort included in the study.

Endpoint Status Number of Samples HR 95% CI for HR p Value

OS TMB/TGF-β score positive n = 8007 0.86 0.75–0.98 0.01
DSS TMB/TGF-β score positive n = 7741 0.79 0.67–0.93 0.0056
PFI TMB/TGF-β score positive n = 8007 0.89 0.79–0.99 0.059

Abbreviations: OS, overall survival; DSS, disease specific survival; PFI, progression free survival; HR, hazard
ratio; CI, confidence interval.
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Figure 1. Kaplan-Meier Overall Survival (OS) curves of TMB/TGF-β score positive cases (blue line)
versus TMB/TGF-β score negative cases (red line) for the 29 TCGA cancer types. Time is expressed in
days; log-rank test p-value is reported.
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Table 3. Univariate Cox regression analysis of OS on the six immune subtype clusters described in
Thorsson et al. [17]

Cluster Status Number of Samples HR 95% CI for HR p Value

Cluster 1 TMB/TGF-β score positive n = 2200 0.82 0.64–1 0.11
Cluster 2 TMB/TGF-β score positive n = 2357 0.76 0.61–0.93 0.0095
Cluster 3 TMB/TGF-β score positive n = 1867 0.84 0.53–1.3 0.48
Cluster 4 TMB/TGF-β score positive n = 1061 0.72 0.52–0.99 0.044
Cluster 5 TMB/TGF-β score positive n = 368 1.7 0.71–3.9 0.24
Cluster 6 TMB/TGF-β score positive n = 154 2.7 1.1–6.8 0.037

Abbreviations: OS, overall survival; HR, hazard ratio; CI, confidence interval.

Table 4. Model metrics in cross-validation (mean with confidence intervals) and on the test set. ACC:
accuracy; MCC: Matthews Correlation Coefficient; CI: 95% studentized bootstrap confidence interval.

Model ACC (CI) ACC Test MCC (CI) MCC Test

SVM 0.879 (0.878–0.881) 0.877 0.296 (0.287–0306) 0.271
XGBoost 0.878 (0.877–0.880) 0.879 0.260 (0.250–0.269) 0.260
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Figure 2. Kaplan-Meier Overall Survival (OS) curves of the six immune subtypes described in
Thorsson et al. [17] using the case cohort included in the present study. Time is expressed in days;
log-rank test p-value is reported.

3. Discussion

The use of ICI has changed the clinical management of tumor-affected patients,
although heterogeneous response rates have been found for treated patients across different cancer
types as well as for patients affected by a specific tumor type. In particular, ICI might also improve
the treatment of urothelial cancer, gastric cancer, colorectal cancer, lung cancer and breast cancer
considering the promising results achieved so far and the relatively low efficacy of currently available
treatments [27–31]. Given this heterogeneous response, there is the clinical need for predictive
biomarkers for the definition of responsiveness to ICI treatments. Currently employed biomarkers,
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such as PD-L1 expression levels and TMB, have shown an incomplete predictive performance [4].
An alternative point of view could be represented by the introduction of complex biomarkers
simultaneously evaluating multiple tumor/tumor microenvironment/immune system features [12,13].

To this aim, starting from genomic, transcriptomic and proteomic data, machine learning
approaches could be useful to obtain accurate prediction models for response to ICI treatments [21].
In particular, different approaches, sub-typing oriented and based mainly on gene expression patterns,
have been recently proposed [18,21,32–34]. In these studies, machine learning supervised algorithms
have been generally trained to match a known phenotype (for example, established by microscopy or
with clinical features) to genetic patterns. In the last years, comprehensive immunogenomic analyses of
different cancer types, based on TCGA data, have been proposed to characterize tumor heterogeneity in
terms of immune-related features, possibly influencing the capability to respond to ICI treatments [17].

Different studies suggested that TMB is associated with survival prognosis in many cancer
types, given the association with the formation of neoantigens capable of stimulating anti-cancer
T lymphocyte clones. Nevertheless, the mechanism underlying this association could lie in the
marked differences in immune cell infiltration densities and immune activities depending on tumor
microenvironment immunosuppressive cell populations, T cell exhaustion and tumor associated
stromal tissue [5,19,33–35]. Another important point for the different behaviors according to TMB
reported in literature is that the method to calculate TMB is not univocal [36,37]. A combination of
2 biomarkers, one dependent from the tumor intrinsic mutational state and one related to the tumor
microenvironment, could therefore identify patients that can potentially benefit from ICI. To this aim,
to perform the pan-cancer analysis we chose to use a surrogate (i.e., TMB and TGF-β score) to define
cases putatively responsive to ICI treatments. The choice to use this surrogate is due to the fact that the
comprehensive TCGA case cohort is not homogeneous in terms of employed anti-cancer treatments,
with only a minority of cases undergoing ICI treatments.

Thus, to derive a label to be used by a machine learning classifier, we defined as potentially
responsive to ICI those cases that simultaneously had a TMB above the third quartile and the TGF-β
score under the median value (TGFB_score_21050467 as described in [17]). The choice to use this
phenotype to classify cases putatively responsive to ICI could be considered in keeping with the fact
that when primary cases of all the 29 TCGA cancer types were simultaneously considered, TMB/TGF-β-
score positive cases showed significantly longer OS, DSS and PFI intervals than TMB/TGF-β score
negative cases, irrespective of the type of cancer, the clinical and molecular features and the treatment
managements of the analyzed cases (Figure 1). We developed a classification model using as predictors
the 2387 genes associated with 160 immuno-related signatures reported in Thorsson et al. [17].

To evaluate classification of TMB/TGF-β score positive cases, we compared SVM and XGBoost
algorithms. The best classification performance was obtained using SVM. These results could be
explained by the fact that SVM is usually robust, even when the training sample cohort has some
bias. The obtained MCC prompts to suggest a mild correlation of the TMB/TGF-β score used to
identify responsiveness to ICI with the features used to create the model. Previous proposed methods
used different algorithms and combinations of data obtained from different databases [18,21,32–34].
In this context, we focused only on primary tumors and transcriptomics data choosing two surrogates
of possible response to ICI. A limitation of our proposed method could be represented by the high
number of genes used to classify the putative responsiveness to ICI. However, similar approaches
using high number of genes or multi-omic combinations with high numbers of data have been
previously published [17,18,21,32–34]. On the other hand, comparison among our proposed model
and previously published models seems to be not feasible given the different starting data and
different employed approaches. Nevertheless, the proposed model could be naturally extended with
multi-modal inputs by adding appropriate embeddings, in particular clinical variables and image
data. On the other hand, it is noteworthy that the proposed machine learning classifier could be
useful to stratify patients according to the putative responsiveness to ICI treatment, also considering
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cancer patients comprehensively characterized by immune-related features associated with a favorable
prognosis such as those belonging to immune subtype C2.

4. Materials and Methods

4.1. Datasets

The Cancer Genome Atlas (TCGA) RNA sequencing (RNA-seq) count data (FPKM-UQ)
was downloaded (February 2019) from the GDC data portal (portal.gdc.cancer.gov) using the
GenomicDataCommons Bioconductor package [38]. We downloaded RNA-Seq data of 29 primary
tumors described by Table 1. In the following list all the abbreviations of the cancer cohorts
used in this study are reported: adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma
(THCA), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS) and uveal
melanoma(UVM).

The tumor mutational burden (TMB) was calculated from the MC3 Public MAF [39] file as
described by Alexandrov and colleagues [36,40]. To characterize intratumoral immune states, we
scored the 160 immune expression signatures as described by Thorsson and colleagues [17]. We used
the signature published on the “Immune-Subtype-Clustering” GitHub repository [41] and then we
tested the improved version of the tool [23].

For each cancer cohort, cases were labeled as responsive if they simultaneously had TMB above
the third quartile and TGF-β score under the median value (TGFB_score_21050467 as decribed in
Thorsson et al. [17]).

4.2. Machine learning methods

For the selection of an initial classification model, we evaluated the performance of two supervised
learning methods, namely support vector machines (SVM) and extreme gradient boosting (XGBoost).
The optimal hyperparameters were selected with a grid search across a space of model-specific
parameters. The data were split beforehand into 80% training and 20% test partitions. All models
were developed in a 10× 5-fold cross validation (CV) schema on the training partition using the 2387
genes reported by Thorsson et al [17]. Performance was assessed in terms of accuracy (ACC) and
Matthews Correlation Coefficient (MCC) [25,26], the performance metric that effectively summarizes in
a single value the confusion matrix of a classification task, even when the classes are imbalanced. MCC
values are in the [−1, 1] range, where 1 means perfect classification, −1 perfect misclassification, and 0
random prediction or classification of every sample to the largest class. The overall performance in
cross-validation is evaluated across all CV iterations as average MCC and ACC with 95% Studentized
bootstrap confidence intervals (CI), and on the test partition as MCC and ACC. The classification
pipeline was also run with randomized labels as a sanity check for unwanted selection bias effects:
in a procedure unaffected by systematic bias, the average MCC should be close to 0. Data were
log2-transformed and standardized to zero mean and unit variance before classification; in order to
avoid potential information leakage, the standardization parameters from the training set were used
for rescaling both training and test subsets.
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4.3. Computational Details

The classification pipeline was built on top of the Scikit Learn library 0.20.3 [42] using Python
3.6. All the experiments were run on a 32-core Intel Core i7 workstation with 128GB of RAM running
CentOS 7.5. Cox regression and Kaplan-Meier survival curves were computed using R (version 3.6.1 )
with survival and survminer packages. Survival curves were compared with the log-rank test. Survival
analysis were performed in cases for which all census data were available according to Liu et al. [22]

5. Conclusions

Balancing between immunostimulative and immunosuppressive factors exerting a role in the
tumor/tumor microenvironment/immune system crosstalk can influence the capability to respond to
ICI treatment of cancer-affected patients. This results in heterogeneous response rates among different
cancer types but also in the context of a specific cancer. In this complex scenario, there is the need
to efficiently predict the capability of patients to respond to these immunotherapeutic approaches.
Here, we proposed a machine learning approach to comprehensively investigate mutational and
immunological aspects of tumor diseases. This could be useful to efficiently predict the putative
response to ICI treatment by expression data of primary tumors.
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Appendix A

Figure A1. Tumor mutational burden (TMB) calculated for all the cases included in the analysis.
Abbreviations of cancer cohort: adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma
(OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma
(THCA), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS) and uveal
melanoma (UVM).
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Figure A2. Boxplots of OS (A), DSS (B), and PFI (C) for TMB/TGF-β score positive cases (orange)
and negative cases (blue) in the context of the different cancer types. Time is expressed in days.
Abbreviations of cancer cohort: adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma
(OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma
(THCA), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS) and uveal
melanoma (UVM).
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Table A1. Univariate Cox proportional hazards model analysis of survival for each cancer type included
in the study.

Cancer Types Label Number of Samples HR 95% CI for HR p Value

UVM TMB/TGF-β score positive n = 80 0.3 0.04–2.2 0.24
SKCM TMB/TGF-β score positive n = 103 0.45 0.11–2 0.29
GBM TMB/TGF-β score positive n = 146 0.69 0.28–1.7 0.42
LIHC TMB/TGF-β score positive n = 349 1 0.59–1.8 0.91
SARC TMB/TGF-β score positive n = 201 0.85 0.41–1.8 0.66
PCPG TMB/TGF-β score positive n = 177 4.9 0.8–30 0.085
TCGT TMB/TGF-β score positive n = 127 1.5 0.89–2.6 0.12
THCA TMB/TGF-β score positive n = 481 0.87 0.11–6.7 0.89
PAAD TMB/TGF-β score positive n = 146 1 0.53–1.9 0.96
PRAD TMB/TGF-β score positive n = 410 3 0.74–12 0.12
UCEC TMB/TGF-β score positive n = 542 0.25 0.092–0.69 0.007
CHOL TMB/TGF-β score positive n = 35 2.2 0.69–7 0.18
KICH TMB/TGF-β score positive n = 64 6.4 1.6–26 0.0091
BLCA TMB/TGF-β score positive n = 412 0.67 0.42–1.1 0.096
KIRP TMB/TGF-β score positive n = 266 0.27 0.064–1.1 0.071
HNSC TMB/TGF-β score positive n = 488 1.1 0.8–1.6 0.48
CESC TMB/TGF-β score positive n = 282 0.48 0.19–1.2 0.11
BRCA TMB/TGF-β score positive n = 1009 0.94 0.57–1.6 0.81

OV TMB/TGF-β score positive n = 164 0.67 0.31–1.4 0.31
LGG TMB/TGF-β score positive n = 499 0.87 0.38–2 0.74

LUAD TMB/TGF-β score positive n = 492 0.58 0.33–1 0.05
ESCA TMB/TGF-β score positive n = 151 1.3 0.65–2.7 0.45
READ TMB/TGF-β score positive n = 125 0.86 0.19–3.9 0.85
LUSC TMB/TGF-β score positive n = 484 0.79 0.52–1.2 0.28
COAD TMB/TGF-β score positive n = 462 0.73 0.39–1.4 0.33

UCS TMB/TGF-β score positive n = 56 1.1 0.4–3.3 0.8
MESO TMB/TGF-β score positive n = 76 0.5 0.21–1.2 0.11
ACC TMB/TGF-β score positive n = 78 6.4 2.3–18 4 ×10−4

STAD TMB/TGF-β score positive n = 345 0.62 0.35–1.1 0.088

Abbreviations of cancer cohort: adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC),
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney
renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO),
ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and
paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma (SARC),
skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT),
thyroid carcinoma (THCA), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS)
and uveal melanoma (UVM).

Table A2. Distribution of TMB/TGF-β score positive and negative cases in each Cluster subtype as
described by Thorsson et al. [17] modify table.

Cluster Subtype TMB/TGF-β Score Negative TMB/TGF-β Score Positive Total

1 1957 266 2223
2 1994 379 2373
3 1704 166 1870
4 913 150 1063
5 334 36 370
6 149 7 156
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p = 0.00032 p < 0.0001

p = 0.033

Figure A3. Kaplan-Meier survival curves of TMB/TGF-β score positive cases (blue line) versus
TMB/TGF-β score negative cases (red line) in the context of the cancer types according to the
recommendations reported in Liu et al. [22] (A) Overall Survival (adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), uterine corpus endometrial carcinoma (UCEC), skin cutaneous
melanoma (SKCM), head and neck squamous cell carcinoma (HNSC), kidney renal papillary
cell carcinoma (KIRP), pancreatic adenocarcinoma (PAAD), sarcoma (SARC), cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), lung
squamous cell carcinoma (LUSC), liver hepatocellular carcinoma (LIHC), uterine carcinosarcoma
(UCS), lung squamous cell carcinoma (LUSC), cholangiocarcinoma (CHOL), lung adenocarcinoma
(LUAD), mesothelioma (MESO), uveal melanoma(UVM), ovarian serous cystadenocarcinoma (OV),
esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), glioblastoma multiforme (GBM));
(B) Disease-specific survival (adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA),
uterine corpus endometrial carcinoma (UCEC), skin cutaneous melanoma (SKCM), head and
neck squamous cell carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP), pancreatic
adenocarcinoma (PAAD), sarcoma (SARC), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), colon adenocarcinoma (COAD), lung squamous cell carcinoma (LUSC),
uterine carcinosarcoma (UCS), glioblastoma multiforme (GBM),lung adenocarcinoma (LUAD),
mesothelioma (MESO), uveal melanoma (UVM), ovarian serous cystadenocarcinoma (OV), esophageal
carcinoma (ESCA), stomach adenocarcinoma (STAD); (C) Progression-free interval (adrenocortical
carcinoma (ACC), bladder urothelial carcinoma (BLCA), uterine corpus endometrial carcinoma
(UCEC), skin cutaneous melanoma (SKCM), head and neck squamous cell carcinoma (HNSC), prostate
adenocarcinoma (PRAD), pancreatic adenocarcinoma (PAAD), kidney renal papillary cell carcinoma
(KIRP), sarcoma (SARC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC),
colon adenocarcinoma (COAD), lung squamous cell carcinoma (LUSC), liver hepatocellular carcinoma
(LIHC), breast invasive carcinoma (BRCA), thyroid carcinoma (THCA), uterine carcinosarcoma (UCS),
brain lower grade glioma (LGG), cholangiocarcinoma (CHOL), lung adenocarcinoma (LUAD), testicular
germ cell tumors (TGCT), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), esophageal
carcinoma (ESCA), stomach adenocarcinoma (STAD)). Time is expressed in days; log-rank test p-value
is reported.
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Figure A4. Kaplan-Meier Overall Survival (OS) curves of TMB/TGF-β score positive cases (blue line)
versus TMB/TGF-β score negative cases (red line) belonging to the Cluster 2, in the context of the 20
TCGA cancer types according to the recommendations reported in Liu et al. [22] ( adrenocortical
carcinoma (ACC), bladder urothelial carcinoma (BLCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),
esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC),kidney renal papillary
cell carcinoma (KIRP),kidney chromophobe (KICH), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian
serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), sarcoma (SARC), skin cutaneous
melanoma (SKCM), stomach adenocarcinoma (STAD), uterine corpus endometrial carcinoma (UCEC),
uterine carcinosarcoma (UCS)). Time is expressed in days; log-rank test p-value is reported.

Figure A5. Graphical representation of the pipeline used to develop the model for classifying the
TMB/TGF-β score positive cases.
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Figure A6. Boxplots of cross-validation MCC values for SVM and XGBoost models. p = 0.00103,
Kruskal-Wallis multiple test.
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