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Abstract

Objectives: Participants with complete accelerometer data often represent a low

proportion of the total sample and, in some cases, may be distinguishable from

participants with incomplete data. Because traditional reliability methods

characterize the consistency of complete data, little is known about reliability

properties for an entire sample. This study employed Generalizability theory to

report an index of reliability characterizing complete (7 days) and observable (1 to 7

days) accelerometer data.

Design: Cross-sectional.

Methods: Accelerometer data from the Study of Early Child Care and Youth

Development were analyzed in this study. Missing value analyses were conducted

to describe the pattern and mechanism of missing data. Generalizability coefficients

were derived from variance components to report reliability parameters for

complete data and also for the entire observable sample. Analyses were conducted

separately by age (9, 11, 12, and 15 yrs) and daily wear time criteria (6, 8, 10, and

12 hrs).

Results: Participants with complete data were limited (,34%) and, most often,

data were not considered to be missing completely at random. Across conditions,

reliability coefficients for complete data were between 0.74 and 0.87. Relatively

lower reliability properties were found across all observable data, ranging from 0.52

to 0.67. Sample variability increased with longer wear time criteria, but decreased

with advanced age.

Conclusions: A reliability coefficient that includes all participants, not just those

with complete data, provides a global perspective of reliability that could be used to

further understand group level associations between activity and health outcomes.

OPEN ACCESS

Citation: Wickel EE (2014) Reporting the
Reliability of Accelerometer Data with and without
Missing Values. PLoS ONE 9(12): e114402. doi:10.
1371/journal.pone.0114402

Editor: Guy Brock, University of Louisville, United
States of America

Received: June 24, 2014

Accepted: November 6, 2014

Published: December 5, 2014

Copyright: � 2014 Eric E. Wickel. This is an
open-access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that, for
approved reasons, some access restrictions apply
to the data underlying the findings. Data are
available upon request due to ethical restrictions.
Details regarding the application process are
available from the University of Michigan Inter-
University Consortium for Political and Social
Research (http://www.icpsr.umich.edu).

Funding: Internal funding from the University of
Tulsa was provided to EEW. The funder had no
role in the study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The author declares that no
competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0114402 December 5, 2014 1 / 12

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114402&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.icpsr.umich.edu


Introduction

Wearable monitors overcome many of the limitations of self-report methods and

are now regularly used to objectively assess free-living physical activity (PA) in

children and adolescents. Accelerometers, such as the Actigraph, are a common

type of wearable monitor that, in contrast to other objective tools (e.g.,

pedometers), are capable of characterizing the frequency, intensity, duration, and

time of daily PA. Despite the accelerometer’s appeal as a field-based assessment

tool, several data management and processing challenges exist [1].

One specific challenge accelerometer end-users must contend with involves

missing data. Missing data are inherent to nearly all free-living accelerometer

studies and can exist as repeated episodes within a day or across entire day(s).

Based on Rubin’s taxonomy [2], missing data are classified as missing at random

(MAR), missing completely at random (MCAR), or not missing at random

(NMAR). In most cases, end-users do not report the mechanism of data

missingness, but rather address critical decisions about the identification of

missing data (i.e., non-wear time) as well as the consequences associated with the

quantity of missing data. Automated algorithms, such as those used in analyzing

accelerometer data from NHANES [3], are routinely employed to identify and

remove non-wear time throughout daily accelerometer records, thus allowing

wear time estimates to be reported for a 24-hr period or a pre-defined portion of

the day (e.g. 7:00 to 22:00). Decisions based on wear time are then made to

remove individual monitoring days (e.g., days with ,10 hrs) or entire participant

records (e.g., participants with ,4 valid days). This general approach is

commonly employed during data treatment to produce estimates of total daily

activity, as well as daily proportions of activity intensities, but can result in a loss

of data.

Several techniques have been used to recover missing data from individual

monitoring days and some of these methods have yielded unbiased estimates of

PA [4–8]. In comparison, relatively less is available regarding missing data and

reliability estimates, which is surprising given the role reliability coefficients play

in PA research. As noted by Brennan [9], reliability is a characteristic of scores,

and in PA research this basic definition describes the variability across repeated

days. Routinely, reliability is reported using standard approaches like the

intraclass correlation coefficient (ICC). Many statistical programs readily calculate

the ICC; however, in doing so a considerable portion of participants are often

removed via list-wise deletion which in turn decreases power and external validity.

Although the percentage of participants with complete accelerometer data

(complete data may be defined as having $ 10 hrs of wear time across 7

consecutive days) likely varies across studies, pooled data from the International

Children Accelerometer Database [10] indicate few youth (ages 9 to 18 yrs) have

complete data during a standard 7-day monitoring protocol. This robust finding

suggests ICC-derived reliability coefficients for moderate-to-vigorous physical

activity (MVPA) reported in many, but not all, accelerometer studies are derived

from a relatively low percentage of available participants when imputation or
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multilevel regression models are not employed. To expand our perspective of

reliability, alternative approaches that account for all observable (non-imputed)

data should be explored.

Cronbach and colleagues [11] introduced generalizability (G) theory as an

approach to examine reliability. In contrast to classical measurement models

where the error term is singular, G theory can be used to partition and quantify

variance according to multiple sources of error (G study) so an investigator can

make informed decisions regarding the design needed to maximize reliability

(Decision (D) study) [12]. Within the G theory framework, techniques to report a

reliability coefficient for unbalanced designs (i.e., studies with missing data (1 #

number of acceptable days (nd) # 7)) exist but have yet to be explored in PA

research. Reporting a reliability coefficient that includes all participants, not just

those with complete data, provides a global perspective of reliability that may be

useful in understanding group-level associations between MVPA and health

outcomes.

To advance reliability research, the current study details the application of G

theory to report an index of reliability using complete (nd 5 7) and observable (1

# nd # 7) accelerometer data. All analyses were conducted using daily levels of

MVPA, which were available from a large prospective study of youth at 9, 11, 12,

and 15 yrs of age.

Methods

Accelerometer data from the Study of Early Child Care and Youth Development

were analyzed to address the study objective. The original monitoring protocol

was approved by each participating university’s ethics committee (University of

Arkansas; University of California; University of Kansas; University of New

Hampshire/Wellesley; Pennsylvania State University/University of Pittsburgh;

Temple University; University of Virginia; University of Washington; Western

Carolina Center; and University of Wisconsin) and written consent was obtained

from each participant. Details regarding the enrollment procedure and research

protocol are available from the study’s website (http://www.nichd.nih.gov/

research/supported/seccyd/pages/overview.aspx). Accelerometer data were col-

lected across a 7-day monitoring period using 1-minute epochs at mean ages of 9,

11, 12, and 15 yrs. ActiLife software (version 6.4.3) was used to detect and remove

daily non-wear intervals between the hours of 7:00 and 22:00. Similar to other

studies [3], non-wear periods included intervals of at least 60 consecutive minutes

of zero activity counts, allowing for 2 minutes of counts between 0 and 100.

Epochs exceeding 20,000 counts/min were reset to zero. Daily wear time was

determined by removing daily non-wear periods. At each mean age, four separate

data sets were created using minimum daily time requirements of 6, 8, 10, and

12 hrs. Accelerometer data were then interpreted in a manner consistent with the

approach used in the International Children Accelerometer Database [10], where

the amount of MVPA (mins/day) was determined using a threshold of
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3000 counts/min. A total of 1082 youth were enrolled in the accelerometer

protocol at 9 yrs. Age-related trends in activity have been previously reported with

these data [13]; however, the objective of the current study was not addressed.

Descriptive analyses were conducted for accelerometer wear time and MVPA by

age and wear time criteria. Missing value analyses were conducted to report the

proportion of missing data by day of the week and Little’s chi-square statistic was

used to report the mechanism of missingness. The null hypothesis for Little’s chi-

square test states that the data are MCAR; therefore, p-values ,0.05 were

considered significant and under this circumstance the missing data would be

MAR or NMAR. Several reviews of MAR, MCAR, and NMAR exist [14, 15], but a

brief interpretation is provided. Missing data are likely to be MAR [16], and under

this mechanism the pattern of missingness is systematically related to some

observed characteristic. In this situation, it is assumed that the actual variables

where data are missing are not the cause of the incomplete data. MCAR is a sub-

category of MAR [17], but comparatively more stringent, and assumes that

missing data are unrelated to the variables being studied. In this context,

individuals with missing data represent a simple random sample of the full sample

(i.e., individuals with complete data are indistinguishable from those with

incomplete data). Under the third mechanism (NMAR), the pattern of missing

data is related to unobserved characteristic(s). Of the three missing data

mechanisms, only MCAR can be empirically tested because MAR and NMAR are

dependent upon unobserved data. Descriptive and missing value analyses were

conducted using SPSS v20.

To address the study’s primary objective, reliability coefficients using complete

(nd 5 7) and observable (1 # nd # 7) accelerometer data were compared using G

theory methods. Although G theory has been described in the literature [18, 19],

few studies have applied this approach to PA research [12, 20–24]. Following the

framework outlined by Brennan [18], the current study employed a single facet

(participant 6 day) design with missing data, where variance component

estimates were derived using analogous T terms for the object of measurement

(participants (ô2p)), the facet (day (ô2d)), and the interaction term which is

confounded with unsystematic or unmeasured error (ô2 pd). Derived variance

components were then used to calculate two types of error (absolute (ô2D) and

relative (ô2d)). Absolute, or criterion-referenced, error is the error involved in

using a participant’s mean score as an estimate of their universe score (i.e., ô2D 5

(ô2 d/€nd) + (ô2 pd/€nd)), whereby €nd is the harmonic mean of ~np (i.e., the number of

days with acceptable data from each participant) [18] and is derived using

Equation 1.

€nd~ 1=np

X
p 1=~np
� �" #{1

ðEquationÞ

In contrast, relative error is associated with norm-referenced interpretations of

measurement and equals the variance of the observed mean score for participants
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(S2 p) minus participant variance (ô2d 5 S2 p – ô2 p) (Equation 2).

S2p~½(
X

p
�X2

p-np �X2)=(np-1)�,where

�Xp~(1=~np)
X~np

d~1
Xpd and �X~ 1

�
np

� �Xnp

p~1
�Xp

ðEquationÞ

A complex issue arises in the calculation of S2 p because the mean score for each

participant is based on a different number of acceptable days, ranging from 1 to 7.

Variance components obtained from the unbalanced design were used in the D

study to derive a reliability coefficient that characterized complete data (nd 5 7)

(Ep2
Complete 5 ô2 p/[ô2 p + (ô2 pd/nd)]) and, specific to this study, a separate

coefficient that characterized all observable data (1# nd # 7) (Ep2
Observed 5 ô2 p/S2

p). Coefficients range from 0 to 1. In PA research, reliability coefficients $ 0.80

are desirable. Standard error of the mean (SEM), which provides an indication of

the uncertainty associated with each measure, was calculated for each condition by

taking the square root of the absolute error term. The SEM is expressed in the

same metric unit of measurement and represents a 68% CI for the participant’s

universe score. Variance components, error estimates, and reliability coefficients

were derived using EXCEL macros created by the corresponding author (see

Tables S1 and S2 for a detailed description of the G theory calculations).

Results

Missing data characteristics are reported in Table 1. As expected, the percentage of

youth with complete accelerometer data decreased as daily wear time criteria

increased from 6 to 12 hrs. In general, the proportion of missing data was similar

across weekdays, but relatively higher during the weekend. Under most conditions

the null hypothesis for Little’s chi-square test was rejected, suggesting the data

were not MCAR and that participants with complete data were distinguishable

from those with incomplete data. Mean weekly comparisons for accelerometer

wear time (hrs/day) and MVPA (mins/day) between complete and incomplete

data support this conclusion across most conditions (Table 2). Post-hoc analyses

were conducted separately for weekdays and weekend days to examine each

MCAR condition reported in Table 1. For each MCAR condition, non-

distinguishable mean values were observed at 9 yrs (weekend wear time and

MVPA), 11 yrs (weekend wear time), 12 yrs (weekend wear time and MVPA;

weekday MVPA), and 15 yrs (weekend wear time and MVPA; weekday MVPA)

(data not shown). As shown in Table 2, mean wear time typically exceeded 12 hrs

and progressively increased as longer wear time criteria were employed. Among

the combined sample (1 # nd # 7), the mean absolute difference in MVPA

between 6- and 12-hr criteria approximated 3 mins, and the absolute percent

error (APE) for MVPA increased with advancing mean age (9 yrs: 11.2%; 11 yrs:

12.9%; 12 yrs: 15.8%; and 15 yrs: 20.4%). APE estimates were derived using
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MVPA levels from the 6- and 12-hr wear time criteria (((|MVPA6 hrs – MVPA12

hrs|)/MVPA12 hrs) 6 100).

Total variance in MVPA increased with longer wear time criteria and decreased

with increasing age. In general, total variance was distributed in a similar manner

across conditions (p 6 d interaction term . participant term . day term). The

relatively large contribution of variance from the p 6 d interaction term (ranging

from 47 to 68%) reflects the wide range of individual variability in daily free-living

MVPA levels across days, but also includes unexamined error. The participant

term reflects inter-individual variation and explained a majority of the remaining

error (ranging from 27 to 47%). Ideally, the participant term would account for

the largest proportion of error because it represents true score variance. In

comparison, a relatively low amount of variation was attributable to the day term

(1 to 9%), suggesting little variability in MVPA across monitoring days. Variance

components and error estimates of MVPA (ô2d and S2 p) are reported in Table 3.

The findings show an increase in sample variability with longer wear time criteria,

but also reveal a trend toward sample homogeneity with increasing age. The

harmonic mean of ~np, reported as €nd, reveals the number of acceptable days across

participants and is included in the absolute error variance calculation. This value

Table 1. Missing data pattern and mechanism by age and wear time criteria.

% of days with missing data

Condition np (% with 7 days) Mon Tue Wed Thu Fri Sat Sun Missing data mechanism

9 years

6 hrs 807 (34) 19 16 20 17 21 27 23 MAR/NMAR a

8 hrs 801 (29) 21 17 21 18 22 32 28 MAR/NMAR a

10 hrs 788 (20) 24 20 25 22 25 40 42 MAR/NMAR a

12 hrs 762 (7) 36 33 34 33 34 57 65 MCAR

11 years

6 hrs 857 (33) 17 18 21 20 19 28 28 MAR/NMAR a

8 hrs 851 (26) 19 19 22 22 22 34 34 MAR/NMAR a

10 hrs 834 (16) 23 22 26 26 28 47 47 MAR/NMAR a

12 hrs 801 (4) 34 36 34 37 38 67 72 MCAR

12 years

6 hrs 733 (24) 22 27 25 23 25 35 35 MCAR

8 hrs 729 (20) 25 27 26 26 27 43 42 MAR/NMAR a

10 hrs 713 (12) 28 30 31 29 32 52 55 MAR/NMAR a

12 hrs 661 (3) 35 39 38 37 38 69 77 MCAR

15 years

6 hrs 656 (17) 29 25 30 30 33 50 43 MAR/NMAR a

8 hrs 642 (13) 32 28 30 31 35 56 50 MAR/NMAR a

10 hrs 611 (8) 36 31 33 35 41 66 64 MAR/NMAR a

12 hrs 558 (2) 45 40 39 42 47 81 84 MCAR

MAR, missing at random; MCAR, missing completely at random; NMAR, not missing at random; np, number of participants.
aLittle’s test, p ,0.05.

doi:10.1371/journal.pone.0114402.t001
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decreased with increasing age and wear time criteria (6 to 12 hrs) (€nd at 9 yrs (4.7,

4.5, 4.1, and 3.1 days); 11 yrs (4.6, 4.4, 3.9, and 2.9 days); 12 yrs (4.0, 3.6, 3.2, and

2.7 days); and 15 yrs (3.4, 3.3, 2.9, and 2.3 days). SEM values ranged from 5 to

9 mins across conditions.

Reliability methods were expected to produce different coefficients a priori

given that each coefficient (Ep2
Complete and Ep2

Observed) characterized unique data.

Across age and wear time conditions, reliability coefficients derived from

complete data (Ep2
Complete; nd 5 7) were relatively higher compared to coefficients

derived from observed data (Ep2
Observed; 1# nd # 7) (Table 3). Ep2

Complete

coefficients ranged from 0.74 to 0.87 and were derived assuming a sample size

equal to the original sample (e.g., using 10-hr wear time criteria, np5788 (9 yrs);

np5834 (11 yrs), np5713 (12 yrs), and np5611 (15 yrs)) and 7 monitoring days

even when variance components were derived with missing data in the G study

[18]. In contrast, the global index of reliability (i.e., Ep2
Observed) ranged from 0.52

to 0.67. A similar index of reliability would be expected among separate samples

given similarities in both sample size and pattern of missing data.

Table 2. Mean weekly wear time and MVPA between youth with complete (nd 5 7) and incomplete (1 # nd # 6) data.

Mean (SD) wear time - hours/day Mean (SD) MVPA - minutes/day

Condition Complete Incomplete Difference (95% CI) Complete Incomplete Difference (95% CI)

9 years

6 hrs 12.6 (0.9) 12.2 (1.4) 0.42 (0.26 to 0.58) 27 (11) 32 (15) 25.4 (27.3 to 23.6)

8 hrs 12.8 (0.8) 12.4 (1.1) 0.36 (0.22 to 0.50) 27 (12) 32 (15) 25.1 (27.1 to 23.2)

10 hrs 13.1 (0.6) 12.8 (0.8) 0.26 (0.15 to 0.38) 27 (12) 33 (15) 25.4 (27.6 to 23.1)

12 hrs 13.6 (0.4) 13.4 (0.6) 0.18 (0.06 to 0.31) 30 (11) 34 (16) 24.3 (27.6 to 21.0)

11 years

6 hrs 12.4 (1.1) 12.1 (1.4) 0.29 (0.11 to 0.46) 20 (9) 26 (13) 26.3 (27.8 to 24.9)

8 hrs 12.7 (0.8) 12.3 (1.2) 0.39 (0.24 to 0.53) 20 (9) 26 (13) 26.2 (27.7 to 24.7)

10 hrs 13.2 (0.6) 12.8 (0.9) 0.36 (0.23 to 0.48) 20 (9) 27 (13) 26.7 (28.5 to 24.8)

12 hrs 13.7 (0.4) 13.5 (0.6) 0.18 (0.05 to 0.32) 21 (9) 28 (14) 27.0 (210.4 to 23.6)

12 years

6 hrs 12.6 (1.0) 12.0 (1.6) 0.59 (0.39 to 0.79) 16 (8) 20 (11) 24.3 (25.8 to 22.9)

8 hrs 12.8 (0.9) 12.3 (1.3) 0.47 (0.29 to 0.65) 17 (8) 21 (11) 23.8 (25.4 to 22.2)

10 hrs 13.2 (0.7) 12.9 (1.0) 0.33 (0.16 to 0.49) 18 (9) 21 (12) 23.8 (26.0 to 21.7)

12 hrs 13.9 (0.4) 13.6 (0.6) 0.28 (0.10 to 0.46) 20 (8) 23 (13) 23.3 (26.9 to 0.3) a

15 years

6 hrs 12.5 (1.2) 11.8 (1.8) 0.69 (0.41 to 0.97) 9 (6) 12 (9) 23.0 (24.4 to 21.6)

8 hrs 12.8 (1.1) 12.3 (1.5) 0.50 (0.23 to 0.77) 9 (7) 13 (10) 23.2 (24.8 to 21.6)

10 hrs 13.5 (0.6) 13.0 (1.1) 0.53 (0.33 to 0.74) 9 (7) 13 (10) 23.7 (25.8 to 21.7)

12 hrs 14.3 (0.4) 13.8 (0.7) 0.45 (0.17 to 0.72) 8 (5) 14 (11) 26.8 (210.3 to 23.2)

MVPA, moderate-to-vigorous physical activity; nd, number of days.
aMean difference in MVPA between complete and incomplete data was not significant (p. 0.05). Remaining mean difference values (wear time and MVPA)
were significant.

doi:10.1371/journal.pone.0114402.t002
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Discussion

A 7-day monitoring period is recommended for PA research because week and

weekend data are included [25, 26].When this standard approach is implemented,

data end-users commonly report few participants with complete records. For

example, data from NHANES reveal a low proportion (nearly 20%) of youth ages

6 to 19 yrs with seven days of accelerometer data [3]. In the current study, nearly

one-third of participants (34%) had a complete 7-day record at 9 yrs and this

proportion decreased as age and wear time criteria increased. For the

accelerometer end-user, identifying few participants with complete data is

concerning because traditional reliability coefficients characterize complete data

and participants with complete data (operationally defined across studies as 2 to 7

valid days) may be characteristically different than those with incomplete data

[27, 28]. The current study employed G theory to report a reliability coefficient

(Ep2
Observed) that included all observable data satisfying daily wear time criteria. To

date, several perspectives of reliability have been reported in the literature [12, 29],

but all focus on complete data. This study addresses a critical gap in the literature

Table 3. Variance components, error estimates and generalizability coefficients of MVPA by age and wear time criteria.

Variance components Error estimates Generalizability coefficients

Condition ô2 p ô2 d ô2 pd ô2d S2 p Ep2
Complete

1 Ep2
Observed

2

9 years

6 hrs 131.2 12.3 221.3 65.7 196.9 0.81 0.67

8 hrs 138.1 11.7 223.1 70.1 208.1 0.81 0.66

10 hrs 143.4 10.5 221.8 75.7 219.1 0.82 0.65

12 hrs 154.1 8.1 237.1 101.0 255.2 0.82 0.60

11 years

6 hrs 84.3 8.6 187.5 58.8 143.0 0.76 0.59

8 hrs 87.0 6.8 186.3 62.1 149.1 0.77 0.58

10 hrs 93.5 5.5 188.5 70.9 164.3 0.78 0.57

12 hrs 117.1 3.4 202.1 84.6 201.7 0.80 0.58

12 years

6 hrs 57.9 11.0 145.3 44.9 102.8 0.74 0.56

8 hrs 61.8 9.7 148.6 49.9 111.6 0.74 0.55

10 hrs 75.8 7.0 157.9 64.7 140.5 0.77 0.54

12 hrs 84.1 4.6 161.0 77.9 162.0 0.79 0.52

15 years

6 hrs 48.4 12.1 73.3 30.0 78.3 0.82 0.62

8 hrs 52.7 12.8 77.8 35.2 87.9 0.83 0.60

10 hrs 59.8 12.4 78.1 35.8 95.6 0.84 0.63

12 hrs 77.5 10.5 78.5 42.9 120.4 0.87 0.64

1Generalizability coefficient derived using complete data (nd 5 7).
2Generalizability coefficient derived using observed data (1 # nd # 7).
ô2 p, variance component for participant; ô2 d, variance component for day; ô2 pd, variance component for participant 6 day interaction; ô2d, relative error
variance; S2 p, observed participant mean score variance.

doi:10.1371/journal.pone.0114402.t003
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and provides accelerometer end-users with an alternative approach to report

reliability.

Although data imputation could have been used in this study to increase the

proportion of youth with complete accelerometer records, the primary aim was to

report a reliability coefficient that characterized all observable (non-imputed) data

satisfying daily wear time criteria. Under most age and wear time conditions, the

missing data in this study were indistinguishably MAR or NMAR suggesting data

imputation may produce biased summary statistics and reliability estimates.

Ideally, missing data would be MCAR and represent a simple random proportion

of the entire sample. Given the inherent challenges of specifying the pattern of

missing data, few studies have directly examined the implications of missing

accelerometer data on reliability parameters. In an accelerometer simulation study

involving girls, Catellier et al [4] selected those with complete, 7-day

accelerometer records and systematically generated datasets with different patterns

of missing data (MCAR and NMAR) to compare sample parameters between

complete and imputed data sets. Minimal levels of bias in mean daily estimates of

MET-mins of MVPA were reported between complete and imputed data when

MCAR was assumed; however, a positive bias was reported after imputing missing

values that were NMAR. In general, standard deviations for daily MET-mins of

MVPA were similar between complete and imputed datasets. Additional youth

simulation studies should be conducted to assess the performance of imputation

methods. Future studies would likely benefit from the purposeful approach

described by Catellier and colleagues to generate missing data characteristic of

MCAR and NMAR. Furthermore, the global reliability coefficient described in this

study could be reported in future imputation assessment studies (using simulated

and non-simulated data) as an additional comparative parameter before and after

data imputation occurs. Comparing reliability coefficients in this manner would

be novel given that many studies report reliability using complete, rather than

observable, data.

Accelerometer data included in this study were processed using ActiLife

software to identify complete monitoring days using four daily wear time criteria

(6, 8, 10, and 12 hrs) between 7:00 and 22:00. This approach was selected not with

the intent to identify a specific wear time threshold, but rather to report the effect

of wear time inclusion criteria on factors that influence reliability estimates and

levels of MVPA (e.g., sample size and composition). At each mean age, S2 p and ô2

p increased as daily wear time criteria became more stringent, indicating greater

variability in MVPA within the sample using the 12-hr threshold compared to the

more conservative 6-hr threshold. As a general tenet of reliability, increased

variability among individuals produces higher reliability estimates [30], and this

was seen in the G coefficient with complete data (Ep2
Complete) at each mean age. In

this study, estimates of S2 p at a given wear time duration (e.g., 10 hrs)

progressively declined with increasing mean age, suggesting youth levels of MVPA

may become more homogeneous with age. Certain caveats do exist however when

reporting trends in reliability and error estimates. For example, the accelerometer

data included in this analysis originated from a prospective study design; however,
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the sample size and composition at each mean age (and across wear time

conditions) varied. Therefore, these trends should be interpreted judiciously given

that each age and wear time condition was comprised of unique data.

Relatively small absolute differences in MVPA were found between 6- and 12-hr

wear time criteria at each mean age, ranging from 2.8 to 3.7 mins. The relative

stability in MVPA estimates found in this study can likely be attributed to the

similarities in mean wear time duration. Across conditions, the accelerometer was

worn, on average, for nearly 80% of the 15-hr monitoring period. Although daily

patterns of MVPA were not specifically examined in the current study, it is quite

possible that the additional 1.5 hrs of daily wear time reported using the 12-hr

criteria (compared to the 6-hr criteria) occurred during the latter portions of the

day, a period when activity levels decline among girls and boys [31]. Varying wear

time criteria have been used in PA research to define a valid day, but 10-hrs is

generally considered an acceptable duration to capture youth estimates of activity

[3, 32]. Empirical evidence to support the 10-hr monitoring duration could be

systematically investigated using a semisimulated approach described by

Herrmann et al. [33] Among adults, Herrmann et al compared APE estimates in

daily PA between semisimulated data sets of varying wear time criteria (10, 11, 12,

and 13 hrs/day) to a reference level of 14 hrs/day. It was concluded that time

spent in inactivity, light, and moderate activity was nearly 30% less using 10 hrs/

day compared to 14 hrs/day. Inspecting levels of bias between wear time levels was

not necessarily the focal point of the current study; however, comparatively lower

APE estimates of MVPA were found between 6- and 12-hr criteria at each mean

age when compared to the APE estimates reported for adults between 10- and 14-

hr criteria. Observed differences in APE may likely be attributable to the structural

differences in daily accumulation of PA between youth and adults (i.e., timing of

PA participation), or to varying mean levels of activity observed during childhood

and adolescence. For example, in the present study, APE estimates were

comparatively higher at 15 yrs compared to 9 yrs, likely reflecting the variation in

mean levels of MVPA between mean ages (MVPA levels nearly 36 higher at 9 yrs

compared to 15 yrs) rather than the absolute mean difference between MVPA

estimates using 6- and 12-hr criteria (, 3 mins). Establishing a standardized wear

time duration for youth and adults would be beneficial to minimize bias in error

estimates and facilitate group comparisons across studies.

Conclusion and Future Research Implications

G theory was applied in this study to report an index of reliability using a balanced

design with complete data (nd 5 7) and an unbalanced design using all observable

data (1# nd # 7). Reporting a global index of reliability is novel to PA research

and may prove useful for investigators interested in reporting parameter

characteristics of an entire sample, rather than a sub-sample with complete data.

Future research may consider applying a reliability coefficient, like the one

described here (Ep2
Observed), to Spearman’s disattenuation formula [34] to

examine the correlation between PA and health-related outcome measures. Future

Reliability of Accelerometer Data
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studies should also compare reliability coefficients from an unbalanced design

using G theory to reliability coefficients obtained using other multilevel models.

Supporting Information
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Table S2. Variance component equations and estimates.
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