
ORIGINAL RESEARCH
published: 05 November 2020

doi: 10.3389/fnhum.2020.541625

Frontiers in Human Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 541625

Edited by:

Michael S. Okun,

University of Florida Health,

United States

Reviewed by:

Peter Brown,

University of Oxford, United Kingdom

Casey Halpern,

Stanford University, United States

*Correspondence:

Sebastián Castaño-Candamil

sebastian.castano@

blbt.uni-freiburg.de

Michael Tangermann

michael.tangermann@

blbt.uni-freiburg.de

Specialty section:

This article was submitted to

Brain Imaging and Stimulation,

a section of the journal

Frontiers in Human Neuroscience

Received: 09 March 2020

Accepted: 15 October 2020

Published: 05 November 2020

Citation:

Castaño-Candamil S, Ferleger BI,

Haddock A, Cooper SS, Herron J,

Ko A, Chizeck HJ and Tangermann M

(2020) A Pilot Study on Data-Driven

Adaptive Deep Brain Stimulation in

Chronically Implanted Essential

Tremor Patients.

Front. Hum. Neurosci. 14:541625.

doi: 10.3389/fnhum.2020.541625

A Pilot Study on Data-Driven
Adaptive Deep Brain Stimulation in
Chronically Implanted Essential
Tremor Patients
Sebastián Castaño-Candamil 1*, Benjamin I. Ferleger 2, Andrew Haddock 2,

Sarah S. Cooper 2, Jeffrey Herron 3, Andrew Ko 3, Howard. J. Chizeck 2 and

Michael Tangermann 1,4,5*

1 Brain State Decoding Lab, Department of Computer Science, BrainLinks-BrainTools Cluster of Excellence, University of

Freiburg, Freiburg im Breisgau, Germany, 2 BioRobotics Lab, Department of Electrical and Computer Engineering, University

of Washington, Seattle, WA, United States, 3Department of Neurological Surgery, University of Washington Medical Center,

Seattle, WA, United States, 4 Autonomous Intelligent Systems, Department of Computer Science, University of Freiburg,

Freiburg im Breisgau, Germany, 5 Artificial Cognitive Systems Lab, Artificial Intelligence Department, Faculty of Social

Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

Deep brain stimulation (DBS) is an established therapy for Parkinson’s disease (PD)

and essential-tremor (ET). In adaptive DBS (aDBS) systems, online tuning of stimulation

parameters as a function of neural signals may improve treatment efficacy and

reduce side-effects. State-of-the-art aDBS systems use symptom surrogates derived

from neural signals—so-called neural markers (NMs)—defined on the patient-group

level, and control strategies assuming stationarity of symptoms and NMs. We aim

at improving these aDBS systems with (1) a data-driven approach for identifying

patient- and session-specific NMs and (2) a control strategy coping with short-term

non-stationary dynamics. The two building blocks are implemented as follows: (1) The

data-driven NMs are based on a machine learning model estimating tremor intensity

from electrocorticographic signals. (2) The control strategy accounts for local variability

of tremor statistics. Our study with three chronically implanted ET patients amounted

to five online sessions. Tremor quantified from accelerometer data shows that symptom

suppression is at least equivalent to that of a continuous DBS strategy in 3 out-of 4 online

tests, while considerably reducing net stimulation (at least 24%). In the remaining online

test, symptom suppression was not significantly different from either the continuous

strategy or the no treatment condition. We introduce a novel aDBS system for ET. It is

the first aDBS system based on (1) a machine learning model to identify session-specific

NMs, and (2) a control strategy coping with short-term non-stationary dynamics. We

show the suitability of our aDBS approach for ET, which opens the door to its further

study in a larger patient population.
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1. INTRODUCTION

Deep brain stimulation (DBS) is an established clinical treatment
for refractory stages of Parkinson’s disease (PD), dystonia,
and essential tremor (ET) (Krauss et al., 2004; Rodriguez-
Oroz et al., 2005; Baizabal-Carvallo et al., 2014). In a standard
clinical context, DBS parameters (as amplitude, frequency, pulse
width, and electric field shape) are periodically determined
by a trained expert for each patient. This recurring yet
infrequent adaptation, accounts for post-surgical transient
states and disease progression. However, it is insufficient for
adapting to behavioral contexts and neurophysiological changes
occurring on much shorter timescales. Furthermore, patients
undergoing such continuous DBS (cDBS) therapy are prone
not only to chronic motor and neuropsychiatric side-effects
like speech disorders, dysarthria, depression, and emotional
disinhibition (Bin-Mahfoodh et al., 2003; Appleby et al., 2007;
Ondo et al., 2007; Witt et al., 2008, 2012; Fakhar et al., 2013;
Castrioto et al., 2014; Little et al., 2016), but also to transient side-
effects, including paresthesia, other speech disturbances, and gait
ataxia (Kuncel et al., 2006; Appleby et al., 2007; Aldridge et al.,
2016; Reich et al., 2016).

1.1. Closed-Loop Adaptive DBS
As an alternative to cDBS strategies, adaptive DBS (aDBS)
systems use motor state surrogates to provide an online
adaptation of DBS parameters. Such strategies decrease
stimulation when it is not required, and thus may ameliorate
DBS-induced side-effects (Little et al., 2013, 2016; Khobragade
et al., 2015).

1.1.1. Surrogates of Motor Performance
A key component of an aDBS system is a reliable motor state
estimate, which can be quantified using inertial measurement
units (IMU) or surface electromyography (Graupe et al., 2010;
Herron et al., 2016). Alternatively, motor state surrogates can
be extracted from brain signals, thus disregarding the necessity
of external sensors (Little and Brown, 2012; Hoang et al., 2017;
Panov et al., 2017). These motor state surrogates, termed neural
markers (NMs), can be measured from local field potentials
(LFP) of subcortical (Little et al., 2013; Priori et al., 2013) or
cortical areas (Whitmer et al., 2012; Cao et al., 2017; Swann
et al., 2018). A well-known example of NMs extracted from
LFPs is the power of the beta-band (12–30Hz), which—despite
unclear causal relation and action mechanisms—is correlated
with PD symptoms, such as bradykinesia and rigidity (Kühn
et al., 2008, 2009; Whitmer et al., 2012; Blumenfeld and Brontë-
Stewart, 2015; Neumann et al., 2017). Likewise, cortical band-
power features have also been found to correlate with motor
symptoms’ severity in PD and ET (Weiss et al., 2015; Kondylis
et al., 2016). The aforementioned studies follow a top-down
approach for the identification of NMs by following a priori
pathophysiological group-level knowledge about the disorder.
While these surrogates facilitate the understanding of underlying
neural dysfunctions, their informative value for controlling an
aDBS system may be limited when it comes to an individual
patient, because the heterogeneous phenotype of the diseases

indicates that a global NM suited for all patients may not exist
(Johnson et al., 2016). Such an NM seems even more elusive in a
more semiologically complex disease, as PD, where research has
been focused on symptom-wise NMs identification.

In contrast to top-down approaches used in the field of brain-
computer interfaces (BCI) can be used to determine subject-
specific NMs using machine learning (Blankertz et al., 2011;
Tangermann et al., 2012; Neumann et al., 2019), thus improving
motor state characterization of individual users (Meinel et al.,
2016). Initial work in this direction has been presented by
Connolly et al. (2015), who implemented machine learning
methods to decode stages of PD in an animal model based
on band-power and cross-frequency features. In more recent
studies, Tan et al. (2019) and Yao et al. (2020) have argued in
favor of a bottom-up approach for identification of NMs and
discussed the implications that this may have on an aDBS system,
however, their study was only implemented offline and thus,
the suitability of such approach in a real scenario remains an
open issue.

1.1.2. Strategies of Closed-Loop Control for aDBS
Pioneering studies of aDBS for PD animal models utilized control
strategies triggered by action potentials in the motor cortex
or internal globus pallidus (Rosin et al., 2011). Later studies
in human patients implemented uni-dimensional power-band
features driving threshold-based controllers, yielding symptom
suppression comparable to cDBS strategies, while having a
significantly shorter effective stimulation time, as shown by
Little et al. (2013, 2015). Likewise, Rosa et al. implemented
a proportional control strategy based on the same oscillatory
NMs, obtaining similar results in terms of symptom suppression
and reduced net stimulation (Rosa et al., 2015). These studies
stand out among the first approaches on aDBS systems for
humans. In more recent contributions, Velisar et al. (2019) have
improved upon them by utilizing fixed dual-threshold control
implementing hysteresis which accounts for fast variations in the
control signal.

These threshold-based and proportional control strategies
generally disregard any state transition information or the
temporal evolution of the symptoms and of the corresponding
NMs, since the next control signal is determined based on just a
single NM state measurement (the NM at the current time point).
However, the temporal history of the NMs might contribute
important information. For example, several authors have
suggested temporal dynamics of beta-band power embedded
in beta-burst characterization as potential source of dynamics-
aware information (Tinkhauser et al., 2017; Moraud et al., 2018;
Piña-Fuentes et al., 2019). Likewise, dynamics-aware control
strategies have also been explored. For example, model predictive
control for ET in an aDBS system based on IMU information
(Haddock et al., 2017), coordinated-reset in PD patients and
animal models (Adamchic et al., 2014; Wang et al., 2016), phase-
dependent burst stimulation (Cagnan et al., 2016), or context-
triggered strategies based on event-related desynchronization
(Herron et al., 2017). These studies are an important indication
for considering patient-specific temporal dynamics for control of
aDBS systems.
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1.2. Developing aDBS Systems for ET
Patients
Developing novel aDBS systems is a challenging endeavor. For
example in PD, the characterization of robust NMs by itself is a
difficult task, mainly due to PD’s phenotype hetereogenity and
the difficulty of measuring axial symptoms and their delayed
suppression upon DBS. Furthermore, the temporal dynamics in
PD are non-trivial due to the DBS washout—a decaying clinical
effect of DBS therapy observed after stimulation withdrawal—
which affects different symptoms at different timescales (Cooper
et al., 2013). In contrast, ET has several characteristics that
renders it a simpler scenario for aDBS development, compared
to PD. Notably, ET symptoms are generally restricted to kinetic
and postural tremor, and the DBS washout effect is negligible.
Finally, as the prevalence of ET is significantly greater, it is easier
to investigate: a recent meta-study found that ET affects nearly
5% of the population over 65, compared to <2% of the same
demographic diagnosed with PD (Alves et al., 2008; Louis and
Ferreira, 2010).

With our contribution, we present a proof-of-concept study
of a novel closed-loop aDBS system with model-free control. To
the best of our knowledge, it is the first system that implements
(1) characterization of NMs based on machine learning and
(2) a dynamics-aware control. As such, it addresses the major
challenges found in aDBS. We provide results for three ET
patients, totaling five experimental sessions, demonstrating the
feasibility of our approach.

2. METHODS

The proposed aDBS system is grounded on two main functional
building blocks: (a) the estimation of ongoing tremor intensity
based on individual spectral features extracted from ECoG
signals, processed by a machine learning algorithm (in section
2.1 NM identification based on machine learning methods); and
(b) a model-free control strategy, that adapts the stimulation
amplitude based on temporally local statistics of tremor
prediction (in section 2.2 control signal generation robust to
non-stationary dynamics). In the following subsections, we will
describe both functional building blocks and the specificmethods
used to implement them1. At the end of the section, a brief
description of the Fahn-Tolosa-Marin (FTM) rating scale is
provided, which is a clinical assessment tool that characterizes
tremor intensity in patients and which we would also use for
supporting the assessment of tremor.

2.1. NM Identification Based on Machine
Learning Methods
The appearance of ET has been linked to dysfunctions in
the cortico-thalamic-cerebellar loop. Specifically, anomalies
in the connectivity and band-power activity of the motor
cortex have been identified as physiological surrogates of the
disease (Raethjen and Deuschl, 2012; van Wijk et al., 2012; Neely

1All methods were implemented using the publicly available MNE

python (Gramfort et al., 2013) and scikit-learn (Pedregosa et al., 2011).

et al., 2014). Therefore, we propose to use the band-power of
ECoG signals recorded from the primary motor cortex (M1)
as information source to learn patient-specific NMs for the
proposed data-driven tremor estimation.

Let y ∈ R
Ne be a vector containing average tremor intensity

measured at Ne time windows, as characterized from an IMU.
We propose to find a linear projection vector w ∈ R

Nf+1, where
Nf is the number of frequency bins of the ECoG signal, such that

ŷ = wTX (1)

with ŷ ∈ R
Ne denoting the predicted tremor intensity at Ne

time windows, and X ∈ R
Nf+1×Ne a matrix containing the

spectral power of selected frequency bins computed from Ne

time windows recorded from an ECoG electrode placed over M1,
and a row containing only ones, for bias estimation. Tremor
intensity y is an autocorrelated process since contiguous time
points are not necessarily independent; however, for the sake of
simplicity in our proof-of-concept system, we assume that the
measurements of y have sufficient temporal distance such that
the samples are independent and identically distributed. Under
this assumption, the weights w can be estimated by solving the
optimization problem argminw ||y− ŷ||2.

This ordinary least mean square regression problem can be
solved analytically, resulting in a weight vector w = (XXT)−1Xy.

2.2. Control Signal Generation Robust to
Non-stationary Dynamics
In the closed-loop study by Little et al. (2013), thresholds on
NMs to switch DBS on or off had been determined manually.
Similarly, the proportional control strategy by Rosa et al. (2015)
uses pre-estimated band-power ranges to determine a linear
mapping to DBS amplitude. These approaches were successful
(even in experiments involving freely moving PD patients) and
are referents in the field.

Those fixed mappings between observed NMs and amplitude,
however, presuppose the underlying neural system as a stationary
process. Nonetheless, this assumption is problematic in aDBS:
The dynamics of band power NMs are context-dependent
and change upon, e.g., sitting, walking, or during transitory
movement states (Bulea et al., 2014; Haddock et al., 2017). In
addition, they are co-modulated by other processes, such as
the circadian rhythm or medication intake (Pollok et al., 2012).
Therefore, we propose a time-varying mapping of ŷ to the
DBS-amplitude, based on local high and low tremor intensity
states, derived from moving statistics of the estimated tremor.
Specifically, we define an increase or decrease in DBS amplitude
1u by

1u =





ui, if ŷ > δt
h

ud, if ŷ < δt
l

0, otherwise

(2)

where ui ∈ R
+ and ud ∈ R

− are scalars that respectively indicate
an increase or decrease in stimulation amplitude, and δt

h
, δt

l
∈ R

+

are the corresponding time-varying thresholds at time point t.
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We use the Bollinger bands method (Bollinger, 2001) to
compute δt

h
and δt

l
. It is widely used in financial analysis for

detecting trends in assets pricing, characterizing relative high
and low states. In our case, the same principle is used to detect
whether the current tremor estimation delivered a relative high or
low intensity state, based on a short term history of the estimated
tremor ŷ. Specifically, δt

h
= aN

(
ŷt

)
+ KstdN

(
ŷt

)
and δt

l
=

aN
(
ŷt

)
−KstdN

(
ŷt

)
, where K ∈ R

+ is a scaling constant, aN
(
ŷt

)

is themoving average of ŷ computed in the time interval [t−N, t],
and stdN

(
ŷt

)
defines the standard deviation of ŷ in the same

period of time.

2.3. Binary and Graded aDBS
We propose two approaches for determining the control
signals ui and ud, inspired by the threshold-based aDBS and
proportional aDBS systems used in Little et al. (2013), Rosa et al.
(2015), and Velisar et al. (2019):
In the data-driven binary aDBS (b-aDBS), only DBS “on” and
“off” states are considered, i.e., ui = −ud = AcDBS, where AcDBS

corresponds to the patient-specific DBS amplitude optimized by
a trained expert for clinical cDBS therapy.
In the data-driven graded aDBS (g-aDBS), a granular control of
the DBS amplitude is provided by ui = −ud = 0.5V , which is
the minimum voltage change 1u implementable in the available
hardware platform.

In both cases, the stimulation amplitude is restricted to the
interval [0,AcDBS].

2.4. Clinical Assessment of Tremor
In a standard clinical context, the FTM is used for assessing the
tremor intensity in ET patients and the corresponding efficacy
of DBS or standard pharmacological treatment. We will use the
FTM scale as one of the assessment criteria for our developed
systems. The FTM assessment is divided into several items that
evaluate axial symptoms, motor activities (such as drawing or
water pouring), as well as tremor intensity in specific limbs. These
items are scored with integer numbers from 0 (no tremor), up to
4 (tremor amplitude >2 cm). For more details about the FTM
scoring system, we refer the reader to the original publication
(Fahn et al., 1993).

3. EXPERIMENTAL SETUP

3.1. Patients
This study was conducted under supervision of the University
of Washington Institutional Review Board following the set
of ethical principles outlined in the Declaration of Helsinki
regarding human experimentation. Experiments were conducted
in five sessions performed with three right-handed patients
diagnosed with ET: one session with patient 1 (S11), and two
sessions each with patient 2 (S12, S

2
2), and patient 3 (S13, S

2
3).

All patients were unilaterally implanted with DBS electrodes in
the left ventral intermediate nucleus and with an four-electrode
linear ECoG strip (re-purposed Medtronic Resume II spinal cord
stimulation electrode with four contacts) over the hand area of
the left M1. The ECoG strip was positioned using steady state
evoked potentials obtained from the median nerve to identify the

hand sensorimotor cortex. The canonical ventral intermediate
nucleus coordinates are targeted based on the anterior and
posterior commissural points (AC/PC) rectification of MRI and
corrections based on patient anatomy. X is left-right, Y is
anterior-posterior, and Z is superior-inferior. Canonical target
is: X = 0.55 × AC/PC distance lateral to midline; Y = 0.25 ×

AC/PC distance posterior to mid-commissural point (half the
distance between AC and PC); Z is at a plane defined by the line
between AC and PC. Additionally, the location of the internal
capsule and the width of the third ventricle is examined. The
electrode is positioned at least 3 mm from the border of the
internal capsule, which is usually about 10.5 mm + 1/2 the width
of the third ventricle, roughly corresponds the X as calculated
above. DBS lead and ECoG strip location were confirmed with
post-operative CT scan.

Signal acquisition and DBS was performed with the
implantable Medtronic Activa PC + S, an investigational
neurostimulator approved for use in this research through both
an FDA investigational device exemption. The ECoG recording
electrode configuration was determined in a different study as the
most effective for achieving volitional control of DBS, with the
same patient population here presented (Houston et al., 2018).

Excepting stimulation amplitude, DBS parameters were kept
unchanged from clinical decisions, and thus vary between
subjects, as found in Table 1. The same table shows the
time elapsed between implantation surgery and execution of
the corresponding experimental session, and amount of data
collected per session.

3.2. Session Design
Figure 1 shows an overview of the implemented system and its
individual components, as described in the previous section. In
the following, the training and testing stages of the system will
be explained.

3.2.1. Training Data Collection
Training data was collected during a cDBS parameter
optimization procedure carried out for a parallel study (please
refer to Haddock et al., 2018 for further information). Patients
sat at rest in a chair with hands in their laps; for each trial, the
experimenter prompted patients to move the dominant hand
to a patient-specific tremor-eliciting posture, where it was held
during a 10 s interval, followed by a 30 s rest period. For the

TABLE 1 | Information about experimental sessions: Months since implantation

(MSI), therapeutical cDBS parameters (amplitude, frequency, and pulse width),

total amount of rest and posture trials, and the resulting time segments utilized for

training the tremor decoding model.

MSI cDBS parameters Rest-posture trials Ne

S11 22 2.5 V, 140Hz, 90 µs 22 220

S12 13 3.9 V, 130Hz, 90 µs 20 200

S22 16 4.1 V, 130Hz, 90 µs 20 200

S13 5 2.9 V, 140Hz, 60 µs 20 200

S23 12 3.1 V, 140Hz, 60 µs 30 83
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FIGURE 1 | Scheme of the implemented data-driven aDBS system, for training and online stages. Firstly, ECoG data and IMU data are collected for training the

tremor estimation model. During the online stage, the tremor estimated by the trained linear regression model of Equation (1) is used for generating the DBS control

signal in Equation (2).

tremor-eliciting posture, patients were instructed to conduct
the “arms extended” and “wing-beating” postural tests of the
TETRAS test (Elble et al., 2016). If these tests did not generate
sufficient tremor, patients were asked to hold a posture they
knew to be especially troublesome while untreated. Specifically,
for S1 and S3, the “wings” posture was most effective, while for
S2 imitating the act of holding a screwdriver to a fixed point was
most effective.

Even though different DBS configurations were applied
throughout the stage, only trials performed during DBS-off were
used as training data. From these trials, only posture segments
were used. Restricting our analysis to the posture condition only
is not a useful distinction in a clinical aDBS. However, for this
pilot study, we want to prioritize NMs that do not represent
voluntary movements. In a scenario where one would consider
both, posture and rest conditions, then the derived labels y
would be structured as two large clusters of tremor activity
corresponding to these conditions. The tremor would vary within
each of them, but the largest variation might be between them.
So if both conditions are considered, any NM that we extract to
capture variations in tremor, might be related to tremor itself
(and would be an appropriate feedback signal for the aDBS
system), or might be related only to posture and rest conditions
but unrelated to any pathology. The latter, of course, would be
unsuitable as a feedback signal for the control system because
the tremor label would have acted just as a label of rest/posture
conditions, and not as a label of pathological tremor.

The total amount of rest-posture trials collected during this
stage can be found in Table 1.

3.2.2. Online Stage—Posture Prompt
Following the training run, the b-aDBS and g-aDBS approaches
were applied online. Analog to the training stage, a computer
screen prompted patients to remain at rest during 20 s, and
then to hold that same patient-specific tremor-inducing posture

during 30 s before going back to the rest position. In total, 12 rest-
posture trials were collected for each controller type during this
online stage.

3.2.3. Online Stage—Clinical Assessment
In the final phase of the experimental sessions, the clinical efficacy
of the aDBS strategies was compared to cDBS and DBS off, using
parts A and B of the FTM scale (Fahn et al., 1993). The FTM tests
were captured on camera and the videos were evaluated offline
by two blinded clinical experts. Due to time constraints, the FTM
assessment could not be performed for all aDBS conditions. As
previous studies indicate a similar clinical outcome of binary
aDBS and cDBS (Herron et al., 2016), we decided to perform the
video recordings for g-aDBS only and not for b-aDBS. Due to
logistic constraints, this clinical assessment was performed only
for sessions S12, S

1
3, and S23.

3.3. Signal Acquisition and Pre-processing
LFP data was recorded from a single ECoG channel with a
sampling rate of 422Hz. Data was streamed at 400ms intervals
from the Activa PC + S unit to an RF receiver connected through
USB to an external computer, where all relevant computation
was conducted. Angular velocity and linear acceleration were
recorded in three orthogonal spatial directions at 100Hz using
the IMU contained in an LG G smartwatch fastened onto
the subject’s right wrist, resulting in six IMU channels. Since
ECoG and IMU data were acquired with different systems at
different sampling rates, signals had to be aligned with respect
to a common timestamp. This alignment was updated with the
beginning of each rest-posture trial. IMU signals were band-
pass filtered with a 5-th order butterworth filter in the band
corresponding to pathological tremor, i.e., [4 − 7]Hz. This
frequency band was fixed for all sessions, however, we confirmed
in the offline analysis that the pathological tremor for all patients
was found in this frequency band (not shown).
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The aligned IMU and ECoG signals were segmented into ten
continuous, non-overlapping 1 s epochs per trial, such that up
to 220 epochs were available per patient. An artifact rejection
stage was applied, removing segments containing ECoG signals
with a peak-to-peak amplitude ≥ 3mV. For training data,
segments belonging to the transient stages of movement—i.e.,
transitions between rest and posture conditions, and vice versa—
were removed from the analysis. Such segments were identified
by detecting epochs where any IMU channel showed a standard
deviation of more than five times the IMU channel-wise average
standard deviation across epochs, in the tremor frequency band.

Table 1 shows the final number of epochs Ne available for
training of the tremor decoding model. Note that for S23, ∼72%
of the epochs had to be rejected due to artifacts and inconsistent
patient’s pose during the posture condition. For the rest of the
sessions, all data collected during posture was utilized.

3.4. Signal Characterization
3.4.1. Tremor Characterization
For obtaining tremor labels y, the envelope of the band-pass
filtered IMU signals was extracted as themagnitude of the Hilbert
transform. Average channel-wise IMU power was computed
for each of the epochs by averaging the envelope across time.
The resulting Ne × 6 matrix was subsequently standardized
along the first dimension. Finally, principal component analysis
(PCA) was performed and the signals were projected onto the
principal component associated with the largest eigenvalue of the
corresponding decomposition, thus yielding an unidimensional
representation of tremor intensity, used as the ground truth label
y for training and validating the regression model in Equation 1.

3.4.2. Neural Signal Characterization
For extracting neural features, the power spectral density (PSD)
of the ECoG signal was computed for each epoch using theWelch
method based on the fast Fourier transform computed with 256
coefficients. Only spectral features in the interval [3−25]Hz were
considered for further analysis, resulting in fourteen 1.56Hz-
wide frequency bins. The motivation for limiting the analysis to
this frequency band lies on the spectral properties of stimulation
and muscle artifacts, which are sometimes detectable in the
>25Hz rhythms. Even though ECoG signals are rather robust
to muscle artifacts compared to non-invasive recordings, such as
electroencephalographic signals, the pilot character of our study
called for a more conservative approach to the experimental
setup, which further enforced this design decision. However, we
think that limiting the spectral analysis to this band does not
erode the significance of results obtained, since NMs found in the
literature are also typically found in this frequency range.

3.5. Training of the Tremor Decoding Model
A subset of the 14 ECoG spectral features were used to construct
a patient- and session specific training data set X. The subset
was determined using a top-down feature selection procedure,
where the full spectral feature set was iteratively pruned until
the regression model’s performance ceased to increase. In each
iteration, the least important feature, as characterized by the
corresponding weight in w was removed and the linear model

was re-trained with the remaining features. Using a chronological
5-fold crossvalidation procedure (without sample shuffling), the
decoding performance was assessed using the Pearson correlation
coefficient ρ between y and ŷ. If a performance increase with
respect to the previous iteration was observed, the pruned
feature was left out and the iterative procedure was continued.
Otherwise, the pruning stopped.

3.6. Control Signal Generation
Themoving statistics determining δt

h
and δt

l
were computed using

a time window of 20 s and a standard deviation scaling constant
K = 2. These hyperparameters were not optimized per patient
but fixed prior to the study. A control signal was issued according
to the rules defined in sections 2.2 and 2.3 every time a new data
package was available, i.e., every 400ms.

4. RESULTS

4.1. Spectral Feature Relevance
Figure 2 shows the average PSD calculated for training data and
the corresponding correlation ρ between band-power in each
frequency bin of the ECoG signals and labels y. Furthermore,
the features selected by the top-down feature selection procedure
are highlighted in green. The spectra show a high inter-patient
variability: for patient 1, the spectrum is characterized by a
prominent beta peak, similar to patient 3, whereas patient 2
is dominated by an alpha-band component. There is also a
pronounced within patient variability across sessions in terms of
the absolute spectral power. The frequency band of prominent
spectral peaks, however, is constant across sessions within
subject, i.e., alpha-band for patient 2 and beta-band for patient 3.

Power band features revealing the strongest correlation with
tremor intensity vary considerably between patients: for S11, S

2
3,

and S12 the frequency bins with the strongest correlation are
in the alpha- and theta-band, whereas for S22 and S13 the most
informative frequency bins are found beyond 10Hz, mainly in
the higher beta-band.

In contrast, features selected for inclusion in the tremor
prediction model were found all across the spectrum analyzed.
The absence of spectrally compact features may be explained
by the high redundancy of neighboring frequency bins and as
the feature selection procedure typically selects one only out of
multiple bins with redundant information.

Figure 3 shows a representative example of the robustness of
the spectral features used for tremor decoding under different
DBS conditions. Specifically, it depicts a segment of ECoG data
recorded during the online phase of session S1. The stimulation
artifact is clearly visible, nevertheless, it does not impede
measurement of low-frequency components due to saturation of
the amplifiers or sub-harmonics of the stimulation.

4.2. Tremor Estimation Accuracy
Table 2 shows the average Pearson correlation coefficient
between estimated and true tremor intensity2. They indicate the

2For S11 no IMU data was available during the online stage and consequently,

tremor decoding accuracy scores can not be reported. For S23, no online stage was

executed for b-aDBS due to time constraints.
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FIGURE 2 | Session-wise averaged PSD computed for training data. Bars on the bottom show the Pearson correlation achieved between each frequency bin and

true tremor labels y. Highlighted in green are the frequency bins selected by the feature selection algorithm. Marked with gray are frequency bins that were not used

for the analysis.

FIGURE 3 | Time-frequency representation of the ECoG signal during

stimulation on and off for a representative example (S1). Although stimulation

artifacts are clearly visible, signal is not saturated and lower-frequency

components are measurable even during stimulation on.

tremor decoding accuracy during training and online stages.
As a baseline, the average correlation between the theta-band
power and true tremor intensity is also considered, which is
a well-known NM for ET stemming from group-level studies
(Kane et al., 2009). All scores derived from the training stage
were computed using a 5-fold crossvalidation without shuffling.
Statistical significance was defined at an uncorrected p < 0.02
for the probability that the score was obtained by chance under a
bootstrapping procedure for 1,000 label shuffles.

It can be observed that the proposed data-driven tremor
decoding model achieved a significant correlation in four out of
the five sessions for the training stage. During the online stage,
in three out of four sessions conducted, statistically significant
decoding performance was obtained. Overall, the decoding
performance of the data-driven model is superior to the fixed
theta-band power, however, the correlation achieved is weak in
all sessions analyzed. Figure 4 shows a representative example of
measured vs. estimated tremor, for session S13.

TABLE 2 | Average linear correlations between estimated and true tremor

intensities.

Training stage Online stage

Theta-power

(4–7Hz)

Data-driven Informative

band

b-aDBS g-aDBS

S11 −0.06 0.39∗ alpha n/a n/a

S12 0.22∗ 0.21∗ theta/alpha −0.15 −0.10

S22 0.16 0.22∗ beta 0.05 0.12∗

S13 −0.14∗ 0.29∗ theta/beta 0.29∗ 0.35∗

S23 −0.18 0.05 theta n/a 0.20∗

Statistical significance (indicated by ∗) is defined at an uncorrected p < 0.02 obtained with

a bootstrapping procedure with 1,000 label shuffles. Additionally, column informative band

shows the frequency band with the largest correlations with tremor intensity, according to

Figure 2.

FIGURE 4 | Example scatter plot for S1
3 of predicted vs. measured tremor

intensities discriminated between posture and rest conditions.

4.3. Control Signals Distribution
Figure 5 shows an illustrative example of the control signal,
including the Bollinger bands, as well as measured and predicted
tremor. As expected, predicted and measured tremor intensity
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FIGURE 5 | Illustrative example of the control signal for b-aDBS computed

during the online stage of S1
3. There is a clear correlation between posture

condition and tremor intensity, both predicted and measured, thus, triggering

stimulation mainly during posture condition.

increases during the posture condition, triggering the stimulation
most of the times.

Figure 6 shows the average stimulation time during the
online stages, compared to the equivalent cDBS strategy. It
can be observed that for all types of controllers, the average
time stimulated was considerably lower than that of the cDBS
strategy. Furthermore, there is an indication for low intra-
subject variability of average stimulation, whereas inter-subject
variability might be larger. The total stimulation duration of
b-aDBS and g-aDBS strategies was similar within patients.

4.4. Tremor Suppression in Online Stage
Figure 7 compares tremor intensity suppression (1 − y)
between all stimulation strategies during online stages, under
posture condition. Each box shows at the standardized mean
difference of the pairwise comparison (top) and the p-values
of the corresponding Mann-Whitney rank test (bottom). If
standardized mean difference is negative, no values are shown.
For S23, no significant difference was established among all
considered conditions, whereas for S12 and S13, adaptive strategies
achieved superior tremor suppression than cDBS and improved
upon DBS-off. For S22, all stimulation strategies improved
upon DBS-off, but no differences could be found among
them. Even though, we expected aDBS to perform as good
as cDBS, and better than DBS-off, cDBS only performed
better than DBS-off in S22, and even worse in S13, suggesting
a suboptimal setting of therapeutic parameters in cDBS.
Overall, all significant differences reflect a small to medium
size effect.

4.5. Clinical Tremor Assessment
Table 3 shows the FTM scores averaged for both clinical
raters. Axial scores reported here comprises the sum of face,
tongue, head, and trunk tremor scores. The scores for left/right
upper/lower tremor comprises the sum of scores obtained during
rest, posture, and action (finger to nose and toe to finger). For

FIGURE 6 | Average time stimulated relative to the stimulation using the

equivalent cDBS strategy.

subtests with a discrepancy between clinical raters >1 point,
we marked the averaged value (*) and provided both individual
scores in parenthesis.

Considering the total FTM score per session, the proposed
g-aDBS strategy did not lead to a worse FTM score than DBS
off in none of the three sessions. The g-aDBS system achieved
at least a moderate symptom suppression in two out of the
three online sessions analyzed (S12 and S13). In these two sessions,
cDBS and DBS off did not perform significantly different, while
the g-aDBS score improved moderately by 2 points for S12 and
markedly by 3.5 points for S13. For S

2
3, g-aDBS did not improve

the symptoms compared to DBS off, while standard treatment
cDBS reached an improvement of 2 points, indicating a moderate
tremor amelioration.

A closer look at the subtests of FTM reveals that at least one
point of improvement (mild tremor amelioration) between g-
aDBS and the baselines cDBS and DBS off were obtained for axial
and upper lateral scores for S12. For S13, handwriting, drawing,
and pouring liquid with the right hand were the sub-tests for
which g-aDBS achieved a mild improvement. Interestingly for S23,
g-aDBS did not worsen any symptom by more than one point
(mild worsening). However, it improved drawing with the right
hand by one point, compared to DBS off. In the other sub-tests,
differences were at most 0.5 points, which is within the expected
fluctuations over the course of a day (Pulliam et al., 2014) and
indicates a marginal effect upon symptoms.

The b-/g-aDBS strategies were driven by NMs for right
hand tremor (location of the IMU) extracted during posture.
Consequently, it is important to analyze the specific scores for
this item of the FTM individually: clinical raters assessed right
hand postural tremor under DBS off for all the sessions as
either absent (FTM score 0) or slight (FTM score 1 meaning
an amplitude of <0.5 cm). These low tremor ratings may also
offer an explanation for the low size effects shown in Figure 7.
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FIGURE 7 | Pairwise comparison of tremor intensity under different stimulation strategies during the online stage (only posture segments). In green, it is highlighted if

the method in the y-axis achieved a greater tremor suppression compared to the corresponding method in th x-axis. In each box, top number indicates the effect size

and bottom number the corresponding p-value obtained with the Mann-Whitney rank test, comparing the method on the y-axis against the corresponding method in

the x-axis. Only positive effect sizes are shown. Green boxes indicate uncorrected p <0.05. For the comparison, 1 s windows were used, extracted from the 30 s

posture intervals of the 12 trials executed for the online stage.

TABLE 3 | Averaged scores of parts A and B of the FTM assessment for sessions S1
2, S

1
3, and S2

3.

S12 S13 S23

Test cDBS DBS off g-aDBS cDBS DBS off g-aDBS cDBS DBS off g-aDBS

Axial 1.5 1.5 0 0.5 0 0 0.5 0 0

Speaking 1 0.5 1 0 0 0 0 0 0

Handwriting 0.5 0.5 0.5 0 2.5 0.5 0.5 1.5 1

Left upper 4.5 3.5 3.5 2* (1/3) 1* (0/2) 1.5 1 1* (0/2) 1.5

Left lower 0 0.5 0.5 0 0 0 0 0.5 0.5

Left drawing 3 3 3 1.5 1 1 1.5 1 1.5

Left pouring 3 3 3 0.5 0.5 0 0 0 0.5

Right upper 3 4* (5/3) 3* (4/2) 3.5 3 3 2.5* (4/1) 3 3

Right lower 0 0 0 0 0.5 0.5 0.5 0.5 0.5

Right drawing 1.5 1 1 2 2 1 1.5 2 1

Right pouring 1 1 1 1 1 0 0.5 1 1* (0/2)

Total 19 18.5 16.5 11 11.5 7.5 8.5 10.5 10.5

Scores marked with a ∗ indicate a discrepancy of more than 1 point between the scores assigned by each of the clinicians, followed by the individual scores in parenthesis. Due to

logistical constraints, FTM assessment is only available for g-aDBS.

Under cDBS, it was reported that in S12 and S23 tremor improved,
while for S13 no difference could be established. The evaluation
of the g-aDBS strategy showed the same improvement as for
cDBS, except for one of the clinical raters who stated that
for S12 tremor increased by 1 point to moderate (0.5–1 cm
tremor amplitude).

5. DISCUSSION

We have presented a proof-of-concept study demonstrating the
suitability of data-driven closed-loop aDBS strategies for treating
ET patients. Our proposed system is based on session-specific,
data-driven NMs obtained by a machine learning model, and
a model-free control strategy accounting for non-stationary
dynamics of the controlled system.

5.1. Using Machine Learning for
Data-Driven Decoding of Tremor
Using our data-driven approach, tremor intensity could be
decoded from spectral information contained in M1 ECoG
signals, yielding a correlation value ranging from 0.21 to
0.39. This is a significant improvement compared to tremor
decoding using solely theta-band power. Using the latter, a
significant decoding performance was achieved in only two
sessions. It is noteworthy that in one of the two sessions where
theta-band power was informative about tremor intensity, a
negative correlation was found. This not only evinces the poor
generalization of NMs motivated by top-down approaches, but
also shows the ambiguity in their information content. One
observation confirmed by the D Agostinos K2 test is that the
kurtosis and skewness of tremor y and estimated tremor ŷ
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deviate from a Gaussian distribution. This calls for caution
when using the Pearson correlation coefficient, as in our case.
However, the absence of long tails and outliers, and the fact
that only the relative differences in correlation are important in
our approach, makes this chosen decoding performance score an
acceptable selection.

Furthermore, our decoding approach demonstrates that
informative features are present in power of frequency bins found
in the range of [3 − 25]Hz and that the tremor estimation
should not be limited to a single frequency band defined a priori.
This result does not only confirm the necessity of data-driven
NMs identification for ET, but also has important implications
in the development of aDBS systems for more phenotypically
heterogeneous disorders, such as PD, where patient and symptom
specific characterization of the motor symptoms may improve
aDBS even further.

We have also identified non-stationary dynamics contained
in the NMs used. We have observed variations of global
spectral features across sessions, as well as heterogeneity in the
spectral feature information content, as described by the varying
correlation scores between power in individual frequency bins
and the tremor intensity, within patient, across sessions. Such
variability in the feature information content and in tremor
decoding performance within subject—for example S13 and S23—
suggest an underlying mixture of processes that might correlate
with tremor intensity, but that cannot be captured from spectral
features extracted only from one contralateral ECoG channel
in M1. Consequently, multimodal and multidimensional data-
driven NMs should be explored.

5.2. Generation of Dynamics-Aware
Control Signal
The model-free control strategy implemented in our system
accounted for non-stationary dynamics of tremor estimation.
Although, the number of patients included in the study is
too small for a statistical analysis, the few sessions available
indicated that accounting for non-stationary dynamics can allow
to identify local tremor states. Their existence may explain
symptom suppression achieved by our g-aDBS system in a wider
variety of conditions during the FTM evaluation, compared to
cDBS and DBS off.

Our control strategy does not account for non-stationary
dynamics in the NMs space, but directly in the space where
tremor estimation is found. However, different neural features
may be governed by different non-stationary dynamics stemming
from factors, such as the circadian rhythm, current physical
activity, medication, and surgery-induced stun-effect. Therefore,
accounting for non-stationary dynamics directly in the NM space
might provide a more robust feedback signal. This should be
subject to future studies, where a longer time horizon shall enable
the study of multi-time scale dynamics as described above.

5.3. Clinical Assessment
From a clinical perspective, the g-aDBS strategy performed better
than cDBS in two out of the three sessions assessed with the FTM
scale. Unfortunately, one of the limiting factors in our study is
that only the g-aDBS strategy, and not b-aDBS, was evaluated

using the FTM scale. In general, the clinical evaluation of motor
diseases, as PD and ET, requires a highly trained clinician and a
lengthy assessment protocol. Such requirements play amajor role
in time-constrained situations as those encountered in typical
experimental sessions.

An interesting observation regarding the FTM assessment
under g-aDBS is that for S13, the strongest symptom
improvements were achieved for the right side of the body.
Even though, the reduced number of sessions limits the
interpretability of this observation, a possible explanation for
this may be that the g-aDBS controller was triggered by NMs
extracted from the left hemisphere, resulting in a right-sided
biased symptom suppression. As a consequence, we suggest that
NMs should be extracted bilaterally.

From the patients’ perspective, they could clearly differentiate
between no stimulation and active stimulation, but could not
identify substantial differences between cDBS and g-aDBS. In b-
aDBS, patients reported occasional paresthesias in their treated
upper limb. This mainly occurred while stimulation was ramping
up from 0 to the maximum amplitude due to the ramping rate
required to keep b-aDBS effective (Meidahl et al., 2017).

5.4. Power Consumption Optimization
Our system achieved a reduction of at least 24% and as
much as 80% of stimulation time. According to Khanna et al.
(2015), the breakeven point of the Activa PC + S regarding
power consumption in closed-loop mode is at a reduction of
6%. Therefore, our system allows a considerable reduction in
power consumption well above this threshold. It is important
to mention that modern systems, such as the Activa RC by
Medtronic or Vercise by Boston Scientific, have rechargeable
battery systems, where power consumption is not as critical as
in older non-rechargeable systems. Another typical constraint
when implementing aDBS in clinical grade systems is that
the available platforms have low computational capacity, which
limits the complexity of the algorithms that can be used.
Fortunately, most computationally expensive parts of our system
can be implemented by a fast Fourier transform (power
spectrum estimation) and a linear projection (tremor estimation
model). Both operations are relatively inexpensive and are
easily implementable in simple embedded systems contained in
modern DBS.

5.5. Limitations and Open Questions
5.5.1. Clinical Open Questions
The greatest limiting factor of our current contribution is the
small sample size and partially conflicting outcome regarding the
efficacy of the clinical cDBS condition used as control. Specifically
according to the FTM scale, cDBS only performed better than
DBS-off in one session, suggesting that cDBS suffered suboptimal
therapeutic parameter settings, which may also define a ceiling
for the effect of aDBS. This calls for a larger clinical study, where
the efficacy of the proposed system can be drawn as a statistically
sounding conclusion.

Another important item is clinical safety of our approach.
Even though our patients did not report any side effects during
treatment with aDBS (besides transient paresthesias) and we
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think that our strategy does not represent any risk different from
those encountered in existing aDBS strategies, the safety profile
of our approach is still an open issue and should be further
investigated with more patients.

5.5.2. Technical Open Questions
From a technical point of view, there are also several open
questions to consider. First, we limited the training segments
to posture condition only, this allowed us to obtain a model
that effectively decodes tremor intensity during tremor-inducing
conditions and should not contain discriminative information
about the posture itself or movement onset. If rest segments
would have also been included, our model would potentially
learn to decode the motor task (going from rest to posture and
viceversa). Although, detection of movement onset may provide
additional information for controlling the system (Herron et al.,
2017; Tan et al., 2019), our main goal was to obtain an aDBS
system relying on symptom surrogates. This design decision
limits the generalization of our approach to other postural
conditions, which should be subject of further investigation.

Our system can account for spectral fluctuation of a specific
NM in short and long term, since the Bollinger-bands consider
a history of its activity. A large contextual change (e.g., falling
asleep), however, may render the chosen NM uninformative and
would limit our approach. In this case, an adaptation of the
decoder (i.e., using a different NM) will be necessary. This shall
be subject to future studies.

Finally, limiting the features to spectral power of M1
signals might reduce the decoding power of the underlying
machine learning model. To improve upon this limitation,
future systems shall include more complex features,
for example as used by Yao et al. (2020) in their most
recent work.

6. CONCLUSIONS

Our contribution offers the first data-driven aDBS system
based on machine learning methods, accounting for
short-term non-stationary dynamics, and allowing online
patient-specific optimization in DBS therapy. As outlook,
we foresee the clinical validation of the novel strategies
presented here and the development of more advanced decoding
techniques and control strategies to tackle the open challenges

regarding non-stationary dynamics present in diseases, such
as PD.
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