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Abstract: Dietary lipids provide energy for growth and development and provide fatty acids neces-
sary for normal structure and biological function. However, oxidized lipids cause oxidative stress
and intestinal damage. An 8-week feeding trial with fresh fish oil (FFO, control group), oxidized
fish oil (OFO), and taurine-supplemented diets (OFOT, OFO + 0.2% of taurine) was conducted
to evaluate the protective effect of taurine on oxidized fish-oil-induced liver oxidative stress and
intestine impairment in juvenile Ictalurus punctatus. The results showed that (1) Growth performance
was significantly lower in fish fed OFO than in those fed other diets, whereas the opposite occurred
in the hepatosomatic index. (2) OFO-feeding significantly increased lipid deposition compared with
the FFO group. The addition of taurine ameliorated the OFO-induced increase in lipid vacuoliza-
tion in the liver, significantly upregulated lpl mRNA expression, and downregulated fas and srebp1
mRNA expression. (3) OFO-feeding significantly reduced oxidative damage of liver. Compared with
the OFO group, the OFOT group remarkably upregulated antioxidant enzyme mRNA expression
through the Nrf2-Keap1 signaling pathway based on the transcriptional expression. (4) OFO diets
induced intestinal physical and immune barrier damage. Compared with the OFO group, OFOT
diets remarkably downregulated il-1β, il-6, tnf-α, and il-8 mRNA expression and upregulated tgf-β
mRNA expression through the NF-κB signaling pathway. Besides, the addition of taurine to OFO
diets significantly upregulated zo-2 and zo-1 mRNA expression, and downregulated claudin-15 and
claudin-12 mRNA expression. In conclusion, oxidized-fish-oil diets can cause negative physiological
health effects in Ictalurus punctatus, while adding taurine can increase growth and antioxidant ability,
reduce lipid deposition, and improve intestinal health.

Keywords: channel catfish; oxidative damage; immune response; intestinal health; signaling pathway

1. Introduction

It is well known that, as one of the important nutrients of aquatic animals, dietary
lipids not only provide energy for growth and development in fish, but also provide the
essential fatty-acid and fat-soluble vitamins that maintain normal structure and biological
function [1]. At present, the main lipid sources in aquatic feed are fish oil and soybean
oil. Compared with soybean oil, fish oil has a high content of unsaturated fatty acids
(HUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and
a good feeding attraction effect, so it is the best lipid source for aquatic animals [2,3].
However, EPA and DHA are easily oxidized during the storage and processing of fish
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oil and feed, producing harmful substances such as lipid hydroperoxides, ketones, alde-
hydes, and acids [4,5]. Studies have also reported that feeding an oxidized-fish-oil diet
has been found to decrease growth performance and cause oxidative stress of tilapia
(Oreochromis niloticus) [6], Wuchang bream (Megalobrama amblycephala) [7], and orange spot-
ted grouper (Epinephelus coioides) [5], disrupt lipid metabolism of Rhynchocypris lagowski
Dybowski [8], and induce intestinal injury of Megalobrama amblycephala [9] and rice field eel
(Monopterus albus) [10]. Therefore, exploring effective dietary strategies is imperative to
alleviate the negative effects of oxidized-fish-oil diets on aquatic animals.

Taurine is a type of non-protein amino acid in the form of a free amino acid, which has
a wide range of physiological functions, such as calcium homeostasis, osmotic regulation,
membrane stability, and antioxidant and anti-inflammatory functions [11,12]. Many studies
have also demonstrated the versatility of taurine in aquatic animals. Previous studies in
our laboratory indicated that taurine supplementation in a low-fish-meal diet increased
growth performance and immunity function and enhanced anti-stress ability in black carp
(Mylopharyngodon piceus) [13] and rice field eel [14]. Similar studies have found, in other
aquatic animals, that taurine can increase growth performance, enhance antioxidant ability,
improve intestinal health, and reduce lipid deposition of seabass (Dicentrarchus labrax) [15],
grass carp [16], and California yellowtail (Seriola dorsalis) [17]. However, there is no report
on whether taurine can alleviate the negative effects caused by oxidized-fish-oil diets in
aquatic animals. Therefore, we have carried out related research.

Channel catfish (Ictalurus punctatus), which belongs to catfish family (Siluriformes),
is an important freshwater aquaculture fish in China. Because of its delicious meat, high
nutritional value, and fast growth, it is welcomed by producers and consumers. In 2018, the
production of channel catfish exceeded 390,000 tons in the world, an increase of 3.34% over
the previous year [18]. Channel catfish has a high requirement for feed freshness, and feed
mildew, deterioration, and oxidation will have a negative impact on growth and health.
Therefore, this study aimed to investigate whether taurine can alleviate the negative effects
of lipid deposition, oxidative stress, and intestinal damage induced by oxidized-fish-oil
diets in juvenile channel catfish. It is of great significance to explore the side-effects of
oxidized fat ingestion on the growth and health of aquatic animals for the study of fish
nutrition and health, and to provide solutions for practical production and a theoretical
basis for the application of taurine.

2. Materials and Methods
2.1. Preparation of Oxidized Fish Oil

Oxidized fish oil was prepared by constant temperature water bath aeration. The
detailed steps are as follows: fill the beaker with fresh fish oil, place it in a constant
temperature water bath at 50 ◦C, insert the air pump snorkel into the container and aerate
it for five days. The peroxide value of the fish oil was monitored daily until it reached
897.4 meq/kg. The peroxide value of fresh fish oil was 9.2 meq/kg.

2.2. Experimental Diets

Three isonitrogenous and isolipid diets were designed in this experiment—fresh
fish oil (FFO, control group) diet, oxidized fish oil (OFO) diet, and OFO diet with 0.2%
taurine (OFOT) (Table 1). The ingredients were finely ground, sieved (0.25 mm), mixed
and supplemented with fish oil and soybean oil. A 10% volume of water of the weight of
the ingredients was added. After mixing, pellets were squeezed (1.0 and 1.5 mm in size)
and then dried naturally in the shade. The experimental diets were then stored at −20 ◦C
until use.
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Table 1. Composition and nutrient levels of basic diet (%, dry matter).

Ingredients FFO OFO OFOT

Fish meal 10.00 10.00 10.00
Soybean meal 28.00 28.00 28.00

Rapeseed meal 20.00 20.00 20.00
Rice bran 3.00 3.00 3.00

Wheat flour 25.26 25.26 25.06
Chicken meal 9.00 9.00 9.00

Fish oil 2.00 0.00 0.00
Oxidized fish oil 0.00 2.00 2.00

Premix 1 1.00 1.00 1.00
Choline 0.20 0.20 0.20

Ca(H2PO4)2 1.50 1.50 1.50
Mold inhibitor 0.03 0.03 0.03
Antioxidants 0.01 0.01 0.01

Taurine 0.00 0.00 0.20
Approximate composition (%) 2

Crude protein 36.27 36.14 36.31
Crude lipid 5.47 5.52 5.43
Crude ash 6.57 6.49 6.53

POV (meq/kg) 3.7 21.4 21.2
1 Provided by MGO Ter Bio-Tech (Qingdao, Shandong, China). Vitamin and mineral premix composition (mg/kg
diet): KCl 200 mg, KI (1%) 60 mg, CoCl2·6H2O (1%) 50 mg, CuSO4·5H2O 30 mg, FeSO4·H2O 400 mg, ZnSO4·H2O
400 mg, MnSO4·H2O 150 mg, Na2SeO3·5H2O (1%) 65 mg, MgSO4·H2O 2000 mg, zeolite power 3645.85 mg, VB1
12 mg, riboflavin 12 mg, VB6 8 mg, VB12 0.05 mg, VK3 8 mg, inositol 100 mg, pantothenic acid 40 mg, niacin
acid 50 mg, folic acid 5 mg, biotin 0.8 mg, VA 25 mg, VD 35 mg, VE 50 mg, VC 100 mg, ethoxyquin 150 mg,
flour 2434.15 mg. 2 Crude protein, crude lipid, ash, and POV were measured values. The detection method was
referenced to previous studies [19].

2.3. Experimental Animals and Feeding Experiment

Channel catfish were purchased from a fine seed farm (Wuhan, Hubei, China), and
the breeding experiment was carried out in the recirculating aquaculture system of Wuhan
Dabeinong Aquatic Science and Technology Co., Ltd. (Wuhan, Hubei, China). During the
acclimatization period, the FFO group was fed until the channel catfish showed obvious
feeding behavior, and then the fish were fasted for 24 h. Channel catfish fingerlings (average
weight 6.00 ± 0.01 g) were randomly distributed into 12 breeding barrels (diameter 1.0 m,
water depth 0.8 m, indoor) with three replicates in each treatment group, each containing
35 fish per replicate. During the 8-week the feeding trial, the channel catfish were manually
fed three times per day (8 a.m., 12 p.m., and 5 p.m.) at 3%–5% of their body weight. The
water temperature was maintained at 27.32 ± 0.17 ◦C, dissolved oxygen was more than
6.5 mg/L, and ammonia and nitrate were less than 0.2 mg/L.

2.4. Sample Collection

All experiments followed the regulations of Hunan Agricultural University for labo-
ratory animal protection. After the experiment, growth performance was calculated after
24 h of fasting. The fish were anesthetized with MS-222 (100 mg/L, Sigma Aldrich Co.
LLC., St. Louis, MO, USA) before sampling [19]. Three fish were taken from each breeding
barrel for tail vein blood collection, which was collected in a 2 mL centrifuge tube and
placed at 4 ◦C for 12 h. After that, the supernatant was centrifuged and stored at −80 ◦C.
Three fish from each breeding barrel were quickly dissected on ice, and the liver, intestine,
and skin (backside and abdomen) tissues were removed in enzyme-free centrifuge tube
(1.5 mL) and put it in liquid nitrogen, then stored at −80 ◦C.

2.5. Determination of Growth Parameters

The weight gain rate (WGR), feed conversion ratio (FCR), survival rate (SR), condition
factor (CF), hepatosomatic index (HSI), and viserosomatic index (VSI) were calculated,
as follows:
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Weight gain rate (WGR, %) = (final body weight − initial body weight)/initial body weight × 100 (1)

Feed conversion rate (FCR) = total amount of the feed consumed/(final body weight-initial body weight) (2)

Survival rate (SR, %) = final number of fish/initial number of fish × 100 (3)

Condition factor (CF, g/cm3) = 100 × whole body weight/(body length)3 (4)

Hepatosomatic index (HSI, %) = liver weight/whole body weight × 100 (5)

Viserosomatic index (VSI, %) = visceral weight/whole body weight × 100 (6)

2.6. Skin Pigment and Body Color Analysis

Three fish were randomly selected from each breeding barrel and tested on the back-
side and abdomen of each fish with a chromometer (model: 601, Beijing, China) to obtain
L*, a*, and b* values. “L*” is brightness: 0–100 from black to white; “a*” is red-green: red
is represented as a positive value, green is represented as a negative value; and “b*” is
yellow-blue: yellow is represented as a positive value, blue is represented as a negative
value. The activities of carotenoids, lutein, and tyrosinase in the backside and abdomen
skin of each fish were assessed by Elisa kits (Meimian, Jiangsu, China).

2.7. Biochemical Index Analysis

The levels of total cholesterol (TC), triacylglycerol (TG), immunoglobulin M (IgM),
complement 3 (C3), complement 4 (C4), alanine aminotransferase (ALT), and aspar-
tate aminotransferase (AST) in serum were assayed by using a commercial kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

The glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx),
malondialdehyde (MDA), glutathione reductase (GR), and total antioxidant capacity (T-
AOC) levels in the liver were assayed by using a commercial kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

2.8. Histological Analysis

There were three replicates in each treatment group, and three fish were taken from
each replicate. Liver and intestine were fixed in paraformaldehyde and embedded with
paraffin wax. According to the previous experimental method, the steps of hematoxylin-
eosin (H&E) staining were as follows: eight-micron tissue was taken on the glass slide with
a slicer, the tissue was stained with hematoxylin, and the results were observed under an
electron microscope [19]. Liver histological measurements covered 50 cells and the nuclei
of the analysed tissues collected from each individual.

2.9. Real-Time Polymerase Chain Reaction

Total RNA from the liver and intestine was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and the quality was assessed according to Shi et al. [20]. First-strand
cDNA was synthesized and RT-qPCR analysis of mRNA was performed according to a
previous report [20]. The amplification efficiency was between 0.95 and 1.10, as calculated
by the formula E = 10(−1/slope)−1. Primer sequences are shown in Table 2. With gapdh as
the reference, the calculation is carried out according to the E = 2−∆∆CT formula [21].

2.10. Statistical Analysis

All data were compared by one-way analysis of variance (ANOVA), and differences
between the means were tested by Duncan’s multiple-range test. All results are reported as
the “mean ± S.E.”, and all statistical analyses were performed using SPSS 24.0 (New York,
NY, USA). Differences were considered significant at p < 0.05 (p < 0.05) [22].
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Table 2. Primers used for mRNA quantitative real-time PCR.

Gene Forward Sequences (5′→3′) Reverse Sequences (5′→3′) Accession No.

fas CTGCTGTCTGAGGGCGTAA CGATGGCGATGAGGTTCT NM_001200193.1
lpl AGCAACATTACCCAACCTCAGC CCAGCTACATGAGCACCCAAA KF693235.1

srebp1 GTTGCGGAAGGCGATTGA GCAGTGGGCTGTTGGGTTC XM_017480901.1
sod GACTTGGGCAAAGGTGGAAA CACTCAGCAATGCCTATCACG NM_001200992.1

gpx1 TCTGAGGCACGACCACCA GCGTCTTTCCCGTTCACAT NM_001200741.1
gpx8 TCACTTCACCGTGTTGGCTT CCCTCAGCACTCACCAGAAA XM_017466944.1

gr GGATGTGAAGGATAAGCGAAAC TTCGGCAACACGGGTATG GU588318.1
keap1 CGGCAAGCATCTCAGTCG TGCTCGGGTCCAACTGC XM_017482237.1
nrf2 GGTCCACGCCTACCAACAA CAGGGAGGAATGGAGGGAT XM_017470076.1
zo-1 TACCAAACCGTGGATACAAACC CTTCTATGGGTGGAGGAGGC XM_017458510.1
zo-2 GAGGTCAAAGGGCAGCAAA GAAATCTTCGGGCAGGTCA XM_017488926.1

claudin-12 GCTGGGATGTTCCTCTTGATAG AGAGCGGCGAACTCAAGG XM_017453476.1
claudin-15 GTGGTTCTCGGCACATTCG CAAGCCCTGTAGGATGAAGAAG XM_017471911.1
occludin GCATCGGTAGCGGGTCAT GACTTGGTTGAGTTCTGCCTTG XM_017451558.1

tnf-α CGCCAGCGGTAAACACG CCGTTGAATGTCCGAAAGG XM_017464718.1
il-1β CTGAAGGGTGGAAACAAGGAT GGAGTCACCAGTGCCGTTT AJ586102.1
il-6 GAAGATTGATACTCCGCTCCTG GATTAAATGTAACAGCCTGGTGG XM_017455306.1
il-8 TCCAAGTGCCTCCTGTTCAA CCCTTCTTCCCTTGGACTTTAT KP701473.1
il-10 GCAGGCTTACGAAAGGGTTA CGGCGTATGAAGAACGAAGT XM_017450800.1

tgf-β1 GGAACGGCTGAGTGGGTCT TGCTTACTGAGGCGGCTATG XM_017483625.1
tgf-β2 TGAAGCGGTCAGCGAATG CTCACTCTTGTTTGGGATGATGTA XM_017476217.1
tgf-β3 TCGGTGCCCTGTCCTATTG GCGGAGAACGAGGCTTACA XM_017476492.1
nf-κb CTCAGCCCATCTACGACAACA CGTCAGGTTCGTATCGCAGT KF572025.1
gapdh TGTCCGTTTGGAGAAGCCT ATCAGGTCACAGACACGGTTG NM_001201199.1

3. Results
3.1. Growth Performance

As shown in Table 3, there was no significant change (p > 0.05) in VSI, CF, SR, or FCR
of channel catfish among treatment groups. Compared with the FFO group, WGR and final
weight of the OFO group were significantly reduced, while adding taurine significantly
increased (p < 0.05). HSI in the OFO group was significantly higher than that in the FFO
group (p < 0.05). Compared with the OFO group, HSI in the OFOT group significantly
decreased (p < 0.05), and there was no significant difference from the FFO group (p > 0.05).

Table 3. Effects of dietary taurine on the growth performance of channel catfish (Ictalurus punctatus)
fed oxidized-fish-oil diets.

FFO OFO OFOT p-Value

Initial weight (g) 6.00 ± 0.01 6.00 ± 0.01 5.99 ± 0.00 0.702
Final weight (g) 26.20 ± 0.14 b 23.43 ± 0.72 a 25.62 ± 0.40 b 0.036

WGR 336.53 ± 1.38 b 290.49 ± 11.93 a 327.27 ± 6.55 b 0.034
SR 97.14 ± 2.86 94.29 ± 2.86 93.33 ± 6.67 0.829

FCR 1.16 ± 0.04 1.35 ± 0.09 1.20 ± 0.08 0.223
HSI 2.26 ± 0.05 a 2.74 ± 0.12 b 2.46 ± 0.07 a 0.003
VSI 13.20 ± 0.66 13.67 ± 0.47 13.28 ± 0.30 0.781
CF 1.52 ± 0.04 1.57 ± 0.03 1.49 ± 0.01 0.216

Note: Data indicate the mean values of three replicate cages per treatment (three fish per replicate breeding
barrel). Mean values with different superscripts in a row are significantly different (one-way ANOVA, p < 0.05).
Weight gain rate (WGR, %) = (final body weight − initial body weight)/initial body weight × 100; survival rate
(SR, %) = final number of fish/initial number of fish × 100; feed conversion rate (FCR) = total amount of the
feed consumed/(final body weight − initial body weight); hepatosomatic index (HSI, %) = liver weight/whole
body weight × 100; viserosomatic index (VSI, %) = visceral weight/whole body weight × 100; condition factor
(CF, g/cm3) = 100 × whole body weight/(body length)3.
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3.2. Skin Pigment and Body Color

There was no significant change (p > 0.05) in L* of backside and b* of abdomen among
treatment groups (Table 4). Compared with the FFO group, carotenoids of backside and L*
of abdomen in the OFO group were significantly decreased (p < 0.05), lutein of backside
and abdomen were significantly increased (p < 0.05). Compared with the OFO group,
carotenoids, tyrosinase and a* of backside and tyrosinase and a* of abdomen in the OFOT
group markedly increased (p < 0.05).

Table 4. Effects of dietary taurine on skin pigment and body color of channel catfish
(Ictalurus punctatus) fed oxidized-fish-oil diets.

FFO OFO OFOT p-Value

Backside
Carotenoids (µg/mL) 16.00 ± 0.47 b 14.04 ± 0.32 a 18.42 ± 0.57 c 0.002

Lutein (pg/mL) 1746.8 ± 84.5 a 2331.8 ± 26.0 b 2243.5 ± 17.3 b <0.001
Tyrosinase (ng/mL) 4986.3 ± 43.3 a 4699.7 ± 87.4 a 5583.0 ± 120.0 b 0.001

L* 51.14 ± 0.49 53.24 ± 1.25 47.64 ± 2.87 0.125
a* −5.10 ± 0.06 a −5.44 ± 0.08 a −4.54 ± 0.29 b 0.008
b* 1.60 ± 0.23 a 2.49 ± 0.15 ab 2.07 ± 0.25 b 0.031

Abdomen
Carotenoids (µg/mL) 13.18 ± 0.23 a 13.61 ± 0.07 ab 14.91 ± 0.64 b 0.049

Lutein (pg/mL) 2216.0 ± 21.7 b 2391.8 ± 22.4 c 2083.5 ± 40.1 a 0.001
Tyrosinase (ng/mL) 4448.0 ± 31.8 a 4309.7 ± 57.0 a 4693.0 ± 75.5 b 0.009

L* 82.41 ± 0.20 b 81.52 ± 0.25 a 81.55 ± 0.14 a 0.011
a* −3.47 ± 0.06 ab −3.55 ± 0.06 a −3.31 ± 0.03 b 0.017
b* 8.19 ± 0.05 8.67 ± 0.12 8.01 ± 0.42 0.200

Note: Data indicate the mean values of three replicate cages per treatment (three fish per replicate breeding barrel).
Mean values with different superscripts in a row are significantly different (one-way ANOVA, p < 0.05).

3.3. Lipid Deposition and Histological Structure of Liver

The TG and TC contents in the OFO group were remarkably increased in comparison
with the FFO group, while supplementation with 0.2% taurine significantly reduced the
TG and TC contents (p < 0.05), there was no significant difference (p > 0.05) between
the OFOT and FFO groups (Figure 1A,B). In comparison of the OFO and FFO groups,
fas and srebp1 mRNA expression in the liver of the channel catfish were significantly
upregulated (p < 0.05), and lpl mRNA expression was significantly downregulated (p < 0.05)
(Figure 1C–E). The OFOT group significantly upregulated lpl mRNA expression, and
significantly downregulated fas and srebp1 mRNA expression compared with the OFO
group (p < 0.05). As showed in Figure 2 and Table 5, the OFO group remarkably decreased
the size of nuclei, and increased the size of hepatocytes (p < 0.05) compared with the FFO
group. The size of nuclei in the FFOT group was significantly increased compared with the
OFO group, whereas the opposite result was observed for the size of hepatocytes (p < 0.05).
Therefore, the fish fed OFO diets showed more hepatic lipid vacuolization than those fed
FFO or OFOT.

3.4. Serum Immune Indices

The OFO group significantly reduced IgM, C4, and C3 contents, while the supplemen-
tation of taurine remarkably increased (p < 0.05) these immune indices compared with the
OFO group (Table 6). In addition, compared with the FFO group, AST and ALT activities in
the OFO group were significantly increased (p < 0.05), while adding 0.2% taurine remark-
ably decreased the activities of AST and ALT (p < 0.05), there was no significant difference
(p > 0.05) between the OFOT and FFO treatment.
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Table 5. Effects of dietary taurine on the morphometrics of the liver of channel catfish
(Ictalurus punctatus) fed oxidized-fish-oil diets.

FFO OFO OFOT p-Value

Size of nuclei (µm) 6.57 ± 0.02 5.35 ± 0.03 6.61 ± 0.02 <0.001
Size of hepatocytes (µm) 17.03 ± 0.05 21.66 ± 0.26 17.02 ± 0.05 <0.001

Note: Data indicate the mean values of three replicate cages per treatment (three fish per replicate breeding barrel).

Table 6. Effects of dietary taurine on serum immune indices of channel catfish (Ictalurus punctatus)
fed oxidized-fish-oil diets.

FFO OFO OFOT p-Value

C3 (g/L) 1.04 ± 0.03 c 0.72 ± 0.02 a 0.87 ± 0.03 b <0.001
C4 (g/L) 0.65 ± 0.02 b 0.5 ± 0.02 a 0.69 ± 0.03 b <0.001

IgM (g/L) 1.42 ± 0.08 b 1.01 ± 0.03 a 1.37 ± 0.07 b 0.003
AST (U/L) 33.02 ± 6.31 a 56.45 ± 0.97 b 35.2 ± 0.42 a 0.008
ALT (U/L) 8.65 ± 0.58 a 13.33 ± 0.77 b 7.57 ± 0.62 a <0.001

Note: Data indicate the mean values of three replicate cages per treatment (three fish per replicate breeding
barrel). Mean values with different superscripts in a row are significantly different (one-way ANOVA, p < 0.05).
C3, complement 3; C4, complement 4; IgM, immunoglobulin M; AST, aspartate aminotransferase; and ALT,
alanine aminotransferase.

3.5. Antioxidant Indices in the Liver

As shown in Figure 3, the MDA content in the OFO group was significantly increased
(p < 0.05) compared with that of the FFO group. The content of MDA of fish fed the 0.2%
taurine supplementation diets was remarkably lower than values in fish fed OFO diets.
In addition, the OFO treatment significantly decreased the levels of SOD, GPx, GR, GSH,
and T-AOC, while the supplementation of taurine markedly increased (p < 0.05) these
antioxidant indices compared with the OFO group.
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Figure 3. Liver antioxidant indices of channel catfish (Ictalurus punctatus) subject to different treatment. (A) Malon-
dialdehyde, MDA; (B) Superoxide dismutase, SOD; (C) Glutathione peroxidase, GPx; (D) Glutathione reductase, GR;
(E) Glutathione, GSH; (F) Total antioxidant capacity, T-AOC. Data indicate the mean values of three replicate cages per
treatment (three fish per replicate breeding barrel). Significance was evaluated by one-way ANOVA (p < 0.05) followed by
Duncan’s multiple range tests. Values marked with different letters are significantly different between the treatment groups.
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3.6. Antioxidant-Related Gene Expression in the Liver

As shown in Figure 4, there was no significant difference in sod and gpx8 gene expres-
sion among the treatment groups. The OFO group remarkably downregulated gpx1, gr, and
nrf2 mRNA expression, and upregulated keap1 mRNA expression (p < 0.05) compared with
the FFO group. gpx1, gr, and nrf2 mRNA expression in the FFOT group were significantly
upregulated compared with the OFO group, whereas the opposite result was observed for
the mRNA expression level of keap1 (p < 0.05)
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treatment groups.

3.7. Histological Structure in the Intestine

As shown in Figure 5, through the H&E staining analysis of the intestine, the feeding of
oxidized-fish-oil diets significantly reduced the goblet cell quantity, villi length, and muscu-
lar thickness of the intestine. Compared with the OFO group, the OFOT group significantly
increased the goblet cell quantity, villi length, and muscular thickness of intestine.

3.8. Intestinal Physical-Barrier-Related Gene Expression

As showed in Figure 6, there was no significant change in occludin mRNA expression
among the treatment groups. In comparison of the OFO and FFO groups, claudin-12 and
claudin-15 mRNA expression in the intestine of the channel catfish were markedly upreg-
ulated, and zo-2 and zo-1 mRNA expression were significantly downregulated (p < 0.05).
Adding taurine remarkably upregulated zo-1 and zo-2 mRNA expression, and downregu-
lated claudin-15 and claudin-12 mRNA expression compared with the OFO group (p < 0.05).
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Figure 5. Effects of dietary taurine on intestinal morphology of channel catfish (Ictalurus punctatus) fed oxidized-fish-oil diets
(magnification 40×). (A) Villi length; (B) muscular thickness; (C) goblet cell quantity; (D) FFO group; (E) OFO group; and
(F) OFOT group. The red arrow indicates the villi length and the blue arrow indicates the muscular thickness, respectively.
Significance was evaluated by one-way ANOVA (p < 0.05) followed by Duncan’s multiple range tests. * p < 0.05.
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Figure 6. Effects of dietary taurine on intestinal physical-barrier-related genes expression of channel catfish
(Ictalurus punctatus) fed oxidized-fish-oil diets. (A) zo-1; (B) zo-2; (C) occludin; (D) claudin-12; (E) claudin-15. Data in-
dicate the mean values of three replicate cages per treatment (three fish per replicate breeding barrel). Significance was
evaluated by one-way ANOVA (p < 0.05) followed by Duncan’s multiple range tests. Values marked with different letters
are significantly different between the treatment groups.
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3.9. Intestinal Immune-Barrier-Related Gene Expression

As showed in Figure 7, the OFO group markedly downregulated tgf-β1, tgf-β2, and
tgf-β3 mRNA transcription levels, and upregulated tnf-α, nf-κb, il-1β, il-6, and il-8 mRNA
transcription levels compared with the FFO group (p < 0.05). tgf-β1, tgf-β2, and tgf-β3
mRNA transcription levels in the OFOT group were markedly upregulated compared with
the OFO group, whereas the opposite result was observed for tnf-α, nf-κb, il-1β, il-6, and
il-8 mRNA transcription levels (p < 0.05).
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Figure 7. Effects of dietary taurine on intestinal immune-barrier-related genes expression of channel catfish
(Ictalurus punctatus) fed oxidized-fish-oil diets. (A) tnf-α; (B) il-1β; (C) il-6; (D) il-8; (E) nf-κb; (F) il-10; (G) tgf-β1; (H) tgf-β2;
(I) tgf-β3. Data indicate the mean values of three replicate cages per treatment (three fish per replicate breeding barrel).
Significance was evaluated by one-way ANOVA (p < 0.05) followed by Duncan’s multiple range tests. Values marked with
different letters are significantly different between the treatment groups.

As shown in Figure 8, correlation analyses shown that nf-κb mRNA transcription
level was negatively correlated with tnf-α, il-1β, il-6, and il-8 mRNA transcription levels
(p < 0.05), and positively correlated with tgf-β1, tgf-β2, and tgf-β3 mRNA transcription
levels (p < 0.05).
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4. Discussion

A fresh fish oil can provide the HUFAs needed during the growth of fish [23]. HUFAs are
prone to oxidative rancidity and have a negative impact on fish. In this study, oxidized-fish-oil
diets significantly reduced the growth performance of channel catfish, which is similar to results
obtained in juvenile hybrid grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) [24],
farmed tilapia [6], orange spotted grouper [5], and yellow catfish (Pelteobagrus fulvidraco) [25].
One of the reasons is that toxic and harmful substances such as lipid hydroperoxides,
ketones, aldehydes, and acids are produced after oxidation of fish oil, which induces
oxidative stress, leads to inflammatory response, and then inhibits growth [5]. Another
reason is that oxidized fish oil has reduced nutritional value compared with non-oxidized
fish oil [26]. Taurine has been widely used in aquatic feeds. Adding an appropriate amount
of taurine to diets can obviously increase growth performance of yellowtail kingfish
(Seriola lalandi) [27], turbot [28], and tiger puffer (Takifugu rubripes) [29]. Experimental
results also showed that the addition of 0.2% taurine to the oxidized-fish-oil diet obviously
increased the growth performance of channel catfish, and there was no significant difference
from the FFO group. There are two main reasons why taurine promotes fish growth:
first, taurine has a good attractant effect [30]; second, taurine may alleviate the negative
effects caused by oxidized-fish-oil diets, such as lipid deposition, oxidative damage, and
inflammatory response.

Long-term feeding of oxidized-fish-oil diets can lead to the lipid deposition of liver [31].
Based on H&E staining, liver fat vacuolation is usually expressed as the size of hepatocytes
and their nuclei [32,33]. In this study, oxidized-fish-oil diets led to lipid deposition in
the liver of channel catfish, which was supported by the phenomenon of increased lipid
vacuolization in the liver (such as smaller nuclei and larger hepatocytes), HSI, serum
TC, and TG contents. Similar studies have been found in yellow catfish [25], loach
(Misgurnus anguillicaudatus) [34] and largemouth bass (Micropterus salmoides) [35]. Fur-
ther studies showed that oxidized-fish-oil diets resulted in liver lipid deposition due to
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the upregulation of the expression of lipid synthesis gene (fas) and the downregulation of
the expression of lipolysis gene (lpl). Sterol-regulatory element binding protein 1 (srebp1)
is mainly involved in the activation of enzymes related to lipid synthesis, and can pro-
mote lipid synthesis by targeting the expression of fatty-acid-catalyzing enzymes such as
fas [36,37]. The present study showed that feeding oxidized-fish-oil diets significantly up-
regulated srebp1 mRNA expression, indicating that oxidized-fish-oil diets can induce lipid
deposition by regulating the mRNA expression of lipid synthesis and lipolysis. Taurine
has a good function of reducing lipid deposition. It has been found in broiler chickens that
taurine can reduce blood lipid content [38]. There are also studies in aquatic animals that
have found that taurine can promote lipolysis of European seabass [15], white seabream
(Diplodus sargus) [39], and Persian sturgeon (Acipenser persicus) [40]. In this study, the
addition of taurine to oxidized-fish-oil diets remarkably reduced lipid vacuolization in the
liver, HSI, serum TC, and TG contents. Furthermore, taurine remarkably downregulated
the transcriptional levels of fas and srebp1 in the liver, and upregulated the transcriptional
level of lpl, indicating that taurine alleviated lipid deposition induced by oxidized-fish-oil
diets. Studies have speculated that taurine has a good lipolysis effect, which may be related
to the AMPK/SIRT1 signaling pathway [38]. Previous studies confirmed that activation of
AMPK can inhibit the activities of FAS and ACC, thereby reducing the concentration of
malonyl-CoA and enhancing CPT1 activity, thus increasing lipid catabolism and reducing
lipid deposition [41,42]. However, the mechanism of taurine alleviating lipid deposition
needs further study.

For animals, the oxidation diet is one of important exogenous factors leading to ox-
idative stress. Long-term feeding of oxidized-fish-oil diets can induce the production of
reactive oxygen species in mitochondria, and excessive reactive oxygen species (ROS) can
lead to tissue oxidative damage [43–45]. Malondialdehyde (MDA) is the final decompo-
sition product of lipid peroxidation caused by ROS, and its content reflects the degree of
peroxidation [46]. In the process of ROS removal, CAT breaks down hydrogen peroxide
into oxygen and water, and SOD and GPx also play an important role, which can decrease
hydrogen peroxide [47,48]. The present study showed that oxidized-fish-oil-diet feeding
led to markedly a higher the content of MDA and lower the levels of CAT, SOD, GPx, GR,
and T-AOC in the liver than in the FFO group. As is well known, the increase of serum AST
and ALT activities is one of the important markers of liver injury [49]. Besides, the present
study has showed that oxidized-fish-oil diets significantly increased serum AST and ALT
activities of channel catfish, indicating that oxidized-fish-oil diets leads to oxidative stress
and damage in the liver. Similar studies have found in other aquatic animals that oxidized-
fish-oil diets significantly decreased antioxidant enzyme activities and increased AST and
ALT activities of Wuchang bream [7] and tilapia (Oreochromis niloticus) [6]. Some studies
have shown that taurine is a powerful antioxidant, mainly due to its stable biofilm and
direct scavenging ability of ROS [50]. Furthermore, taurine can also improve antioxidant ca-
pacity by increasing the activity of antioxidant enzymes [51]. The results of this experiment
also showed that the addition of taurine to the oxidized-fish-oil diet remarkably promoted
CAT, GPx, GR, SOD, and T-AOC levels, whereas the opposite result was observed for
the MDA level. The antioxidant capacity of taurine is related to its role as a precursor
of glutathione [52], and taurine can also enhance the regeneration of glutathione from
glutathione disulfide [53].

Antioxidant enzyme activity is regulated by the nrf2/keap1 signaling pathway [54].
keap1 inhibits the expression of antioxidant genes by inhibiting the nuclear translocation of
nrf2 [55]. The present study showed that oxidized-fish-oil diets remarkably downregulated
the transcriptional levels of nrf2, gr, and gpx1 in the liver, while the transcriptional levels of
keap1 were reversed. These results were consistent with the results of antioxidant enzyme
activities, indicating that long-term feeding of oxidized-fish-oil diets can reduce the antiox-
idant capacity of channel catfish. Previous studies in pufferfish (Takifugu obscurus) [56] and
yellow catfish (Pelteobagrus fulvidraco) [57] have found that when fish are under oxidative
stress, dietary taurine can increase the expression levels of antioxidant enzyme genes in the
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liver, thus improving antioxidant capacity. In this study, the addition of taurine to oxidized-
fish-oil diets remarkably upregulated nrf2, gr, and gpx1 mRNA expression, whereas the
opposite result was observed for the transcriptional level of keap1. These results were
consistent with the results of antioxidant enzyme activities, indicating that taurine can
relieve peroxidation injury of channel catfish caused by oxidized-fish-oil diets. Similar
studies have confirmed that taurine can remarkably improve antioxidant ability in juvenile
turbot by regulating the nrf2/keap1 signaling pathway [58]. Therefore, we speculate that
taurine regulates the activity of antioxidant enzymes through the nrf2/keap1 signaling
pathway, thereby enhancing the ability of fish to resist oxidative stress.

Immune-active substances such as immunoglobulin and complement factor in serum
play an important role in animal immune response [59]. Fish mainly rely on the non-specific
immune system to respond to external environmental stimuli and pathogen invasion [60].
As a protein response system, the complement system is mainly responsible for destroying
or removing pathogenic microorganisms, and is an important part of the non-specific im-
munity [61]. The present study showed that oxidized-fish-oil diets significantly decreased
immune function, which was supported by the phenomenon of decreased serum C3, C4,
and IgM contents. Some studies have indicated that dietary supplementation of taurine
can alleviate acute ammonia poisoning of yellow catfish by increasing the content of total
immunoglobulin in serum [57]. In addition, our previous study revealed that taurine can
improve serum C3 and C4 levels in rice field eel to alleviate the immune response induced
by high-fat diets [62]. The results of this study showed that the dietary supplementation of
taurine to a oxidized-fish-oil diet increased serum C3, C4, and IgM contents, which indi-
cated that taurine can improve immune function of channel catfish. Similar experimental
results were found in Chinese mitten crab (Eriocheir sinensis) [63] and yellow catfish [64].

Further research has shown that taurine can enhance immune function though con-
trolling intestinal inflammatory response [65]. Intestinal inflammatory response is mainly
regulated by cytokines, including anti-inflammatory cytokines (including tgf-β and il-10)
and pro-inflammatory cytokines (including tnf-α il-1β, il-6, and il-8) [66]. The present study
showed that the mRNA transcription levels of tnf-α il-1β, il-6, and il-8 were remarkably
upregulated when channel catfish fed oxidized-fish-oil diets, whereas the opposite result
was observed for the mRNA transcription levels of tgf-β1, tgf-β2, and tgf-β3. A similar
study has been conducted in Rhynchocypris lagowski, which showed that oxidized-fish-oil
diets lead to high expression of pro-inflammatory cytokines (tnf-α, il-1β, and il-8) and
low expression of anti-inflammatory cytokines (il-10 and tgf-β) [67]. Finding how to al-
leviate the inflammatory reaction caused by an oxidized-fish-oil diet is very important
to improving the utilization rate of aquatic feed. Previous studies have reported that
adding taurine significantly downregulated the expression levels of anti-inflammatory
cytokines in grass carp [16] and yellow catfish [57]. The results of this experiment also
shown that the addition of taurine to a oxidized-fish-oil diet dramatically downregulated
tnf-α il-1β, il-6, and il-8 mRNA expression in the liver, and upregulated tgf-β1, tgf-β2, and
tgf-β3 mRNA expression, indicating that taurine can reduce inflammatory response in the
intestine induced by oxidized-fish-oil diets.

Cytokine expression in inflammatory response is regulated by various signaling
pathways, among which nuclear transcription factor-κB (NF-κB), as an important signaling
factor, plays an important role in inflammatory response [68]. In this study, long-term
feeding of oxidized-fish-oil diets remarkably upregulated the transcriptional level of nf-κb.
However, the addition of taurine to oxidized-fish-oil diets reversed this trend. Furthermore,
correlation analyses showed that the mRNA expression level of nf-κb was negatively
correlated with the mRNA expression levels of tnf-α, il-1β, il-6, and il-8, and positively
correlated with the mRNA expression levels of tgf-β1, tgf-β2, and tgf-β3, which suggested
that taurine inhibited the NF-κB signaling pathway to protecting oxidized fish-oil-induced
inflammation response in channel catfish.

Intestinal physical-barrier function is an indispensable part of intestinal health of
aquatic animals [69]. Generally speaking, the muscular thickness and villi length in the
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intestine are important criteria to measure the efficiency of digestion and absorption [70].
Goblet cells on intestinal villi, as typical mucous cells, play an important role in regulating
the integrity of intestinal epithelial cells and the immune response to foreign antigens [71].
The present study showed that oxidized-fish-oil diets significantly reduced the villi length,
goblet cell quantity, and muscular thickness of intestine. However, the addition of taurine
to oxidized-fish-oil diets reversed this trend, indicating taurine can maintain the struc-
tural integrity of the intestine. An important component of the intestinal physical barrier
is tight junction protein. Studies have reported that tight junction proteins are closely
related to the integrity of intestinal structure, and the upregulation of transmembrane
protein-related genes (including occluding, zo-1, and zo-2) can maintain the structural in-
tegrity of intestinal epithelial cells, while the upregulation of cytoplasmic protein-related
genes (including claudin-12 and claudin-15) can damage the structural integrity of intestinal
epithelial cells [54,72]. This present study found that oxidized-fish-oil diets substantially
downregulated intestinal zo-1 and zo-2 mRNA transcriptional levels of channel catfish,
and upregulated claudin-12 and claudin-15 mRNA transcriptional levels, indicating that
oxidized-fish-oil diets may increase the intestinal barrier structure damage caused by in-
tercellular space by regulating tight junction protein genes. Taurine has been reported to
enhance intestinal morphology and barrier function [73]. The results of this experiment
also showed that the addition of taurine to a oxidized-fish-oil diet remarkably upregu-
lated intestinal zo-1 and zo-2 mRNA transcriptional levels, and downregulated claudin-12
and claudin-15 mRNA transcriptional levels, indicating that taurine can repair the intesti-
nal physical barrier damage induced by oxidized-fish-oil diets. However, the specific
regulatory mechanism needs to be further studied.

5. Conclusions

The present study indicated that oxidized-fish-oil diets have a negative effect on
growth performance, lipid metabolism, antioxidant ability, and intestinal health in channel
catfish. However, addition of taurine to a oxidized-fish oil diet can increase growth
performance of channel catfish. Taurine reduced lipid deposition in the liver through
promoting the transcription factors of lipid metabolism including srebp1, lpl, and fas. In
addition, our findings revealed that the supplementation of taurine alleviated oxidized
fish-oil-induced oxidative damage of the liver through the Nrf2-Keap1 signaling pathway
based on the transcriptional expression, and then significantly improved the activity of
antioxidant enzymes. Furthermore, the current study revealed that the supplementation
of taurine alleviated inflammatory response in the intestine through the NF-κB signaling
pathway based on the transcriptional expression.
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