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abstract

PURPOSE Several uncommon genomic alterations beyond RAS and BRAFV600E mutations drive primary
resistance to anti–epidermal growth factor receptors (EGFRs) in metastatic colorectal cancer (mCRC). Our
PRESSING panel (including PIK3CA exon 20/AKT1/PTENmutations, ERBB2/MET amplifications, gene fusions,
and microsatellite instability-high status) represented a paradigm of negative hyperselection with more precise
tailoring of EGFR blockade. However, a modest proportion of hyperselected mCRC has intrinsic resistance
potentially driven by even rarer genomic alterations.

MATERIALS AND METHODS A prospective data set at three Italian Academic Hospitals included 650 patients with
mCRC with comprehensive genomic profiling by FoundationOne CDx and treated with anti-EGFRs. PRESSING2
panel alterations were selected on the basis of previous clinico-biologic studies and included NTRKs, ERBB3,
NF1, MAP2K1/2/4, AKT2 pathogenic mutations; PTEN/NF1 loss; ERBB3, FGFR2, IGF1R, KRAS, ARAF, and
AKT1-2 amplification; and EGFR rearrangements. These were collectively associated with outcomes in patients
with hyperselected disease, ie, RAS/BRAF wild-type, PRESSING-negative, and microsatellite stable.

RESULTS Among 162 hyperselected patients, 24 (15%) had PRESSING2 alterations, which were mutually
exclusive except in two samples and were numerically higher in right-sided versus left-sided cancers (28% v
13%; P = .149). Independently of sidedness and other factors, patients with PRESSING2-positive status had
significantly worse progression-free survival and overall survival compared with PRESSING2-negative ones
(median progression-free survival 6.4 v 12.8 months, adjusted hazard ratio 4.19 [95% CI, 2.58 to 6.79]; median
overall survival: 22.6 v 49.9 months, adjusted hazard ratio 2.98 [95% CI, 1.49 to 5.96]). The combined analysis
of primary tumor sidedness and PRESSING2 status allowed us to better stratify outcomes.

CONCLUSION Negative ultraselection warrants further investigation with the aim of maximizing the benefit of
EGFR blockade strategies in patients with RAS and BRAF wild-type, microsatellite stable mCRC.
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INTRODUCTION

Anti–epidermal growth factor receptors (EGFRs)
monoclonal antibodies, cetuximab and pan-
itumumab, are guideline-recommended treatments for
patients with RAS and BRAF wild-type metastatic co-
lorectal cancer (mCRC).1 Moreover, right sidedness of
the primary tumor is a predictive factor of worse survival
upon treatment with anti-EGFRs,2 because of the en-
richment for genomic mechanism and molecular pro-
files associated with primary resistance to EGFR
inhibition.3,4 However, EGFR blockade is effective only
in a small subset (10%-15%) of patients with mCRC5

and primary resistance still represents a relevant issue

despite improved treatment personalization and ex-
clusion of patients with RAS or BRAF class 1/2
mutations.6 We and others contributed to the devel-
opment of a new paradigm of negative hyperselection,
which helps to further refine the proportion of patients
eligible for anti-EGFRs. Our PRESSING panel included
several uncommon genomic alterations of primary re-
sistance (ie, ERBB2 amplification/activating mutations,
MET amplification, NTRK/ROS1/ALK/RET rearrange-
ments, and PIK3CA exon 20/PTEN/AKT1 mutations)
and was associated with worse outcomes indepen-
dently of primary tumor sidedness.7,8 Finally, mismatch
repair deficient (dMMR)/microsatellite instability (MSI)-
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high tumors are hypermutated—thus highly enriched with
several of the abovementioned primary resistance
mechanisms—and more frequently right-sided, thus
explaining inferior outcomes reported with cetuximab-based
versus bevacizumab-based initial regimens.9 On top of this,
initial treatment with immune checkpoint inhibitors is rec-
ommended in patients with dMMR/MSI-high mCRC be-
cause of its superiority to doublet chemotherapy with or
without targeted agents. Even if patients with RAS/BRAF wild-
type, PRESSING-negative, and pMMR/MSS (negatively
hyperselected)mCRCachievedunprecedented outcomeswith
an upfront anti–EGFR-based strategy,7 there is still a modest
proportion of patients with limited or absent benefit, whichmay
be driven by even rarer genomic alterations. Therefore, we
conducted this large andmulticenter PRESSING2 study aimed
at investigating in molecularly hyperselected patients with
mCRC and treated with an anti–EGFR-based strategy, the
clinical impact of negative ultraselection by adding a group
of resistance mechanisms with extremely uncommon preva-
lence, but highly sound biologic rationale as resistance drivers.

MATERIALS AND METHODS

Patient Population

The study flowchart is depicted in the Data Supplement.
Patients with RAS/BRAF wild-type, PRESSING panel–
negative (hyperselected; ie, ERBB2 nonamplified/wild-
type, MET nonamplified, NTRK/ROS1/ALK/RET unrear-
ranged, PIK3CA exon 20/PTEN/AKT1 wild-type), MMR
proficient (pMMR)/microsatellite stable (MSS), and
POLE exonuclease domain wild-type mCRC treated with
anti-EGFRs in any line were retrospectively retrieved
from a common prospective data set established at three
Academic Hospitals. Patients were included in two co-
horts of PRESSING2-positive versus PRESSING2-
negative (ie, ultraselected) tumors. Additional inclusion
criteria were as follows: at least one measurable lesion
according to RECIST 1.1, at least one postbaseline

imaging scan, and written informed consent to study
participation. The study was approved by the Fondazione
IRCCS Istituto Nazionale dei Tumori di Milano Institu-
tional Review Board (INT 117/15) and was conducted in
accordance with the ethical principles for medical re-
search involving human subjects adopted in the Dec-
laration of Helsinki.

Molecular Analyses

PRESSING2 alterations were as follows: pathogenic alter-
ations in genes involved in mitogen-activated protein kinase
(MAPK) (ie, NF1 mutations/loss,10,11 ARAF12/KRAS
amplification,10 MAP2K1/MAP2K2 mutations, and MAP2K4
mutations without established inactivating phenotype [ie,
S184L] given the cross-talk with the ERK-upstream branch of
MAPK13), PIK3CA (including AKT1/2 amplification and AKT2
mutations14,15 and PTEN loss16), and EGFR-independent
receptor tyrosine kinase (ie, IGF1R amplification,10 ERBB3
amplification/mutations,17,18 FGFR2 amplification,10,19 and
NTRK tyrosine kinase [TK] domain mutations20,21) signaling
pathways and EGFR rearrangements involving the TK
domain.22 Pathogenicity of single-nucleotide variants (SNVs)
was determined taking advantage of FoundationOne CDx
reports.23 Variants of uncertain significance as assessed by
FoundationOne CDx reports were excluded. FGFR1 amplifi-
cation and PIK3CA exon 9mutations were not included in the
PRESSING2 panel since the role of these alterations in me-
diating resistance to EGFR inhibition is unclear.10 A heat map
was used to depict genetic alterations.

Statistical Analyses

Association between PRESSING2 alterations and pa-
tients and/or disease characteristics was assessed by
means of Kruskal-Wallis, χ2, or Fisher exact tests, as
appropriate. Progression-free survival (PFS) was defined
as the time from the beginning of the EGFR inhib-
itor–based treatment to the radiologic evidence of dis-
ease progression or death from any cause. Overall

CONTEXT

Key Objective
To assess the prognostic impact of ultrarare alterations involving receptor tyrosine kinases, mitogen-activated protein kinase or

PIK3CA pathways on epidermal growth factor receptors (EGFR)-targeted therapies in patients with negatively hyperselected
(RAS/BRAFwild-type, ERBB2/MET nonamplified,NTRKs/RET/ROS1/ALK unrearranged, andAKT1/PTEN/PIK3CAwild-type)
and MSS/pMMR metastatic colorectal cancer (mCRC).

Knowledge Generated
The use of comprehensive genomic profiling allowed us to identify sound drivers of primary resistance with very low frequency

(negative ultraselection) that were collectively associated with poor outcomes in patients with molecularly hyperselected
mCRC receiving anti–EGFR-based regimens, irrespective of primary tumor sidedness.

Relevance
Our data support the use of comprehensive genomic profiling in patients with RAS and BRAF wild-type mCRC. Rarer al-

terations in EGFR downstream/parallel pathways warrant further investigation as negative predictive biomarkers of EGFR
inhibitors. Several of these alterations may be targetable with novel agents and combinations.
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survival (OS) was defined as the time from the beginning
of the EGFR inhibitor–based treatment to death from any
cause or last follow-up. PFS and OS analyses were de-
termined according to the Kaplan-Meier method. The
Kaplan-Meier estimator and Cox proportional hazards
regression were used for survival analysis using the
survival, survminer, and survMisc packages. Follow-up
time was estimated using the reverse Kaplan-Meier
method. In Cox proportional hazards regression
models, all the covariates associated with PFS and OS in
the univariable analyses with a P value , .10 ]were

included in the multivariable model. P values, .05 were
considered statistically significant.

RESULTS

Patient Population

A total of 650 samples were profiled by means of Founda-
tionOne CDx. Among them, 291 (45%) samples were RAS/
BRAF wild-type. Among these, PRESSING panel alterations
were found in 103 (35%). Overall, 42 samples wereMSI-high/
POLE-mutated (6%); among these, 16 samples harbored
RAS/BRAF V600E mutations or PRESSING alterations. The

TABLE 1. Baseline Characteristics, Overall and According to the Presence of PRESSING2 Alterations

Characteristic
Study

Population (N = 162) PRESSING2-Positive (n = 24) PRESSING2-Negative (n = 138) P

Age, years .020

Median 58 68 57

IQR 50-66 49-71 51-65

Sex, No. (%) . .999

Female 65 (40) 10 (42) 55 (40)

Male 97 (60) 14 (58) 83 (60)

ECOG PS, No. (%) . .999

0 127 (78) 19 (79) 108 (78)

≥ 1 35 (27) 5 (21) 30 (22)

Primary tumor location, No. (%) .149

Right colon 18 (11) 5 (21) 13 (9)

Left colon/rectum 144 (89) 19 (79) 125 (91)

Primary tumor resection, No. (%) .538

Yes 137 (85) 19 (79) 118 (86)

No 25 (15) 5 (21) 20 (14)

Time to metastases, No. (%) .033

Synchronous 114 (70) 12 (50) 102 (74)

Metachronous 48 (30) 12 (50) 36 (26)

Metastatic sites, No. (%) .069

1 85 (52) 8 (33) 77 (56)

. 1 77 (48) 16 (67) 61 (44)

Anti-EGFR line, No. (%) .098

1 120 (74) 14 (58) 106 (77)

. 1 42 (26) 10 (42) 32 (23)

Anti-EGFR monotherapy, No. (%) .132

No 148 (91) 20 (83) 128 (93)

Yes 14 (9) 4 (17) 10 (7)

Anti-EGFR mAb, No. (%) .438

Panitumumab 96 (59) 12 (50) 84 (61)

Cetuximab 66 (41) 12 (50) 54 (39)

Bold entires indicate statistically significant P values.
Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth factor receptor; IQR, interquartile

range; mAb, monoclonal antibody.
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final study population included 162 patients with RAS/BRAF
V600E wild-type, PRESSING panel–negative, pMMR/MSS,
and POLE wild-type mCRC. Patient and disease charac-
teristics overall and according to PRESSING2 panel status
are reported in Table 1. One hundred-twenty (74%) re-
ceived anti–EGFR-based therapy as the first-line regimen,
22 (14%) as the second-line regimen, and 20 (12%) as the
third-line or later-line treatment. PRESSING2 alterations
were detected in 24 (15%) patients. Patients with
PRESSING2-positive tumors were older (median age 68 v
57 years, P = .020) and hadmore frequently metachronous
onset of metastases (50% v 26%, P = .033) compared with
PRESSING2-negative ones. The frequency of PRESSING2
alterations was 28% versus 13% in right-sided versus left-
sided mCRC, respectively (P = .149). Individual PRESS-
ING2 alterations are specified in the Data Supplement.

Molecular Profiling

The alterations profiles of PRESSING2-negative and
PRESSING2-positive tumors are depicted in the heat map
in Figure 1. The schematic diagram of the signaling
pathways of PRESSING2 alterations is shown in the
Graphical Abstract in the Data Supplement. PRESSING2

alterations were mutually exclusive in 22 (92%) samples;
one sample harbored both KRAS amplification and NF1
E2430* SNV, and one sample both NF1 loss and MAP2K1
E203K SNV. One hundred-forty seven (91%) were evalu-
able for tumor mutational burden status. Median tumor
mutational burden did not differ significantly according
to PRESSING2 status (5.04 v 3.78 mutations/Mb for
PRESSING2-positive and PRESSING2-negative tumors,
respectively, P = .326).

Survival Analysis

The median follow-up was 34.1 (interquartile range 23.5-
49.3) months. Overall, patients with PRESSING2-positive
status had significantly worse PFS and OS compared with
PRESSING2-negative ones (median PFS: 6.4 v 12.8months,
hazard ratio [HR] 4.25, 95% CI, 2.64 to 6.84, P , .001;
median OS: 22.6 v 49.9 months, HR 2.98, 95% CI, 1.59 to
5.60, P , .001; Figs 2A and 2B). In the multivariate model
(Table 2), the presence of PRESSING2 alterations had an
adjusted HR of 4.19 for PFS and 2.98 for OS, whereas right
sidedness had an adjusted HR of 1.41 and 3.51, respec-
tively. One hundred twenty (74%) patients received an
anti–EGFR-based therapy upfront. In this first-line cohort
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FIG 1. Heat map showing the genomic profiles according to the presence or absence of PRESSING2 alterations. Patients in the two groups were ordered
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(Figs 2C and 2D), patients with PRESSING2-positive status
had significantly worse PFS compared with PRESSING2-
negative ones (median PFS: 7.4 v 13.0 months, HR 3.63,
95% CI, 2.02 to 6.55, P , .001). Also, OS was nonsignif-
icantly shorter in the PRESSING2-positive group (22.6 v
48.8 months, HR 2.03, 95% CI, 0.90 to 4.61, P = .087).

Prognostic Analyses According to Sidedness and the

PRESSING2 Panel

Overall, the median PFS mismatch repair deficient (dMMR)/
microsatellite instability (MSI)-highfor patients with
PRESSING2-positive versus PRESSING2-negative tumors was
6.5 and 12.9months in the left-sided subgroup and 6.3 versus
9.4 months in the right-sided one (P , .001; Table 3 and
Fig 3A). Consistently, the median OS for patients with
PRESSING2-positive versus PRESSING2-negative tumors was
28.0 versus 51.2 months in the left-sided subgroup and 18.1
versus 27.7 months in the right-sided one (P, .001; Table 3
and Fig 3B).

Activity of Anti-EGFRs According to the PRESSING2

Panel and Primary Tumor Location

The objective response rate according to RECIST v1.1 was
79% (including 10 [8%] complete responses) in patients
with left-sided and PRESSING2-negative mCRC versus
56% (with no complete responses) in patients with
PRESSING2-positive and/or right-sided mCRC (OR, 2.87;
95% CI, 1.22 to 6.76; P = .009; Data Supplement).

DISCUSSION

EGFR dependency may be defined by the reliance on the
interaction between EGFR and its ligands (such as AREG/
EREG) for sustaining colorectal cancer growth. It accounts for
the clinically meaningful activity of anti-EGFRs in a relatively
small subset—up to 15%—of patients with mCRC. Improved
patient selection for this targeted treatment has been achieved
through the paradigm of negative selection by excluding
patients with RAS-mutated24 or BRAF V600E–mutated25

mCRC; more recently, negative hyperselection consisted of
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TABLE 2. Cox Proportional Hazards Regression Models for PFS and OS in the Entire Study Population

Characteristic

PFS OS

Univariable Models Multivariable Model Univariable Models Multivariable Model

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (years)
1-year increase

1.01 (0.99 to 1.03) .080 1.01 (0.99 to 1.03) .063 1.02 (0.99 to 1.05) .051 1.01 (0.98 to 1.04) .216

Sex .932 .609

Female Ref Ref

Male 0.98 (0.70 to 1.37) 1.15 (0.67 to 1.97)

ECOG PS .654 .001 .003

0 Ref Ref Ref

1-2 0.91 (0.60 to 1.37) 2.44 (1.39 to 4.31) 2.55 (1.35 to 4.83)

Primary tumor location .063 .132 < .001 < .001

Left colon/rectum Ref Ref Ref Ref

Right colon 1.60 (0.97 to 2.65) 1.49 (0.88 to 2.52) 3.17 (1.67 to 6.04) 3.51 (1.76 to 7.03)

Primary tumor resection .414 < .001 .001

No Ref Ref Ref

Yes 0.82 (0.52 to 1.30) 0.28 (0.15 to 0.51) 0.36 (0.19 to 0.68)

Time to metastases .487 .347

Metachronous Ref Ref

Synchronous 0.87 (0.61 to 1.26) 1.33 (0.72 to 2.46)

Metastatic sites .667 .003 .025

1 Ref Ref Ref

. 1 1.07 (0.77 to 1.48) 2.22 (1.30 to 3.80) 1.87 (1.08 to 3.26)

Anti-EGFR line .085 .097 .819

1 Ref Ref Ref

. 1 1.38 (0.95 to 2.01) 1.38 (0.94 to 2 to 2.04) 1.07 (0.57 to 2.00)

Anti-EGFR monotherapy .575 .767

No Ref Ref

Yes 0.82 (0.42 to 1.61) 1.16 (0.42 to 3.22)

PRESSING2 < .001 < .001 < .001 .001

Negative Ref Ref Ref Ref

Positive 4.25 (2.64 to 6.84) 4.19 (2.58 to 6.79) 2.98 (1.59 to 5.60) 2.98 (1.49 to 5.96)

Bold entires indicate statistically significant P values.
Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth factor receptor; HR hazard ratio; OS, overall survival; PFS, progression-free survival; ref,

reference.
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the exclusion of patients with other uncommon oncogenic
drivers such as PIK3CA exon 20 mutations, ERBB2 positivity,
a variety of gene fusions, and dMMR/MSI status. Extended
negative hyperselection beyond RAS and BRAF, using next-
generation sequencing to detect these primary resistance
alterations (PRESSING panel), coupled with primary tumor
sidedness, allowed us to predict the EGFR dependency
status. In fact, patients with left-sided and PRESSING-
negative status reached unprecedented activity (objective
response rate of 77.3%) and efficacy (median PFS of
13.2 months and 2-year OS of 69.7%) with FOLFOX/
panitumumab upfront therapy.7 On the contrary, EGFR am-
plification, albeit extremely rare (1%), is the only positive
predictive biomarker and was associated with unprecedented
outcomes in patients with RAS/BRAF wild-type mCRC re-
ceiving anti-EGFRs.22

For this work, we selected additional and even rarer al-
terations (PRESSING2 panel) with a putative role as drivers
of primary resistance inferred from translational studies (eg,
NF1 mutations,11 KRAS amplification,26 ERBB3 mutations,18

MAP2K1 mutations,10 IGF1R amplification,10 EGFR fusions,22

and PTEN loss16) and/or preclinical experiments (eg, NTRK

mutations affecting the TK domain,21 FGFR2 amplification,19

NF1mutations,10ARAF amplification,12MAP2K1mutations,10

MAP2K4 mutations,13 and AKT1/2 amplification15). As ex-
pected, patients with PRESSING2 alterations had significantly
inferior outcomes after anti–EGFR-based therapy despite
initial molecular hyperselection. It must be acknowledged that
patients with PRESSING2 alterations were enriched for some
poor prognostic indicators with respect to their PRESSING2-
negative counterpart. However, the presence of PRESSING2
alterations retained independent negative association with
both PFS and OS in themultivariable model. Moreover, we are
aware that formal validation of the negative predictive impact of
PRESSING2alterationswas not possible because of the lack of
an anti–EGFR-free cohort. Such a level of evidence will not be
achievable on the basis of the extreme rarity of PRESSING2
alterations and lack of pivotal randomized controlled trials with
comprehensive genomic profiling data. Of note, our survival
results in the resistant population (PRESSING2-positive) are
superimposable to historical data in patients with RAS or
BRAFmutations or with PRESSINGpanel–positive status.7,27-29

Moreover, the clinical significance of our panel is further
documented by the mutual exclusivity of PRESSING2

TABLE 3. PFS and OS According to the Combined Evaluation of Primary Tumor Sidedness and PRESSING2 Panel Status

Patient Subgroup

PFS OS

mPFS, Months
(95% CI)

HR
(95%CI) P

mOS, Months
(95% CI)

HR
(95%CI) P

Left-sided/PRESSING2-negative 12.9 (11.6 to 14.5) Ref , .001 51.2 (47.3 to NA) Ref , .001

Left-sided/PRESSING2-positive 6.5 (4.7 to 9.4) 3.89 (2.31 to 6.55) 28.0 (18.8 to NA) 2.68 (1.28 to 5.60)

Right-sided/PRESSING2-negative 9.4 (7.0 to NA) 1.37 (0.76 to 2.46) 27.7 (22.2 to NA) 2.81 (1.30 to 6.08)

Right-sided/PRESSING2-positive 6.3 (5.9 to NA) 9.14 (3.47 to 24.05) 18.1 (16.8 to NA) 9.90 (3.33 to 29.45)

Abbreviations: HR, hazard ratio; mOS, median overall survival; mPFS, median progression-free survival; NA, not assessable; ref, reference.
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alterations, thus strengthening their potential role as on-
cogenic drivers in these tumors.

We believe that implementing the molecular hyperselection/
ultraselection approach may be important for both patients
with right-sided and left-sided cancers. Regarding patientswith
left-sidedmCRC, the evaluation of PRESSING2 alterationsmay
help to further refine themolecular selection of those eligible for
anti-EGFR therapy, particularly considering the presence of
alternative first-line options. Right-sidedness has a clear-cut
negative predictive impact on EGFR-targeted therapy not only
in all randomized controlled trials but also in independent
series of hyperselected patients.7,30,31 With the possible ex-
planation of the sample size, the rare PRESSING2 alterations
did not show a statistically significant association with right
sidedness. As a matter of fact, their frequency was doubled vs
left-sided subgroup (28% v 13%), in line with the enrichment
of BRAF mutations, dMMR/MSI-high status, and PRESS-
ING panel alterations in right-sided cancers. However, a
small subset of patients with right-sided mCRC may show
EGFR dependency and sensitivity to EGFR inhibition.32

These patients may be identified by combining different
profiling data: genomics-based molecular ultra selection,
high AREG/EREG expression,33 or CMS2/epithelial subtypes
on the basis of transcriptomics.34-36 Unfortunately, we could
not investigate AREG/EREG expression in our cohort, but an
observational UK study trial is evaluating the prognostic
impact of AREG, EREG, and EGFR expression in patients
with RAS wild-type mCRC receiving anti-EGFRs (Clinical-
Trials.gov identifier: NCT03986541) and clinical trial vali-
dation is planned. Collectively, these data highlight the need
of comprehensive molecular classification of CRC tumors to
unveil the complexity of anti-EGFR resistance beyond the
mutational status of key oncogenes and primary tumor
location.

Comprehensive genomic profiling before initial treatment may
allow the assessment of guideline-recommended biomarkers
such as RAS and BRAF, with the concomitant detection of

genomic alterations—such as those included in the
PRESSING panels—that are increasingly recognized as re-
sistance drivers of anti-EGFRs and, above all, as therapeutic
targets. These considerations raise the question if extended
genomic profiling should be obtained at baseline before any
treatment to tailor the continuum of care and allow early
access to innovative drugs and trials.37 In fact, several
PRESSING2 alterations found in this cohort might be ac-
tionable (eg, bemarituzumab or pemigatinib for FGFR2
amplified,38 trametinib forMAP2K1 orNF1mutated,39,40 pan-
HER inhibitors for ERBB3 mutated,41 and EGFR TKIs for
EGFR fusions42) and might be combined with EGFR
inhibitors.

Our study has several limitations. First, we acknowledge that
some patients with PRESSING2-positive tumors had rela-
tively longer PFS to anti–EGFR-based therapy. All these
patients (as well as themajority of included patients, ie, 91%)
received chemotherapy in combination with anti-EGFRs;
therefore chemosensitivity and an intrinsically favorable bi-
ology could have affected the PFS to anti-EGFRs at the
individual patient level. Moreover, single PRESSING2 al-
terations might exert context-specific effects and dedicated
preclinical works are needed for assessing the impact of
specific molecular alterations on resistance to EGFR inhi-
bition. Second, we cannot exclude that additional genomic
alterations may aid to further refine molecular ultraselection
of patients and will be identified in future works as drivers of
primary resistance to anti-EGFRs. Third, this series is clin-
ically heterogeneous and the results in the upfront setting
were less robust because of the reduced sample size.

In conclusion, a relevant subset ofmolecularly hyperselected
mCRCs harbor genomic alterations that are likely to impair
sensitivity to EGFR-targeting therapies. Patients with ultra-
selected and left-sided mCRC achieve the best survival
benefit on exposure to EGFR inhibitors, but analyses of big
data on the issue of ultraselection are warranted.
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