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Abstract

Motivation: Gene clustering and sample clustering are commonly used to find patterns in gene expression datasets.
However, genes may cluster differently in heterogeneous samples (e.g. different tissues or disease states), whilst traditional
methods assume that clusters are consistent across samples. Biclustering algorithms aim to solve this issue by performing
sample clustering and gene clustering simultaneously. Existing reviews of biclustering algorithms have yet to include a
number of more recent algorithms and have based comparisons on simplistic simulated datasets without specific
evaluation of biclusters in real datasets, using less robust metrics.
Results: We compared four classes of sparse biclustering algorithms on a range of simulated and real datasets. All
algorithms generally struggled on simulated datasets with a large number of genes or implanted biclusters. We found that
Bayesian algorithms with strict sparsity constraints had high accuracy on the simulated datasets and did not require any
post-processing, but were considerably slower than other algorithm classes. We found that non-negative matrix
factorisation algorithms performed poorly, but could be re-purposed for biclustering through a sparsity-inducing
post-processing procedure we introduce; one such algorithm was one of the most highly ranked on real datasets. In a
multi-tissue knockout mouse RNA-seq dataset, the algorithms rarely returned clusters containing samples from multiple
different tissues, whilst such clusters were identified in a human dataset of more closely related cell types (sorted blood cell
subsets). This highlights the need for further thought in the design and analysis of multi-tissue studies to avoid differences
between tissues dominating the analysis.
Availability: Code to run the analysis is available at https://github.com/nichollskc/biclust_comp, including wrappers for each
algorithm, implementations of evaluation metrics, and code to simulate datasets and perform pre- and post-processing. The
full tables of results are available at https://doi.org/10.5281/zenodo.4581206.
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Introduction
Clustering can be used in two main ways to analyse gene expres-
sion datasets [17]. The first is to cluster the samples, finding
groups of samples that have similar expression in all genes. This
can be used, for example, to find subgroups of disease [9]. The
second is to cluster the genes, finding groups of genes that have
similar expression across all samples. Finding such groups of
genes has many useful applications such as inferring function
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using guilt by association and inferring regulatory relationships
[30].

Instead of clustering only samples or only genes, biclustering
algorithms find groups of samples that have similar expression
in some subset of the genes, effectively clustering both genes
and samples simultaneously. Such a group is called a ‘bicluster’,
and we say that the bicluster consists of a set of samples and a
set of genes. Biclustering has three main advantages over normal
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clustering. Firstly, it can discover meaningful groups that would
not be detected using normal clustering; in complex datasets,
many interesting groupings of genes will not hold across all
samples. For example, we might expect some genes to cluster
differently in different cell types, whilst other clusters may
be shared across cell types. Traditional methods of clustering
cannot account for this because the models expect clusters to
exist across all samples. Secondly, biclustering provides a link
between sets of genes and sample traits such as disease or
sex. For example, if a biclustering algorithm returns a bicluster
consisting of all the samples from patients with a given disease
and a small set of genes, then we can hypothesise that the set of
genes might have biological importance for the disease. Finally,
biclustering algorithms reconstruct the gene expression matrix
as the sum of effects from each bicluster, allowing the algorithm
to learn biclusters corresponding to confounders, such as batch
or sex, and adjust for these confounders whilst simultaneously
extracting biologically interesting biclusters. In this study, we
have focused on identifying algorithms that should be able to
identify sparse biclusters in a complex bulk RNA-seq dataset,
such as one including samples from multiple cell types.

There exist previous reviews of biclustering algorithms
[4, 6, 26, 29], but we hope to improve on them in the following
ways. First, we include new classes of algorithm yet to be
considered in independent comparison studies. In particular,
we include non-negative matrix factorisation (NMF) algorithms,
which we believe can be re-purposed for biclustering, tensor
factorisation algorithms, which aim to improve performance by
sharing information across tissues, and two Bayesian algorithms
that allow for a mixture of sparse and dense biclusters. Second,
we use more robust metrics. Horta and Campello investigated
metrics used to evaluate similarity between biclusterings, and
found problems with many of the metrics used by previous
comparison papers [14]. In this study, we use one of the two
metrics recommended by Horta and Campello, which was shown
to satisfy all but one of their criteria. Third, we narrow the gap
between real and simulated datasets. Previous reviews have
often used unrealistically simplistic simulated datasets, such
as using only K = 1, 2, 3, 4, 5 biclusters, leading to discrepancies
between the conclusions they draw on simulated and on real
datasets [26]. In this study, we simulate datasets from a wider
range of complexities, including datasets closer in complexity
to real datasets than those included in previous reviews. A
final key flaw of existing comparison studies is the lack of
evaluation of biclustering ability on real datasets. In the absence
of known structure in the real gene expression datasets used for
evaluation, previous reviews have evaluated sample clustering
ability and gene clustering ability separately. We carefully chose
a knockout mouse RNA-seq dataset that allows linked analysis
of sample clustering and gene clustering, thus allowing direct
evaluation of biclustering on real datasets.

Methods
Here, we discuss the algorithms compared, the datasets they
are tested on and the evaluation metrics used to score their
performance. Similar to previous reviews, we use a mixture of
simulated and real datasets. Simulated data are important, as
they allow more precise evaluation of performance, since the
true structure of the data is known. However, it is difficult to
exactly mimic the noise and structure of real gene expression
datasets, so it is also important to see whether the algorithms
can handle the noise structure of real datasets.

Algorithms compared

We chose most promising algorithms from four classes of algo-
rithm, focusing on sparse algorithms (Table 1).

We define a matrix Y ∈ R
n×p where entry Yij gives the

expression of gene j in sample i. This can either be the raw
read count from an RNA-seq experiment or a normalised count,
which has been adjusted for sample-specific effects such as
library size, or gene-specific effects such as mean expression
level. The typical approach to biclustering is to factorise this
matrix as a product of two sparse matrices X ∈ R

n×K, which we
call the sample loadings matrix, and B ∈ R

p×K, which we call the
gene loadings matrix, with error matrix ε:

Y = XBT + ε (1)

The individual algorithms are described in detail in Section
S1 along with an explanation of the two main mechanisms used
to induce sparsity: NMF and sparsity-inducing priors. Here, we
discuss why each algorithm was chosen for inclusion in this
study and group the algorithms as ‘Popular’, ‘Adaptive’, ‘NMF’
and ‘Tensor’.

Popular algorithms

We include two algorithms that have been included in previous
reviews, which we use as a baseline to allow relative perfor-
mance to be related to other comparison studies. Factor Analysis
for Bicluster Acquisition (FABIA) [12] is a Bayesian algorithm
using sparsity-inducing priors, included in a number of previous
comparisons [6, 10, 26, 30]. Although our study focuses on sparse
biclustering algorithms, we chose to also include Plaid [21, 31]
even though it does not enforce sparsity, as it has often appeared
as one of the better performing algorithms in other studies [6, 26]
and its inclusion thus provides a helpful link to these studies.

Adaptive Bayesian algorithms

Like FABIA, BicMix [8] and Spike-and-Slab Lasso Biclustering
(SSLB) [23] use sparsity-inducing priors. The key difference with
BicMix and SSLB is that they allow for both sparse and dense
biclusters, and adapt the sparsity constraints to each bicluster.
Neither has been included in previous comparisons but they
have been compared against each other and against FABIA in
the paper introducing SSLB, where both achieved much greater
sparsity and accuracy than FABIA.

Non-negative matrix factorisation

NMF algorithms in general are not designed for biclustering,
but since biclustering can be described as sparse matrix fac-
torisation, NMF algorithms can recover biclusters if they use
sufficiently strong sparsity constraints. We chose to include
two examples of such algorithms: Sparse non-negative matrix
factorisation (SNMF) [18] and non-smooth non-negative matrix
factorisation (nsNMF) [27]. The main advantage we expect these
algorithms will have is speed, as they are computationally much
simpler than many of the others included in this study.

Tensor algorithms

When applying an algorithm to data from multiple cell types, a
natural extension to the two-dimensional algorithms presented
so far is a three-dimensional algorithm which exploits simi-
larity between corresponding samples in different cell types.
This approach is also known as triclustering [11]. We chose to
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Table 1. Summary of algorithms included in comparison. Algorithms are listed in groups: popular algorithms which have been included in
previous reviews (Popular), NMF algorithms, tensor factorisation algorithms (Tensor) and Bayesian algorithms allowing for a mixture of sparse
and dense biclusters, with strength of sparsity constraints adapting to the bicluster (Adaptive). With the exception of Plaid (Section S1.1),
algorithms either factorise the gene expression matrix Y as Y = XBT + ε (matrix factorisation), where X is the samples loading matrix, and B is
the gene loading matrix, or write it as a tensor product Y = ∑

k ak ⊗ bk ⊗ zk + ε (tensor product), where ak gives the loadings for bicluster k for
the individuals, bk gives the loadings for genes and zk gives the loadings for the tissues. Some algorithms use one language to implement the
algorithm and provide a ‘wrapper’ in another language. Where this occurs, the language given in the ‘Version’ column is the language used to
interact with the algorithm (the wrapper), rather than the language that the implementation uses

Class Name Model Sparsity Version References

Popular FABIA Matrix factorisation Laplacian prior pyfabia::2016.8 (Python) [12]
Plaid Plaid biclust::2.0.2 (R) [21, 31]

NMF nsNMF Matrix factorisation smoothing matrix and
non-negativity of X, B

nimfa::1.4.0 (Python) [27]

SNMF Matrix factorisation non-negativity of gene
loadings matrix B

nimfa::1.4.0 (Python) [18]

Tensor MultiCluster Tensor product Tissue components zk

non-negative
MultiCluster 15-08-2018
(MATLAB)

[32]

SDA Tensor product Spike-and-slab prior on gene
components bk

SDA 02-05-2016 [13]

Adaptive BicMix Matrix factorisation Three Parameter Beta prior BicMix 03-08-2019 (R) [8]
SSLB Matrix factorisation Mixture of Laplacian prior SSLB 24-04-2020 (R) [23]

include two algorithms that attempt this: Sparse Decomposition
of Arrays (SDA) [13] and MultiCluster [32]. These algorithms
recover triclusters, which contain a subset of the individuals, a
subset of the tissues and a subset of the genes. Every tricluster
can be flattened into a bicluster and, although general biclusters
cannot always be converted into a tricluster, all the biclusters
in our simulated study are generated as flattened triclusters so
they can all be detected by these algorithms. Additionally, we
have carefully chosen real datasets that have tricluster struc-
ture, to allow triclustering algorithms to be evaluated against
biclustering algorithms without disadvantage.

Algorithm parameters

The algorithms evaluated here, outlined in Table 1, have many
parameters that can be tuned. Before running the full analysis,
we conducted a parameter sweep (Section S2) to see if there
were any parameter values that consistently improved the score
relative to that when the default values were used. For most algo-
rithm parameters, there was either no clear optimal value, or the
default value was optimal. Thus, for most algorithms, we used
the default parameters throughout this study. One key exception
was BicMix, which has a parameter determining whether or not
each gene gets transformed to a Gaussian distribution before
the algorithm runs. Changing this parameter had a dramatic
but inconsistent effect, so we decided to use two versions of
BicMix: BicMix, using default behaviour of not transforming
genes, and BicMix-Q, which does apply the Gaussian transfor-
mation before analysis. Full discussion of our investigation of
parameter sensitivity is given in Section S2.

Simulated datasets

We simulated individual gene expression data for each gene as
a sum across biclusters of negative binomial counts. Our base
model for generating a gene expression dataset with p genes,
m individuals and t tissues and with K potentially overlapping
biclusters is illustrated in Figure 1 and described below:

1. For each bicluster k = 1, . . . , K:

a. Select genes to include in bicluster k: first draw number of
genes gk uniformly from the set { p

100 , p
10 , p

5 , p
2 , p} and then

pick a random sample of gk genes.

b. Select individuals to include in bicluster k: first draw num-
ber of individuals mk uniformly from the set { m

100 , m
10 , m

5 ,
m
2 , m} and then pick a random sample of mk individuals.

c. Select tissues to include in bicluster k: first draw number of
tissues tk uniformly from the set {1, 2, . . . , t} and then pick
a random sample of tk tissues.

d. Sample bicluster-specific mean μk ∼ Gamma(α, β) using
α = 2, β = 1

600 . These parameters give a mean of 1200 and
standard deviation of 849. This gives a standard deviation
of 63.2 when the bicluster-specific mean is 1200. We found
that this choice of mean distribution gave a good range of
scenarios, ranging from biclusters which were easily dis-
tinguishable by eye to harder scenarios where biclusters
had more similar means (Figure S11).

e. Sample values in bicluster using negative binomial distri-
bution with mean μk, shared parameter p = 0.3. This gives
a standard deviation of 63.2 when the bicluster-specific
mean is 1200.

2. Add together values from all biclusters
3. Add background noise using negative binomial distribution

Formally the base model is:

Yijl =
∑

k

δikγjkτlkE(k)
ijl + Bijl

E(k)
ijl ∼ NegBin(nk, p)

Bijl ∼ NegBin(1, p)

nk = μkp
1 − p

μk ∼ Gamma(α, β)

(2)

where δik, γjk and τlk are binary indicators of membership of

individual i, gene j and tissue l to bicluster k, respectively, E(k)
ijl

is the increase in expression of gene i in tissue l in individual
i due to bicluster k and Bijl is background noise. We chose to
force the genes chosen in a bicluster to belong to a contiguous
block rather than allowing genes from a bicluster to be scattered
freely throughout the matrix and did the same for the tissues
and individuals chosen in a bicluster. This arrangement has
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Figure 1. Illustration of process for simulating gene expression datasets with implanted biclusters. In this diagram (A) shows steps 1.a-1.b where membership for genes

(columns) and individuals (rows) are sampled for three biclusters, (B) shows step 1.c for the three biclusters, where we extend the biclusters from size (mk, gk) to size

(mktk, gk) by sampling membership for tissues, (C) shows steps 1.d and 1.e where values for the bicluster members are sampled, with bicluster-specific means μk , (D)

shows step 2 where the effects from the three biclusters are added together.

little impact on the generality of the data but makes it easier
to visualise the datasets.

We vary the size of the dataset, the number of biclusters and
the size of biclusters. Although we do not explicitly vary the
overlap between biclusters, this varies between datasets, driven
mainly by the number of biclusters (Figure S12). For datasets with
‘sparse’ biclusters, in step 1.a the number of genes gk is chosen
uniformly from the set { p

20 , 2p
20 , 3p

20 } instead of the default list and
similarly in step 1.b the number of individuals mk is chosen
uniformly from { m

20 , 2m
20 , 3m

20 }. For datasets with ‘dense’ biclusters,
in step 1.a the number of genes gk is chosen uniformly from
the set { 3p

10 , 5p
10 , 9p

10 } instead of the default list and similarly in
step 1.b the number of individuals mk is chosen uniformly from
{ 3m

10 , 5m
10 , 9m

10 }. Bicluster size is called ‘square’ if, for each bicluster,
the proportion of genes included and proportion of samples
included is the same.

We also introduce diversity by using different noise distribu-
tions. For Gaussian noise we use E(k)

ijl ∼ N (μk, σ 2) and for noiseless

datasets we use E(k)
ijl = μk, Bijl = 0.

Previous reviews have also varied simulation parameters but
have often used very small ranges such as K = 1, 2, 3, 4, 5 [26].
Real gene expression datasets are likely to be more complex than
this, so we have used larger values of K: Most of our simulated
datasets have K = 20 but we consider values from K = 5 to
K = 400.

The ‘Tensor’ algorithms require an explicit breakdown of the
samples into tissues. By listing the samples from each tissue in

turn, with individuals in the same order within each tissue, we
are able to use the ‘Tensor’ algorithms on the same datasets as
the remaining algorithms, allowing direct comparison between
the classes of algorithm.

Shift-scale datasets

In addition to the datasets described thus far, whose properties
are summarised in Table 2, we include datasets which sample
bicluster values using shifting and scaling patterns. The shift-
scale model of bicluster values is described in [1] and has been
considered in previous comparison studies [4, 6, 26] and can be
written as:

E(k)
ijl = αj × πil + βj (3)

where αj is the gene-specific scale parameter, βj is the gene-
specific shift parameter and πil is the base value for the sample
from individual i and tissue l. Note that previous studies have
sampled βj and αj and πil either uniformly from the range [0, 1]
[4] or from N (0, 1) [6, 26]. We sample values as follows:

πil ∼ Exponential(1)

αj ∼ Exponential(2) + 1/2

βj ∼ Exponential(1)

(4)
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Table 2. Summary of simulated datasets. The attributes of the datasets are displayed in bold if they differ from the base dataset. N is the number
of individuals, T the number of tissues and G the number of genes in the dataset

Name N T G Bicluster sizes K Noise

Base 10 10 1000 Mixed 20 NB(nk, 0.3)
N50-T2 50 2 1000 Mixed 20 NB(nk, 0.3)
N10-T20 10 20 1000 Mixed 20 NB(nk, 0.3)
N100-T10 100 10 1000 Mixed 20 NB(nk, 0.3)
N500-T10 500 10 1000 Mixed 20 NB(nk, 0.3)
G100 10 10 100 Mixed 20 NB(nk, 0.3)
G5000 10 10 5000 Mixed 20 NB(nk, 0.3)
Large-K20 300 20 10 000 Mixed 20 NB(nk, 0.3)
Negbin-medium 10 10 1000 Mixed 20 NB(nk, 0.1)
Negbin-high 10 10 1000 Mixed 20 NB(nk, 0.01)
Gaussian 10 10 1000 Mixed 20 N (μk, 202)
Gaussian-medium 10 10 1000 Mixed 20 N (μk, 1002)
Gaussian-high 10 10 1000 Mixed 20 N (μk, 3002)
Noiseless 10 10 1000 Mixed 20 No noise
Sparse 10 10 1000 Sparse 20 NB(nk, 0.3)
Dense 10 10 1000 Dense 20 NB(nk, 0.3)
Sparse-square 10 10 1000 Sparse, square 20 NB(nk, 0.3)
Dense-square 10 10 1000 Dense, square 20 NB(nk, 0.3)
K5 10 10 1000 Mixed 5 NB(nk, 0.3)
K10 10 10 1000 Mixed 10 NB(nk, 0.3)
K50 10 10 1000 Mixed 50 NB(nk, 0.3)
K70 10 10 1000 Mixed 70 NB(nk, 0.3)
Large-K100 300 20 10 000 Mixed 100 NB(nk, 0.3)
Large-K400 300 20 10 000 Mixed 400 NB(nk, 0.3)

so that base values πil and shift parameters βj have mean 1
and mode 0 but scale parameters αj have a mean of 1 and a
mode of 1/2. This different distribution for αj avoids having scale
parameters too close to 0, which would flatten the signal. Note
that using the Exponential distribution avoids negative values,
allowing the datasets to be used with the ‘NMF’ algorithms. As in
previous studies, we also consider a ‘scale’ model that has βj = 0
and a ‘shift’ model that has αj = 1. We also consider a model
we call ‘constant-samples’ that has αj = 1, βj = 0. In all these
datasets ‘constant-samples’, ‘scale’, ‘shift’ and ‘shift-scale’, we
use no noise i.e. Bijl = 0.

Real datasets

A key limitation of the existing reviews of biclustering algo-
rithms is their inability to assess ‘simultaneous’ clustering of
samples and genes on real datasets, due to the absence of known
biclusters in the data. In order to have predictable bicluster
structure in a real dataset, we chose to use a knockout mouse
dataset [19, 33]. We proposed that a successful algorithm would
recover, for each of the 106 knockout genes, a bicluster contain-
ing the roughly 20 samples where the gene was knocked out and
enriched for genes that share a pathway with the knocked-out
gene. Thus this dataset allows us to have some sense of its true
bicluster structure.

International Mouse Phenotyping Consortium dataset

We use the RNA-seq dataset available on ArrayExpress under
accession number E-MTAB-5131, part of the International Mouse
Phenotyping Consortium (IMPC) [19, 33]. It consists of 106 knock-
out genotypes, from each of which are available roughly three
replicates in each of up to seven tissues. There are also samples
from wild-type mice.

To make the study feasible for multiple algorithms in terms
of computational time, we chose to restrict to a subset of genes.
We restricted to the 4444 genes which share a Reactome pathway
with at least one of the 106 knockout genes, found by searching
the Reactome pathways [7, 16] using Mouse Mine [24]. We apply
three different normalisation methods to the data: (1) library
size adjustment using DESeq’s median of ratios normalisation
method, (2) the log transform x → log (x + 1), which is commonly
used in analysis of gene expression data and (3) Gaussian quan-
tile normalisation so that each gene has approximate N(0, 1)
distribution.

Tensor structure

The ‘Tensor’ algorithms require the dataset to have three dimen-
sions i.e. m individuals, t tissues, p genes rather than just n = m×t
samples and p genes. We chose the 3 tissues with the most
samples (liver, lung and cardiac ventricle), and the 64 genotypes
with at least one sample in each of these tissues. Unfortunately
we were unable to find information detailing which samples
came from which specific mouse replicate so could not simply
include a row for each individual, a column for each gene and a
layer for each tissue. Instead we pooled the samples from each
genotype for each tissue individually by taking the mean of the
replicates. Thus, we had m = 64, t = 3 with a total of n = 192
samples.

This type of dataset, which we call the ‘Tensor’ dataset, can
be used by all the algorithms, whereas the ‘non-tensor’ dataset,
which simply uses all n = 1143 samples, can not be used by the
‘Tensor’ algorithms.

Benaroya sorted blood cell dataset

We use the RNA-seq dataset available on ArrayExpress under
accession number E-GEOD-60424, collected by the Benaroya
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Table 3. Metrics used to evaluate the biclustering algorithms, which are described more fully in Methods Section ‘Evaluation metrics’. For each
metric we note what information about the dataset it requires, the best and worst scores theoretically possible and briefly describe what it
measures

Name Requires Best Worst Measures

CE Entire bicluster
structure

1 0 Biclustering accuracy

NRE – 0 1 Reconstruction error
MBR – 0 1 Similarity between

biclusters within a run
Similarity between runs Multiple runs 1 0 Similarity between runs
Sample clustering Sample clusters 1 0 Sample clustering
Pathway enrichment Pathway database 1 0 Gene clustering
Relevant pathway enrichment Known link between

pathways and
sample clusters

1 0 Biclustering

Research Institute [22]. We use a subset consisting of 20 samples
from each of six immune cell types, including subjects with
amyotrophic lateral sclerosis, multiple sclerosis, type 1 diabetes
and sepsis, along with healthy controls (Table S4). For the
subjects with multiple sclerosis, samples were taken before and
after treatment with IFN-beta. As with the IMPC dataset, we tried
both log transformation and DESeq’s median of ratios size factor
normalisation method. We restrict to the 17 069 protein-coding
genes that are expressed in at least one cell type (i.e. with median
expression greater than 0 in at least one cell type). This dataset
has tensor structure, so can be used by all the algorithms.

Evaluation metrics

We use a range of metrics to evaluate performance of the biclus-
tering algorithms (Table 3). In particular, we made use of an
extensive study of biclustering accuracy metrics [14] to choose
the clustering error (CE) metric [14, 28] to evaluate biclustering
accuracy. Horta and Campello defined eight desirable proper-
ties, such as penalising the omission of biclusters, penalising
the inclusion of extra copies of biclusters and penalising the
merging of biclusters. The CE metric was shown to satisfy all
of these eight properties except ‘homogeneity’. This is a great
improvement on the consensus score and recovery and rele-
vance scores commonly used to evaluate biclustering similarity.
Notably, these commonly used metrics would not penalise a
algorithm for returning extra copies of a bicluster.

Most metrics used by previous reviews, including the CE met-
ric that we intend to use for evaluation of performance on sim-
ulated datasets, cannot be used on real datasets, as they require
knowledge of the entire biclustering structure of the dataset. We
introduce two metrics that can be used even when nothing is
known about the structure of the dataset: Normalised Recon-
struction Error (NRE) and Mean Biclustering Redundancy (MBR).

Clustering error

The CE [14, 28] is defined as:

CE(A, Â) := dmax

|U| (5)

where dmax measures how much the biclusterings intersect and
|U| measures the total space collectively covered by the bicluster-
ings, taking overlaps into account (Section S3). The Hungarian
algorithm [25] is used to find a pairing of biclusters from the

two sets such that the sum of the intersections between pairs
is maximised. Despite its name, CE is a measure of similarity
between biclusters rather than dissimilarity.

Normalised reconstruction error

Most metrics used by previous reviews, including the ‘CE’ metric
that we intend to use, can only be used on simulated datasets.
We introduce two metrics that can be used even when nothing
is known about the structure of the dataset. The first uses the
error matrix ε = Y− X̂B̂T = Y− Ŷ to see how similar the recovered
factorisation is to the original matrix.

Given original matrix Y, and factorisation Ŷ = X̂B̂T returned
by the algorithm, we define the NRE as:

NRE(Y, Ŷ) := ‖Y − Ŷ‖F

‖Y‖F + ‖Ŷ‖F

(6)

where ‖A‖F denotes the Frobenius norm
√∑

ij A2
ij.

A score of 0 indicates perfect reconstruction. The maximum
score is 1, indicating a large error relative to the true matrix Y
and the recovered matrix Ŷ. One big advantage of this metric
is that it can be used on real datasets too, since all that is
needed is the original matrix Y. It should be noted that this
measure may reward algorithms or parameter settings which
are overly complex and are thus able to overfit to the data. To
avoid overfitting, we recommend avoiding direct optimisation
with respect to this measure, unless it is used in combination
with a measure that penalises model complexity.

It should be noted that this metric requires the algorithm to
factorise the raw matrix as the product of two matrices, and
to return the raw values from this factorisation. Plaid is the
only algorithm we consider which does not perform explicit fac-
torisation, however BicMix-Q, MultiCluster and FABIA all apply
transformations to the raw matrix before factorisation, so also
cannot be evaluated using this metric.

Mean Bicluster Redundancy

Another metric we introduce that can be used without knowl-
edge of the structure of the dataset is the MBR, which measures
how similar the biclusters returned in a single run are to each
other. When running biclustering algorithms on large datasets,
it can be difficult to interpret the results if the algorithms return
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Figure 2. MBR within a run plotted against the threshold for inclusion in bicluster, for simulated datasets. MBR (Methods Section ‘Mean Bicluster Redundancy’) is in

the range [0, 1], and a lower value is preferred as it suggests that the algorithm is not returning biclusters that are very similar to each other. The thresholding process

is described in Section S6. The median of this measure across all simulated datasets and all values of Kinit is shown by the bars. The grey lines show the median for

each dataset type. Note that without thresholding (threshold 0) the biclusters within each run by FABIA, SDA, SNMF and nsNMF are almost all identical.

many copies of the same bicluster. The perfect score of 0 indi-
cates that the biclusters do not overlap at all, and the worst score
of 1 indicates that all biclusters are identical.

The Jaccard index [15] measures how closely two sets match,
comparing their intersection to their union. We construct a
matrix J using the Jaccard index between each pair of biclusters:

Jkl := |Ak ∩ Al|
|Ak ∪ Al| (7)

and then take the mean of the off-diagonal entries:

MBR(A) := 2
K(K − 1)

K−1∑

k=1

K∑

l=k+1

Jkl (8)

Sample clustering in real datasets

The samples in the IMPC dataset can be clustered in two main
ways: by tissue or by genotype. We refer to these as ‘sample
traits’. We chose to measure how well a bicluster matches a given
sample trait using the F1 score [5], which balances reward for
containing ‘only’ elements with the sample trait (precision) and
reward for containing ‘all’ the elements with that sample trait

(recall). It is defined as:

F1 score = 2 × Precision × Recall
Precision + Recall

(9)

where precision and recall are defined in terms of the set S of
samples with the trait and set F of samples contained in the
bicluster:

Precision = |S ∩ F|
|F|

Recall = |S ∩ F|
|S|

(10)

For each trait, we find the best F1 score across all biclusters,
and then take the mean of these maximum F1 scores across
sample traits. We call the mean of this maximum across all traits
the sample clustering ability, the mean across only tissue traits
we call the tissue clustering ability and the mean across only
genotype traits we call the genotype clustering ability.

Gene clustering in real datasets

The typical approach to evaluate gene clustering in real datasets
is to look at what proportion of biclusters are enriched for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
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Figure 3. Robustness to choice of Kinit, shown by final value of K (after post-processing) plotted against initial value of K. There is a point for each of the three seeds

of the ‘base’ dataset, which has K = 20. The red line shows the limit, where the final value of K is the same as the initial value of K. The black line joins the median

K̂ across all seeds of the ‘base’ dataset. The ideal behaviour is for the line to be flat once Kinit exceeds the true K (for this dataset K = 20), showing that the algorithm

converges to the same value of K regardless of the initial value given, as long as Kinit is sufficiently large. MultiCluster and ‘NMF’ algorithms always returned the same

number of biclusters as they started with. Most algorithms show a similar pattern in terms of number of biclusters returned, regardless of the true number of biclusters

(Figure S23).

at least one pathway in some pathway database such as GO,
Reactome or KEGG [4, 6, 12, 26, 29, 34]. We look at what proportion
of the biclusters returned by each algorithm are enriched for
at least one Reactome pathway [7, 16] (restricted to Reactome
pathways containing at least one of the 106 genes knocked out
in this experiment), measured by Fisher’s one-tailed hypergeo-
metric test, with P values adjusted for multiple testing by the
Benjamini–Yekutieli adjustment [3].

Biclustering in real datasets

We identify, for each knocked-out gene, the bicluster that a algo-
rithm has recovered, which most closely matches the samples
from that knockout genotype, using the F1 score. Then we look
at whether this bicluster is also enriched for genes that share
a pathway with the knocked-out gene, using Fisher’s hypergeo-
metric test. This evaluation of simultaneous sample clustering
and gene clustering is one aspect of our study that is unique
among comparisons of biclustering algorithms, and we think it
is a very important inclusion.

Post-processing

After looking at the raw output, we decided that we would
first need to apply some post-processing steps in order to
allow meaningful comparison of the algorithms. The process
is described fully in Section S6 and summarised here. The
‘Tensor’ algorithms, ‘NMF’ algorithms and FABIA returned many
biclusters containing all genes and all samples (Figure S13 and
Figure S14). We found that removing elements in the matrices

below a certain threshold, a process we call ‘thresholding’,
helped to reveal the biclusters within the noisy raw output.
Without thresholding, the biclusters returned by FABIA, SDA
and the ‘NMF’ algorithms were highly redundant but this
redundancy was reduced by thresholding with a threshold
of 0.01 (Figure 2). The optimal threshold is similar for most
algorithms, both on simulated datasets (Figure S15) and real
datasets (Figure S16), and is largely independent of the metric
used to select the threshold.

In particular, we note that we could have chosen a suit-
able threshold using only measures available for real datasets,
such as MBR and NRE. The MBR improves considerably for each
increase in threshold, particularly for the ‘NMF’ algorithms and
‘Tensor’ algorithms (Figure 2). Combined with the fact that NRE
drastically deteriorates for thresholds above 0.01 (Figure S17), we
can again conclude that a threshold of 0.01 is ideal, using only
measures available on real datasets.

After this careful analysis on real and simulated datasets, we
chose to use a threshold of 0.01 for the remainder of the study.
We found this value to be robust across datasets and algorithms,
although we note there is potential for further fine-tuning.

It is worth highlighting that Plaid and the ‘Adaptive’ algo-
rithms did not require this post-processing step, but in the
interests of avoiding bias and unnecessary complications in
the analysis we apply the same post-processing steps for every
algorithm. The one exception is Plaid, whose implementation
returns only the binary membership variables so thresholding
cannot be applied. The fact that these algorithms perform well
without need for post-processing is a key advantage in terms of
ease of use.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
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Figure 4. CE across all simulated datasets. The score is in the range [0, 1] with larger values preferred. Datasets used are described in Table 2. Kinit is as described in

Methods Section ‘Choice of Kinit’ and standard thresholding has been applied. Runs that failed (Table S5) are discarded in the analysis.

Choice of Kinit

Overall, algorithms were poor at accurately recovering the right
number of biclusters (Figure S21), with only FABIA and BicMix-Q
showing any positive correlation between the true K and recov-
ered K (BicMix-Q had correlation of 0.836 between true K and
recovered K). Ideally we would simply use a large value of Kinit for
all algorithms, as this is what we would do in practice on a real
dataset with unknown structure. However, only Plaid, SDA and
the ‘Adaptive’ algorithms have shown that they would effectively
learn the number of biclusters to include, although it should be
noted that all recovered fewer biclusters than the true number
of biclusters except SDA which recovered more than the true
number of biclusters. The remaining algorithms consistently
returned the same number of biclusters as they started with,
so did not ‘learn’ K at all (Figure 3). The ‘Adaptive’ algorithms
achieve better performance when started with an overestimate
of the number of biclusters (Figure S22). Thus, we use Kinit = K,
the true number of biclusters for all algorithms, except for the
‘Adaptive’ algorithms for which we use a slight overestimate
of Kinit (Kinit = K + 10, except for when K = 20, when we use
Kinit = 25.). Note that our way of choosing Kinit is dependent on
knowing the true number of biclusters, so it gives the algorithms
an advantage they would not have on real datasets. However, it
allows us to compare the ‘ideal’ behaviour of each algorithm. For
the real datasets we use Kinit = 50, 200 for all algorithms.

Reproducibility

The datasets used in this study are publicly available at Array-
Express under accession numbers E-GEOD-60424 and E-MTAB-
5131. Additionally, all the code used to run the analysis is avail-
able on GitHub (https://github.com/nichollskc/biclust_comp).
This includes wrappers for each algorithm, implementations

of the evaluation metrics, code used to simulate datasets, and
to perform pre- and post-processing. We used random seeds to
ensure the analysis would be reproducible. To make the code
easier to understand and run, we organised the workflow using
the bioinformatics pipeline tool snakemake [20] and kept track of
dependencies using the open source package management tool
conda [2]. Additionally, we have saved the results files at https://
doi.org/10.5281/zenodo.4581206 to allow further investigation of
the results without the need to re-run the entire workflow.

Results
Results on simulated datasets

The results are summarised in Table 4. Figure 4 shows the
biclustering accuracy of the algorithms across all the simulated
datasets. The ‘Adaptive’ algorithms performed best, with SSLB
having the best overall accuracy on simulated datasets (0.336).
SNMF has the best accuracy of the non-Bayesian algorithms
(0.239).

The accuracy of the algorithms generally decreases as the
size of the dataset increases (Figure S24), and as the number of
biclusters increases (Figure S25). We had expected algorithms
to perform better when there were fewer biclusters, which is
the case for SSLB and the ‘NMF’ algorithms. However, FABIA,
BicMix and BicMix-Q have poor accuracy on the datasets with
small number of biclusters. We measured the amount of overlap
between biclusters in the simulated datasets and found that
SSLB, Plaid and the ‘NMF’ algorithms performed worse when
overlap was higher, with the remaining algorithms showing
little change, or improved performance (Figure S12). For the very
largest datasets (large-K100 and large-K400) many algorithms
took a long time to run and only MultiCluster and nsNMF com-
pleted runs within 12 h when using Kinit close to 400 (Table S7

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://github.com/nichollskc/biclust_comp
https://doi.org/10.5281/zenodo.4581206
https://doi.org/10.5281/zenodo.4581206
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
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Figure 5. Mean recovery of true biclusters, grouped by size of true biclusters (fraction of total matrix area taken up by true bicluster). We restrict to the datasets

‘base’, ‘sparse’, ‘dense’, ‘sparse-square’ and ‘dense-square’. For each true bicluster in these datasets and for each algorithm, we find the recovered bicluster achieving

maximum Jaccard index with the true bicluster. We call this the recovery score for that true bicluster and that algorithm, which is a measure of how well the algorithm

has recovered a particular true bicluster. This plot shows the spread of recovery scores for each algorithm, grouped by the proportion of the total area of the dataset

taken up by the true bicluster. Recovery scores are generally better for denser biclusters, though Plaid has notably lower recovery scores for the densest biclusters

compared to other algorithms.

shows failure counts across all runs, and Table S5 shows failure
counts restricted to the value of Kinit chosen for analysis).

Changing the sparsity of the biclusters in the simulated
datasets had a large effect on accuracy. We had expected that
on the datasets with only very sparse biclusters, the ‘Adaptive’
algorithms would have best accuracy as they have the strongest
sparsity constraints but in fact the ‘NMF’ algorithms performed
best on these datasets (Figure S26). We looked at how the recov-
ery of true biclusters was affected by the sparsity of the bicluster
and found that most algorithms achieved better recovery scores
for denser biclusters (Figure 5). Since they are smaller, sparse
biclusters naturally contain less signal than dense biclusters, so
it is expected that they are harder to detect than dense biclusters.
Although average recovery for sparse biclusters is poor, some
sparse biclusters are recovered perfectly, most notably by Plaid
and the ‘NMF’ algorithms (Figure S27). As well as considering
how well the algorithms recover the true biclusters, we can look
at how relevant the biclusters they recover are. An algorithm that
perfectly recovered only one of the 20 true biclusters would have
relevant biclusters but poor overall recovery. We found that the
algorithms returned many biclusters that did not closely match
any true bicluster, including low relevance scores for returned
biclusters that are sparse (Figure S28). The ‘NMF’ algorithms and
‘SDA’ returned fewer sparse biclusters with very low relevance,
and indeed fewer biclusters in general with low relevance.

The algorithms were fairly robust to noise, with little
difference in performance between datasets using Negative
Binomial noise, Gaussian noise and no noise and only Plaid

showing significant decrease in accuracy as noise was increased
(Figure S29).

Consistent with the findings in previous studies, the per-
formance of algorithms varies considerably between bicluster
models (Figure S30). SSLB has best performance on all shift-
scale models except ‘scale’ and stands out from the other algo-
rithms in models involving shift. It should be noted that, as
with previous reviews, the ‘scale’ model will flatten some of
the signal, marking structure harder for algorithms to discover.
Additionally, we note that the scale model can be transformed
to a shift model by applying a log transformation.

The algorithms were poor at recovering the correct number
of biclusters (Figure S21) and, when started with approximately
the right number of biclusters (as described in Section Choice of
Kinit), Plaid and the ‘Adaptive’ algorithms returned fewer than the
true number of biclusters (Figure S31). Although the remaining
algorithms recovered the correct number of biclusters in the
main study, this is not a significant result, as these algorithms
were found to return Kinit biclusters regardless of the true number
of biclusters (Figure S21).

Results on IMPC dataset

The algorithms performed well at finding biclusters correspond-
ing to tissues, with many achieving near perfect performance
(Table 4, Figure S32). The algorithms were less effective at finding
biclusters corresponding to genotypes, with FABIA and SSLB the
top two algorithms (Figure S33). This poor clustering of samples

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
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Figure 6. Gene clustering ability, measured by the mean proportion of recovered biclusters that are enriched for at least one pathway against number of distinct

biclusters recovered. Pathway enrichment is measured using the one-tailed hypergeometric test adjusted for multiple testing using the Benjamini–Yekutieli correction,

we use a significance threshold of P < 0.01. The median of this measure is shown for each algorithm, with a point for each version of the IMPC dataset. The number

of distinct biclusters recovered is measured as the number of pathways that had highest enrichment. Thus an algorithm that recovered only one bicluster and an

algorithm with all 20 biclusters all enriched for the same pathway would both show as having only discovered one distinct bicluster. Pathway enrichment is fairly high

for all algorithms, especially on the non-tensor datasets. Whilst nsNMF has high pathway enrichment, it recovers fewer distinct biclusters than SSLB or FABIA. Runs

that failed (Table S6) are discarded in the analysis.

from the same genotype might be due to the fact that the
algorithms did not return many biclusters containing samples
from multiple tissue types (Figure S34), suggesting that between-
tissue differences are dominating over between-genotype
differences.

Many algorithms also achieved good clustering of genes, as
measured by enrichment of biclusters for Reactome pathways
(Figure 6 and Figure S35). Since we pre-selected the genes to
include in the IMPC dataset using the pathway database, the
enrichment scores should be higher than expected on a normal
dataset. Thus it is the relative performance between algorithms
and normalisation methods rather than absolute performance
that is of interest. FABIA, SSLB, nsNMF, MultiCluster and Plaid
achieved near perfect scores on multiple versions of the dataset.
However, this performance should be considered alongside the

fact that Plaid returned on average only four biclusters and
that nsNMF returned biclusters with high similarity to each
other (Figure S16) and thus many of nsNMF’s biclusters may be
enriched for the same small set of Reactome pathways (Figure 6).
For example, in a run with Kinit = 200, 145 of the 200 biclusters
recovered by nsNMF were enriched for the ‘Metabolism’ pathway
(q < 0.05) compared to only 39 of the 188 biclusters recovered by
an SSLB run on the same version of the IMPC dataset.

The unifying test on IMPC data is the biclustering ability.
We proposed that for each gene that was knocked out, the
algorithms should recover a bicluster that contains the samples
where this gene was knocked out and that is enriched for the
pathways containing this gene. We can thus measure bicluster-
ing ability in this dataset by considering the proportion of knock-
out genotypes for which the algorithm has recovered such a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
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Figure 7. Biclustering ability on IMPC datasets, measured by the mean proportion of knocked-out genes for which the bicluster best matching the samples where

the gene was knocked out is enriched for at least one pathway containing the knocked-out gene. This measure is presented for both the tensor and non-tensor form

of the dataset, and for the three different normalisation methods described in Section IMPC dataset. Enrichment is measured using the one-tailed hypergeometric

test adjusted for multiple testing using the Benjamini–Yekutieli correction, using a threshold for significance of 0.05. Standard thresholding is applied and Kinit = 50.

Results for Kinit = 200 are in Figure S36. Note that ‘Tensor’ algorithms could not be run on the non-tensor datasets, ‘NMF’ algorithms could not run on datasets that

used quantile normalisation and Plaid failed to run on the dataset that used DESeq’s size factor normalisation (Table S6).

bicluster. We consider the proportion of knockout genotypes for
which the bicluster best recovering the samples is enriched for
at least one pathway containing the knocked-out gene (Figure 7).
To achieve a high score, an algorithm needs to (1) cluster samples
well by genotype, (2) cluster genes well by pathway and (3) return
biclusters where there is a link between the samples selected
and the genes selected. The ‘NMF’ algorithms, Plaid and SSLB did
best according to this metric, achieving enrichment of relevant
pathways for approximately 45% of the knockout genotypes
in multiple versions of the IMPC dataset. Most algorithms had
worse performance when using Kinit = 200 (Figure S36), particu-
larly SNMF that failed on 34 of the 40 runs using Kinit = 200 (Table
S8). Plaid was the only algorithm to fail on a higher percentage of
all runs (54 out of 120) but had similar failure rates when using
Kinit = 50 and Kinit = 200.

Strikingly, the reconstruction error (NRE) on the IMPC
datasets is much worse (higher) than on the simulated datasets
(Figure S37), except for nsNMF. This demonstrates the additional
complexity in the real datasets compared to the simulated
datasets.

Results on sorted blood cell dataset

To investigate whether between-tissue differences always dom-
inate the analysis, we used the Benaroya dataset. This dataset
has six cell types that are closely related - they are expected
to have gene pathways in common that biclustering methods
should detect. Moreover, these six cell types can be grouped into
the broader classes of myeloid cells and lymphoid cells (Table
S4). We looked in detail at one of the 10 runs by each algorithm
on each version of the dataset (Figures S35–S54). We found that
most biclusters recovered on the log-transformed dataset were
not enriched for any cell type, cell type group, disease state
or treatment. However, on the size factor normalised dataset,
all algorithms except BicMix-Q and the ‘Popular’ algorithms
recovered biclusters that contained mostly lymphoid cell types,
or mostly myeloid cell types (Table S9), showing that cell type is
still important in blood cell datasets, but that the algorithms can
cluster together samples from similar cell types. All algorithms
returned multiple biclusters including samples from every cell
type, again showing that cell type does not dominate every

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab140#supplementary-data
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Figure 8. Robustness across random seeds of biclusters recovered by the algorithms. For each algorithm, we consider pairs of runs that differ only in the random seed

used and for each such pair calculate the similarity between the set of biclusters recovered in one run and the set of biclusters recovered in the other run. We measure

similarity between the sets of biclusters using CE. This boxplot shows the spread of similarity scores achieved by each algorithm. Higher scores are preferred, as they

indicate that the algorithm recovers similar biclusters on each re-run. MultiCluster is deterministic, so achieves maximal score of 1. Plaid and the ‘NMF’ algorithms all

achieve relatively high scores.

bicluster in this dataset that has cell types that are more similar
to each other.

SSLB, BicMix, nsNMF, MultiCluster and Plaid returned biclus-
ters specific to individual cell types (Table S9 and Figures S46,
S47, S48, S49, S54). SSLB, nsNMF and BicMix-Q each recovered a
bicluster containing mainly samples from subjects with multiple
sclerosis after treatment with IFN-beta and these biclusters
all contained samples from multiple cell types (Figures S46,
S48 and S50). Aside from a few biclusters containing mainly
myeloid samples from subjects with sepsis recovered by SSLB,
these IFN-beta biclusters were the only recovered biclusters with
clear biological meaning beyond cell type. These biologically
interesting biclusters were found only in size factor normalised
datasets.

Overall, more interesting biclusters were recovered on the
dataset that used size factor normalisation than on the log-
transformed dataset. The ‘NMF’ and ‘Adaptive’ algorithms seem
to have best found biologically interesting biclusters in this
sorted blood cell dataset.

Robustness between runs

With the exception of MultiCluster, the algorithms compared
here are stochastic and thus may produce different results each
time they are run. If a similar set of biclusters is recovered by
repeated runs of an algorithm, this can give confidence that the
bicluster decomposition is meaningful and that the algorithm
is robust. Thus we felt it important to quantify how similar the
results from a run were to the results when using a different

random seed, as a measure of robustness of an algorithm. For
each algorithm, in turn, we considered pairs of runs on the same
dataset that differed only in random seed used (i.e. they ran on
the same form of the IMPC dataset, with the same parameters
and using the same value of Kinit) and calculated the similarity
between the two biclusterings recovered. We measured similar-
ity between the two biclusterings using CE. As MultiCluster is
deterministic, it achieves a perfect score of 1 in this test. Of the
remaining algorithms, Plaid and the ‘NMF’ algorithms are the
only ones to have a median similarity score between runs of over
0.5 (Figure 8).

Computational time

It is important to evalute the time taken for the algorithms to
run, and how this scales with the size and complexity of the
dataset, as this can restrict the datasets that an algorithm is
able to process. The slowest algorithm on the IMPC datasets
was SNMF, which took 8 h to run on the tensor log-transformed
dataset, compared to the 7 s taken by nsNMF (Table 4). Figure S55
shows runtime with small value of Kinit, Figure S56, and Figure
S57 show, for simulated datasets and IMPC datasets respectively,
that runtime for the ‘Adaptive’ algorithms, SDA, SNMF and FABIA
changed drastically with Kinit.

Discussion
We highlight two key contributions we hope will be of use to
future comparison studies and users of biclustering algorithms.
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Firstly, we introduced a thresholding procedure that enhances
the sparsity of returned biclusters, aiding analysis. The raw
output of algorithms such as nsNMF was difficult to analyse,
but after applying the thresholding procedure nsNMF was one
of the top-ranking algorithms. Secondly, we introduced two met-
rics, MBR and NRE, which can be used to judge the results of
algorithms on datasets where the truth is not known.

On simulated datasets ‘Adaptive’ algorithms had the
best overall performance. We investigated the limitations of
biclustering algorithms by varying dataset complexity. All
algorithms were relatively unaffected by increasing noise in
simulated datasets, but performance decreased when dataset
size and number of biclusters were increased. Dense biclusters
were generally recovered better than sparse biclusters. From
a biological perspective, we expect the dense biclusters to
correspond to confounding variables such as sex and age and
the sparse biclusters to be more biologically interesting, so this
behaviour is not ideal, although it is to be expected since sparse
biclusters contain less signal than dense biclusters.

Like previous studies, we found that algorithms achieved
good enrichment of biclusters for gene pathways in real datasets.
We carefully chose a knockout mouse dataset to allow evalu-
ation of biclustering on real datasets, a task that has eluded
previous studies, and found that ‘NMF’ algorithms, SSLB and
Plaid performed best at recovering biclusters. In the sorted blood
cell dataset, the ‘Adaptive’ algorithms and nsNMF best recovered
biologically relevant biclusters.

In terms of ease of use, ‘Adaptive’ algorithms and Plaid are the
only algorithms well suited to use without tuning of Kinit, and also
did not require post-processing. ‘NMF’ algorithms and Plaid had
the most robust results, with different runs having on average
a similarity of 0.5 to each other, as measured by CE. Plaid and
nsNMF were the fastest, with nsNMF taking 7 seconds on the
largest IMPC dataset, compared to the 8 h taken by the slowest
algorithm (SNMF). We found that most algorithms performed
well with default parameters, with few parameter values that
showed consistent and significant improvement over default
values during our parameter sweep.

We found that normalisation method of real data had a large
impact on the performance of algorithms. On the Benaroya
dataset, more biologically interesting biclusters were found
when using size factor normalisation and no method performed
better on the log-transformed dataset. On the IMPC dataset, the
relative ranking of normalisation methods varied considerably
between algorithms. When we compared the performance of
algorithms on simulated datasets that used shift-scale patterns,
we found that SSLB in particular performed better on ‘shift’
dataset than the ‘scale’ dataset. Thus, if a dataset is believed
to be driven by scale patterns, we recommend applying a log
transformation to transform the pattern to a shift pattern.

Overall, many algorithms performed better than the ‘Pop-
ular’ algorithms that had performed best in previous reviews,
showing the need for continued comparison studies as biclus-
tering algorithms develop further. ‘NMF’ algorithms had poor
raw output but nsNMF was one of the top-ranking algorithms
after using the sparsity-inducing thresholding procedure we
introduce. ‘Tensor’ algorithms did not perform better than other
algorithm types, despite both real and simulated datasets hav-
ing tensor structure, with all expected factors having tricluster
structure. ‘Adaptive’ algorithms performed particularly well on
the simulated datasets, and SSLB also had good performance on
the real datasets.

Key Points
• We introduce a promising thresholding procedure to

enhance sparsity of the returned biclusters, essential
for FABIA, SDA and ‘NMF’ algorithms that otherwise
returned only biclusters containing every gene and
every sample.

• We introduce the MBR metric for redundancy within
a run, and NRE metric for measuring reconstruction
error, which can be used even when the true structure
of the dataset is not known.

• We have shown the potential for re-purposing of ‘NMF’
algorithms to the task of biclustering. The nsNMF
algorithm was orders of magnitude faster than the
more complex algorithms and had good performance,
particularly on the real datasets.

• For datasets with unknown structure we recommend
SSLB. If a fast algorithm is needed and the number of
biclusters is known, or if metrics are available to aid
the choice of Kinit, then we recommend nsNMF.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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29. Prelić A, Bleuler S, Zimmermann P, et al. A systematic com-
parison and evaluation of biclustering methods for gene
expression data. Bioinformatics 2006;22(9):1122–9.

30. Saelens W, Cannoodt R, Saeys Y. A comprehensive evalua-
tion of module detection methods for gene expression data.
Nat Commun 2018;9(1):1–12.

31. Turner H, Bailey T, Krzanowski W. Improved bicluster-
ing of microarray data demonstrated through systematic
performance tests. Comput Statist Data Anal 2005;48(2):
235–54.

32. Wang M, Fischer J, Song YS. Three-way clustering of
multi-tissue multi-individual gene expression data using
semi-nonnegative tensor decomposition. Annal App Statist
2019;13(2):1103–27.

33. West DB, Engelhard EK, Adkisson M, et al. Transcriptome
analysis of targeted mouse mutations reveals the topog-
raphy of local changes in gene expression. PLoS Genet
2016;12(2):e1005691.

34. Zhao, H, Wee-Chung Liew, A, Z. Wang, D, and Yan, H. (2012).
Biclustering analysis for pattern discovery: current tech-
niques, comparative studies and applications. Curr Bioinfor-
mat, 7(1):43–55.


	Comparison of sparse biclustering algorithms for gene expression datasets
	Introduction 
	Methods
	Results
	Discussion
	Supplementary Data


