
Frontiers in Immunology | www.frontiersin.

Edited by:
Elizabeth Helen Aitken,

The University of Melbourne, Australia

Reviewed by:
Luana Ortolan,

Seattle Children’s Research Institute,
United States

Lin Lin Caroline Chua,
Taylor’s University, Malaysia

*Correspondence:
Julie M. Moore

juliemoore@ufl.edu

†This manuscript is dedicated to the
memoryofourdear friendandcolleague

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 19 March 2021
Accepted: 17 September 2021

Published: 19 October 2021

Citation:
Sarr D, Oliveira LJ, Russ BN,

Owino SO, Middii JD, Mwalimu S,
Ambasa L, Almutairi F, Vulule J,
Rada B and Moore JM (2021)

Myeloperoxidase and Other Markers
of Neutrophil Activation Associate

With Malaria and Malaria/HIV
Coinfection in the Human Placenta.

Front. Immunol. 12:682668.
doi: 10.3389/fimmu.2021.682668

ORIGINAL RESEARCH
published: 19 October 2021

doi: 10.3389/fimmu.2021.682668
Myeloperoxidase and Other Markers
of Neutrophil Activation Associate
With Malaria and Malaria/HIV
Coinfection in the Human Placenta
Demba Sarr1, Lilian J. Oliveira2,3, Brittany N. Russ3, Simon O. Owino3,4,5,6,
Joab D. Middii 4,5,7, Stephen Mwalimu4,5,8, Linda Ambasa4,5,9, Faris Almutairi 1,10,
John Vulule4†, Balázs Rada1 and Julie M. Moore3,4,5*

1 Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States, 2 Department
of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States, 3 Department of Infectious
Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States, 4 Vector Biology and
Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya, 5 University of Georgia/Kenya Medical Research Institute
Placental Malaria Study, Siaya District Hospital, Siaya, Kenya, 6 Faculty of Science, Department of Zoology, Maseno University,
Maseno, Kenya, 7 Kisumu Specialists Hospital Laboratory, Kisumu, Kenya, 8 Animal and Human Health Program, International
Livestock Research Institute, Nairobi, Kenya, 9 #1 Heartsaved Adult Family Care, Marysville, WA, United States, 10 Department of
Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States

Introduction: Placental malaria (PM) is characterized by accumulation of inflammatory
leukocytes in the placenta, leading to poor pregnancy outcomes. Understanding of the
underlying mechanisms remains incomplete. Neutrophils respond to malaria parasites by
phagocytosis, generation of oxidants, and externalization of Neutrophil Extracellular Traps
(NETs). NETs drive inflammation in malaria but evidence of NETosis in PM has not been
reported. Neutrophil activity in the placenta has not been directly investigated in the
context of PM and PM/HIV-co-infection.

Methods: Using peripheral and placental plasma samples and placental tissue collected
from Kenyan women at risk for malaria and HIV infections, we assessed granulocyte levels
across all gravidities and markers of neutrophil activation, including NET formation, in
primi- and secundigravid women, by ELISA, western blot, immunohistochemistry and
immunofluorescence.

Results: Reduced peripheral blood granulocyte numbers are observed with PM and PM/HIV
co-infection in association with increasing parasite density and placental leukocyte hemozoin
accumulation. In contrast, placental granulocyte levels are unchanged across infection
groups, resulting in enhanced placental: peripheral count ratios with PM. Within individuals,
PM- women have reduced granulocyte counts in placental relative to peripheral blood; in
contrast, PM stabilizes these relative counts, with HIV coinfection tending to elevate placental
counts relative to the periphery. In placental blood, indicators of neutrophil activation,
myeloperoxidase (MPO) and proteinase 3 (PRTN3), are significantly elevated with PM and,
more profoundly, with PM/HIV co-infection, in association with placental parasite density and
hemozoin-bearing leukocyte accumulation. Another neutrophil marker, matrix
org October 2021 | Volume 12 | Article 6826681
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metalloproteinase (MMP9), together with MPO and PRTN3, is elevated with self-reported
fever. None of these factors, including the neutrophil chemoattractant, CXCL8, differs in
relation to infant birth weight or gestational age. CXCL8 andMPO levels in the peripheral blood
do not differ with infection status nor associate with birth outcomes. Indicators of NETosis in
the placental plasma do not vary with infection, and while structures consistent with NETs are
observed in placental tissue, the results do not support an association with PM.

Conclusions:Granulocyte levels are differentially regulated in the peripheral and placental
blood in the presence and absence of PM. PM, both with and without pre-existing HIV
infection, enhances neutrophil activation in the placenta. The impact of local neutrophil
activation on placental function and maternal and fetal health remains unclear. Additional
investigations exploring how neutrophil activation and NETosis participate in the
pathogenesis of malaria in pregnant women are needed.
Keywords: neutrophils, pregnancy, NETs (neutrophil extracellular traps), placental malaria, myeloperoxidase,
Plasmodium falciparum
INTRODUCTION

Malaria infection during pregnancy is a significant public health
problem with substantial effects on the mother, her fetus, and the
newborn child [reviewed by (1)]. Accumulation of parasites in the
placenta is a common feature of Plasmodium falciparum infection
in pregnant women, mediated by VAR2CSA, a parasite protein
exported to the surface of infected red blood cells, which binds to
chondroitin sulfate A on proteoglycans, including syndecan-1 (2),
in the placenta. Paucigravid women (in the first or second
pregnancy) are especially vulnerable and are more likely than
multigravidae (three or more pregnancies) and nonpregnant
women to develop severe malaria (1). The interplay between
parasites and the placenta is associated with inflammation
characterized by the recruitment, retention, and activation of
innate immune cells including polymorphonuclear leukocytes
(neutrophils) (3) and is known as placental malaria (PM) (4). PM
is associated with adverse pregnancy outcomes such as maternal
anemia, stillbirth, and low birth weight (LBW) due to intrauterine
growth restriction, and is most severe in the first pregnancy (5).
How neutrophils in particular may affect placental pathology and
fetal growth in the context of malaria remains a mystery.

Previous studies addressing potential interactions between PM
and HIV infection suggest that the latter impairs immunity against
malaria (6).HIV-infectedpregnantwomenhavemore frequent and
higher density parasitemia than HIV-negative pregnant women
(7–11). Importantly, malaria accelerates HIV disease progression
and higher viral load among pregnant women. Fetal complications
in PM and association between maternal HIV status and fetal
outcome have also been addressed (11–17). A definitive role for
neutrophils in pathogenesis of PM alone and co-infections with
HIVhas been rarely studied. Inone study, the number of circulating
pigmented (Hz-bearing) neutrophils negatively correlated with
birth weight, suggesting that these cells may have a pathogenic
role in PM and thus may serve as prognostic markers for malaria-
associated low birth weight (18). Another study reported that
circulating neutrophils were reduced in pregnant women with
org 2
P. falciparum malaria compared to negative controls (3). Others
have found elevated neutrophil levels in placental relative to
peripheral blood in malaria-infected women (19). Limited studies
that performed direct measures have noted increased neutrophil
levels by placental histopathology (20, 21). Consistent with this,
cytokines and chemokines that can attract neutrophils, namely
MIF, CXCL8/IL-8, and CCL3, are elevated in human PM (22–27).

Neutrophils are essential effector cells of the innate immune
system. In humans, neutrophils are the most abundant type of
white blood cell, accounting for 70% of all leukocytes in the blood
ofhealthy adults (28).Duringpregnancy, theneutrophil countbegins
to increase in the second month and plateaus in the second or third
trimester, a time atwhich the total number ofwhite blood cells ranges
from 9,000 to 15,000 X106/L (29). These cells are classically
considered to be short-lived and act as the first line of defense in
innate immunity, ensuring tissue restitution following resolution of
infection (30–32). Neutrophils can rapidly be recruited to sites of
infection and tissue injury (33), where they generate reactive oxygen
species (ROS) through the activity of NADPH oxidase, thereby
initiating antibacterial/antiparasitic defense (34). Neutrophils clear
infections by phagocytosis, generation of ROS, release of potent
bactericidal enzymes by degranulation, and formation of neutrophil
extracellular traps (NETs) (35).

As evidenced inmalaria, however, neutrophils represent a double-
edged sword. These cells are activated and are capable of clearing
malariaparasitesbyavarietyofmechanisms(reviewedby(36), yet they
are implicated inpathogenicmechanismsaswell (37).Micedeveloping
malaria-associated acute lung injury/acute respiratory distress
syndrome (ALI/ARDS) had greater neutrophil accumulation in the
lungscompared tomice thatdidnotdeveloppulmonarycomplications
(38). In thesemice, targetingofneutrophils decreased thedevelopment
of malaria-associated ALI/ARDS and significantly increased mouse
survival (38), suggesting that neutrophils play a significant role in the
pathogenesis of ALI/ARDS during experimental severe malaria and
could be targeted to improve disease outcome.

Oxidative damage to tissues is also a key attribute of malaria
pathogenesis that may be in part attributable to neutrophils.
October 2021 | Volume 12 | Article 682668
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Retinopathy-positive cerebral malaria is associated with
accumulation of neutrophils (39). Likewise, previous work with
P. chabaudi and P. berghei ANKA infection in mice indicated that
neutrophils were responsible for liver damage, cerebral
complications, and ALI/ARDS (38, 40, 41). Uptake of hemozoin
(Hz)-containing digestive vacuoles by neutrophils drives a rapid
oxidative burst but suppresses subsequent neutrophil activity (42).
Oxidative damage in PM has been reported in humans and in
mouse models, but key drivers remain unclear (43–46).

NETs are generated by the extrusion of DNA strands into the
extracellular milieu, where they can entrap invasive pathogens
(47, 48). The most common method for NET detection in vitro is
microscopic observation (49), with immunodetection of
neutrophil-derived proteins such as myeloperoxidase (MPO)
and proteinase 3 (PRTN3) (50, 51) colocalized with DNA (49).
NETs in tissue samples have similarly been shown as
extracellular DNA colocalized with neutrophil-derived proteins
(49). NET remnants such as DNA and neutrophil-derived
protein complexes (MPO-DNA; neutrophil elastase (NE)-
DNA) and citrullinated histones can be determined by ELISA
in fluid samples (50, 51) or detected by flow cytometry (52, 53) as
indicators of NETosis.

A role for NETosis in both protection and pathogenesis in
malaria is emerging. P. falciparum-infected red blood cells
reportedly stimulate human neutrophils to release NETs in vitro
(38). The latest mechanistic investigations of NETs in malaria
show that they are released by neutrophils exposed to malaria
parasites and impede parasite spread thereby controlling infection
(54). Furthermore, these studies provide evidence that NET release
in malaria is independent of cell-cell contact and is mediated by
macrophage migration inhibitory factor and peptidylarginine
deiminase 4 (PAD4)-dependent histone citrullination (54).
Interestingly, malaria parasite species have been shown to
produce DNase that degrades NETs and the deficiency of this
enzyme resulted in lower parasitemia in mice (55). Importantly,
NETosis has been linked to severe malaria in human infection and
in mouse models (38, 56–58). Using human samples and a mouse
model for malaria, Knackstedt et al. demonstrated that heme-
induced NETs are essential for malaria pathogenesis, with
granulopoiesis and endothelial cell activation as two mechanisms
of NET-mediated inflammation of the vasculature (58).

The present study investigates granulocyte levels and
neutrophil activity in the peripheral and placental blood and
tissue of parturient Kenyan women exposed to malaria and HIV.
Neutrophils and associated markers appear to be influenced by
these infections and preliminary evidence of NETosis in the
placenta blood is offered. These data show a potential implication
of neutrophils in the pathogenesis of PM but further studies are
required to characterize the mechanisms by which this occurs.
MATERIAL AND METHODS

Ethics Statement
The study supporting collection of samples used in this report
was approved by the Kenya Medical Research Institute, the
Centers for Disease Control and Prevention, and the
Frontiers in Immunology | www.frontiersin.org 3
University of Georgia Institutional Review Boards. All study
participants provided written informed consent before
enrollment and procedures and instruments involving human
subjects, sample collection and data analysis, processing, and
testing were approved throughout the conduct of patient
recruitment. All samples and data are anonymized.

Study Participants and Sample Collection
Participant recruitment and sample collection have been
previously described (11, 59) (Matthias et al., manuscript in
preparation). Briefly, the recruitment of 222 participants was
performed at New Nyanza Provincial General Hospital, a public
referral hospital, in Kisumu from November, 2002 to May, 2004.
Subsequently, 825 participants were recruited at Siaya District
Hospital, a public secondary health facility in Siaya until
September, 2008. Women of all gravidities and uncomplicated
vaginal deliveries were randomly recruited from patients
admitted to the Delivery Ward of these hospitals. Only women
with no health issues aside from malaria or HIV were eligible for
full participation in the study. Maternal demographic and
clinical information was collected and summarized, including
whether or not participants self-reported fever within the two
weeks prior to delivery. Infant gestational age was estimated
using the modified Dubowitz score, and birth weight in grams
was measured within eight hours after delivery. Maternal
placental (intervillous) blood (IVB) was collected by the prick
method within five minutes of placental expulsion (60).
Peripheral blood was collected by venipuncture of the cubital
vein within 12 hours post-partum. Platelet-free plasma was
prepared as described (59) and stored continuously at -80°C,
avoiding multiple cycles of freeze-thaw. Complete blood count
(CBC) of both peripheral blood and IVB to estimate total white
blood cell (WBC) and granulocyte counts was performed
simultaneously with a Beckman Coulter AcT diff2 (Beckman
Coulter Corporation, Miami, FL) within eight hours of blood
collection. Although the majority of granulocytes detected by
CBC are expected to be neutrophils, differential analysis for
granulocytes was not available; thus, granulocyte levels are
reported for this study. Full thickness placental tissue sections
were collected from three unique regions of the placental disk,
and fixed in Streck Tissue Fixative (Streck Inc., Omaha, NE).
Five-micron sections were stained with hematoxylin and eosin
for histopathological examination or left unstained for
immunohistochemical analysis. From the same placental
regions, 125 mm3 sections of villus tissue underlying the
placental basal plate were collected and flash frozen in liquid
nitrogen for future molecular analysis and with Tissue-Tek
OCT compound (Sakura Finetek USA, Inc., Torrance, CA)
for immunofluorescence assessments and stored continuously
at ≤-80°C until use.

Parasitemia was assessed on thick and thin smears of
peripheral and placental blood and estimation of thick smear
parasite density assumed 8,000 WBCs per µL of blood for both
peripheral and placental blood. Percentage of leukocytes in the
maternal placental vascular space bearing Hz was calculated
from these thick smears. HIV serostatus was determined by
rapid tests as previously described (11, 59).
October 2021 | Volume 12 | Article 682668
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Study Designs
Among the 1047 women recruited into the study, samples and data
from a subset of 379 women are included in the work described here.
Sample selection and use are summarized in Figure 1 and
Supplemental Figure 1, and patient characteristics are summarized
in Table 1. All malaria infections are attributable to P. falciparum; a
single participant was diagnosed with a P. falciparum/P. malariae
mixed infection. Paired peripheral and placental data from Complete
Blood Count were available from 224 women (79 primigravidae, 54
secundigravidae and 91 multigravidae, representing four infection
groups (uninfected, malaria only (PM+HIV-), HIV only (PM-HIV
+), and co-infected (PM+HIV+)). Gravidity differs significantly across
the infection groups providingCBCdata (P=0.0093 byKruskal-Wallis
test with post-hoc group-wise comparisons by Dunn’s multiple
comparisons test; median, interquartile range (IQR): PM-HIV-, 2, 1
– 3; PM+HIV-, 1, 1 - 2; PM-HIV+, 3, 2 – 4; PM+HIV+, 2, 1 – 3).
Subsequent analyses focused on primigravid and secundigravid
(paucigravid) women who experience the most significant outcomes
withmalaria andHIV infections in this setting (10, 61) (Matthias et al.,
manuscript in preparation).

Pilot data to detectmarkers of neutrophil activation andNETosis
(cell-free DNA, DNA-human neutrophil elastase (NE) complexes,
histones) in placental plasmawere generated usingHIV seronegative
primigravid placental plasma (Figure 1), selected on the basis of
placental histopathological status (uninfected, and infected: acute,
chronic, chronic inflammatory). Acute infection is defined as the
Frontiers in Immunology | www.frontiersin.org 4
presence of infected red blood cells (iRBC), white blood cell (WBC)
count by CBC <13,000/uL, and hemozoin scores [as described in
(Avery et al., 2012)] ≤1 in WBCs and in fibrin. Chronic infection is
defined as presence of iRBC,WBC count <13,000/uL, and hemozoin
scores ≥2 inWBCs and in fibrin. Chronic inflammatory infection is
defined as presence of iRBC,WBC count >13,000/uL, and hemozoin
scores≥2 inWBCs and infibrin.Uninfected sampleswere confirmed
parasite PCR negative and lacked iRBCs in histological sections.
Subsequent ELISA data were generated from paucigravid women
(Figure 1), representing malaria and HIV positive and negative
women, with balanced selection of primigravid and secundigravid
women within each infection group (PM-HIV-, PM+HIV-, PM-
HIV+, PM+HIV+), and with matched selection across groups of
infantbirthweights, inbothcases to theextent that sampleavailability
allowed. Frozen placental tissues for immunofluorescence were
selected to represent each infection group from among samples
with MPO data, based on sample availability (Figure 1).
Immunohistochemistry and western blot experiments utilized
paucigravid samples (Figure 1), representing the four infection
groups, with matched selection for granulocyte count (by CBC)
ranges across each group.

ELISA
Levels of myeloperoxidase (MPO), proteinase 3 (PRTN3), matrix
metalloproteinase (MMP9), and CXCL8 were quantified in
peripheral and placental blood using a commercial ELISA kit
FIGURE 1 | Diagram of sample collection and testing. Shown are the number of patients recruited in a large cohort of parturient women in western Kenya, and
samples contributed and tested in this study. Details of sample selection criteria are described in Materials and methods. Overlap of sample assessment on a per
patient basis is depicted in Supplemental Figure 1.
October 2021 | Volume 12 | Article 682668
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(R&D Systems, DuoSet, Minneapolis, MN) or bead arrays (R&D
Systems) following manufacturer instructions and as previously
described (62, 63). The experimental lower limits of detection for
MPO were 125 pg/ml (ELISA) and 130 pg/mL (bead array), 125
pg/mL for MMP9, 10 pg/mL for PRTN3 and 3.9 pg/mL for
CXCL8. Citrullinated histone H3 was measured using a kit from
Cayman Chemical (Ann Arbor, MI), with a lower limit of
detection at 0.1 ng/mL. Levels of NE-DNA complexes were
assessed using an in-house protocol established to detect NET
formation (64). In this assay, rabbit anti-NE (1:2,000,
Calbiochem, San Diego, CA) was used as capture antibody and
horseradish peroxidase-conjugated anti-DNA antibody (1:500,
Roche, Indianapolis, IN) as detection antibody. Cell-free double
stranded DNA was detected using the Quant-iT™ PicoGreen™

dsDNA Assay Kit (ThermoFisher Scientific, Grand Island, NY,
USA) according to the manufacturer’s instructions. DNA
concentrations were quantitated using a known DNA standard
with a lower limit of detection of 5 ng/mL as previously described
(65). Total histone H3 levels were detected using a commercial
Frontiers in Immunology | www.frontiersin.org 5
kit (Active Motif, Carlsbad, CA) according to manufacturer
instructions; the lower limit of detection was 150 ng/mL.

Immunohistochemistry and
Immunofluorescence
Unstained 5 mm placental tissue sections were dewaxed for 15
minutes at 65°C followed by two incubations in xylene (2x5
minutes). Sections were then rehydrated in alcohol and antigen-
retrieved with Sodium Citrate Buffer as previously described
(66). Sections were then brought to room temperature and
exposed to endogenous peroxidase activity block (DAKO,
Cat#S2023) for 15 minutes. After washing with 1X TBST,
sections were incubated with 10% Goat Serum for 10 minutes
and incubated with the primary antibody (1/500 for MPO or 1/
500 for citH3 in 1% Goat Serum) overnight at 4°C. The next day,
samples were washed with 1X TBST (3x5 minutes) and
incubated with polymer HRP anti-rabbit IgG for 30 minutes at
RT. After three washes in 1X TBST, sections were exposed to
DAB for 5 minutes, washed with distilled water, counterstained
TABLE 1 | Descriptive characteristics of study population stratified by gravidity.

Characteristics All Women (n = 379) Paucigravid (n = 288) Multigravida (n = 91) P-valueb

Maternal Sociodemographic
Gravidity 1 (1-11) 1 (1-2) 4 (3-11) -
Primigravid (%) 192 (50.6) 192 (66.7) - -
Age (years) 21 (13-39) 19 (13-32) 26 (20-39) <0.0001
Married (%) 258 (68.1) 171 (59.4) 87 (95.6) <0.0001
Luo ethnicity (%) 348 (91.8)

(n=377)
259 (90.5)
(n=286)

89 (97.8) 0.0230

Siayac residence (%) 342 (90.2) 251 (87.1) 91 (100) <0.0001
Laboratory
Feverd at admission (%) 4 (3.3)

(n=123)
3 (3.1)
(n=97)

1 (3.8)
(n=26)

1

HIVe seropositive* (%) 103 (27.2) 75 (26) 28 (30.8) 0.4177
Malaria smear positive* (%) 131 (34.6) 113 (39.2) 18 (19.8) 0.0006
Parasite density/µLf (range; interquartile range) 4,976 (40-226,208;

618-25,345) (n=131)
5,208 (40-226,208;
958-31,188) (n=113)

2,433 (83-119,107;
479-7,521) (n=18)

0.0752

Peripheral hemoglobing (g/dL) 11.3 (5.30-20.4)
(n=319)

11.3 (5.30-20.2)
(n=228)

11.4 (5.80-20.4)
(n=91)

0.5433

Placental hemozoin loadh 3.5 (0.3-82)
(n=127)

3.7 (0.3-82)
(n=108)

1.6 (0.6-54)
(n=19)

0.1820

Newborn
Birth weight (g) 3,200 (2,000-4,500) 3,000 (2,000-4,400) 3,400 (2,600-4,500) <0.0001
Low birth weight (≤ 2500 g) (%) 61 (16.1) 61 (21.2) 0 (0) <0.0001
Gestational age (weeks) 38 (34-42)

(n=376)
38 (34-40)
(n=285)

38 (35-42) 0.0116

Preterm birth (<37 weeks) (%) 56 (14.9)
(n=376)

49 (17.2)
(n=285)

7 (7.7) 0.0277

Male infant (%) 193 (50.9) 150 (52.1) 43 (47.2) 0.4709
Self-reported history
Fever, past two weeksi (%) 77 (20.3) 63 (21.9) 14 (15.4) 0.2315
O
ctober 2021 | Volume 12 | Artic
Data are shown as number (percent) or median (range) unless otherwise noted. Sample sizes are shown where missing data reduce group numbers for specific parameters or only a
subset of the group have values >0.
aMultigravidae contribute complete blood count data only;
bComparison of paucigravidae with multigravidae by two-tailed Fisher’s exact test (proportions), Mann Whitney test (continuous data) or Welch’s t test (log transformed continuous data).
cremainder were recruited in Kisumu;
ddefined as >37.6°C.
eHIV, human immunodeficiency virus;
fparasitemia measured in placental blood, analysis done on log-transformed data;
gby complete blood count.
hpercent white blood cells observed on placental blood thick smear with engulfed hemozoin;
iself-reported fever or malaria in the last two weeks;
*factors used to guide sample selection.
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with hematoxylin (Cat#H3401-500, Vector Laboratories),
dehydrated, and mounted with acrytol mounting medium
(Cat#13518, Electron Microscopy Sciences, Hatfield, USA).

Immunofluorescent analysis was performed on 5 µm cryo-
sections of OCT-preserved placental tissue. The sections were
fixed in ice-cold acetone for 10 minutes and air dried for 1 hour.
Following a rehydration step with 0.05 mM Tris-buffered saline
(TBS; pH 7.5), sections were incubated with Protein Block,
Serum-Free solution from Agilent DAKO (X0909, Santa Clara,
CA, USA) for 1 hour. Rabbit anti-human MPO was purchased
from Agilent DAKO (A039829-2, Santa Clara, CA, USA) and
rabbit -anti-NE was purchased from Millipore-Sigma (481001,
Burlington, MA, USA). Antibodies were pre-labeled using the
Zenon Alexa Fluor 488 rabbit IgG1 labeling kit for anti-human
MPO and Zenon Alexa Fluor 594 rabbit IgG1 labeling kit for
anti-NE from Thermo Fisher Scientific (Waltham, MA USA).
The labeled antibodies were diluted in Antibody Diluent reagent
from Agilent DAKO (X0909, Santa Clara, CA, USA) at 1:100 and
the sections incubated overnight a 4° C. Negative controls were
labelled with an irrelevant prelabeled isotype control at the same
concentration and same labeling as the primary antibody. The
sections were then washed three times in TBS and labeled with
Hoescht 33342 reagent (2.3mg/ml) for 15minutes. The slides
were washed again, and cover slips were mounted using Prolong
Antifade mounting medium (Thermo Fisher Scientific,
Waltham, MA USA).

Slides were examined using a Leica DM2500 LED microscope
with filters 02 (DAPI filter), 03 (FITC filter) and 15 (rhodamine
filter) at 20 X magnification. Digital images were acquired using
Leica LASX software and a high-resolution Leica DMC6200
digital camera. Five random fields within each villi section
were captured for morphometric analysis within a 197.7 mm2

field of view (FOV). A total cell number was generated and
analyzed for each sample based on the sum of the average
number of cells per FOV in each sample.

For image analysis of immunohistochemistry samples, several
random FOV were acquired in RBG format and exported as tag
image format (*tif) with the respective metadata. Using QuPath
v0.2.3‐m4 software (67), the digital images were preprocessed
using the built-in visual stain editor to estimate and adjust stain
vectors to improve staining quality. The round cells in the
intervillous spaces were manually annotated based on
hematoxylin filter to warrant the selection of all nucleated cells
in the analyzed FOV. The intensity of MPO staining was
measured as optical density (OD) and classified by the module
“positive cell detection” using adjusted pixel size (0.1465 µM) to
match the image resolution and automatic thresholds. The cell
detection measurements were compiled. The number of positive
cells and the intensity of DAB staining (per mm2) were used in
the statistical analysis. All analyzed images were blindly
evaluated by an observer for quality control purposes prior to
data export. Due to the variability of preservation of intervillous
blood among the samples, the minimum for evaluation was three
FOV or at least 100 intervillous round cells.

Analysis of immunofluorescence samples was also performed
using QuPath v0.2.3‐m4 software (67). Images of three
Frontiers in Immunology | www.frontiersin.org 6
fluorescence channels (green, red and blue) were overlaid. The
positive cells for either MPO or NE or dually positive cells were
manually annotated. The annotated cells were always associated
with blue stained nuclei (DNA material). The fluorescence
intensity of MPO staining was measured in the green channel
and intensity of NE staining was measured in the red channel
using the “Analysis” and “Calculate features” with automatic
thresholds. Additional overlays of negative controls were
exported, and random areas were analyzed to set a threshold
of nonspecific fluorescence by average of intensity offluorescence
in these areas in the green and red channels. An annotated cell
was considered positive when the fluorescence intensity was
higher than the average fluorescence intensity in either or both
of the green and red channels in the negative controls. NETs
were identified as dual positive for MPO and NE, associated with
DNA staining, and with a size higher than 102 µM2 as reported
(68). All analyzed images were blindly evaluated by an observer
for quality control purposes prior to data export.

Western Blotting
Placental villous tissue (30 mg frozen weight) was homogenized
in RIPA buffer supplemented with proteinase inhibitor cocktail.
Samples were homogenized with Tissue Lyser (Qiagen, Valencia,
USA) and centrifuged at 10,000g for 15 minutes. Protein
concentrations were determined by bicinchoninic acid (BCA)
method (Thermo Scientific, Rockford, USA) with bovine serum
albumin (BSA) as a standard. Equal individual protein samples
were prepared and stored at -80°C until use. Proteins (30 mg/
sample) were separated by SDS-PAGE, blotted onto
nitrocellulose membranes (Biorad, Hercules, USA) and probed
with monoclonal or polyclonal rabbit antibodies specific for
MPO (Agilent Technology, Santa Clara, USA), NE (Abcam,
Cambridge, USA), citrullinated histone H3 (Abcam), and Hsp
90 (Cell Signaling Technologies) (as a loading control).
Overnight incubation with primary antibody at 4°C was
followed by one-hour incubation with anti-rabbit horseradish
peroxidase secondary conjugates (Vector Laboratories). Proteins
were detected using an enhanced chemiluminescence reagent
(Pierce, Rockford, IL, USA). ChemiDoc Touch Imaging System
with Image Lab Touch Software (BioRad) was used for image
acquisition and densitometry analysis. Densitometry data are
presented as ratio of target protein to Hsp90.

Statistical Analysis
Graph Pad Prism 9.1 software was used for all graphical data
presentation and statistical analysis. Data are presented as scatter
plot (correlation analysis and categorical analysis, with median
line). Details for statistical analysis are indicated in the text or in
figure legends as appropriate. Parasite density and percent Hz-
bearing WBCs were log transformed prior to analyses. Binary
analysis of non-normally distributed data of matched samples
utilized the Wilcoxon matched-pairs signed rank test; unpaired
analyses utilized the Mann-Whitney test. Correlation analysis
was performed using the Spearman’s correlation test. Multiple
group comparisons were performed with Kruskal-Wallis test
with post-hoc group-wise comparisons by Dunn’s multiple
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comparisons test. Two-tailed Fisher’s exact test was used to
compare proportions. Statistical significance was set at P < 0.05.
RESULTS

Granulocyte Counts Are Differentially
Impacted by Malaria and HIV Infection in
the Peripheral and Placental Blood
To determine the extent to which granulocyte levels are
influenced by PM, and how pre-existing HIV infection may
modify this response, granulocyte counts derived from CBC
analysis of peripheral and placental blood from women of all
gravidities were assessed. Counts do not vary with gravidity in
peripheral (median, IQR: paucigravid, 10.0 (6.90 – 13.7) x103/mL;
multigravid, 9.10 (7.30 – 11.5) x103/mL; P = 0.6543, Mann
Whitney test) or placental blood (paucigravid, 7.80 (5.70 –
11.9) x103/mL; multigravid, 7.80 (5.70 – 10.4); P = 0.4889).
Compared with control PM-HIV- women, peripheral
granulocyte counts are reduced in PM+HIV- and PM+HIV+
women (Figure 2A). The lower levels in the latter are strongly
attributable to HIV infection, as levels between the two HIV+
groups are not significantly different (P = 0.5044). In contrast to
peripheral blood, no differences in neutrophil counts in the
Frontiers in Immunology | www.frontiersin.org 7
placenta are evident (Figure 2B). Interestingly, the ratio of
placental to peripheral blood granulocyte counts is enhanced
by PM in both HIV- and HIV+ women (Figure 2C). Pairwise
comparison of peripheral to placental granulocyte counts among
individuals within the infection groups shows that while
placental granulocyte levels are reduced relative to the
periphery in uninfected and HIV seronegative women, this
difference is lost with PM, with a tendency toward a reversed
pattern in co-infected women (Figure 2D and Supplemental
Table 1). Additionally, with the exception of PM+HIV+ women,
in whom total WBC counts are strongly elevated in placental
relative to peripheral blood, relative patterns of granulocyte levels
between the peripheral and placental blood vary independently
of total WBC counts (Supplemental Table 1 and Supplemental
Figure 2A). In terms of proportion of total WBCs, granulocytes
are universally substantially reduced in the placenta relative to
the peripheral blood (Supplemental Figure 2B and
Supplemental Table 1). However, whereas granulocyte
percentages in the peripheral blood (Supplemental Figure 2C)
follow the same trends observed with granulocyte counts
(Figure 2A), placental granulocyte percentages reveal a distinct
pattern of reduction in HIV+PM+ women (Supplemental
Figure 2D) that is not observed in placental granulocyte
counts (Figure 2B).
A B

C D

FIGURE 2 | Placental malaria and HIV infections differentially alter granulocyte levels in peripheral and placental blood. Peripheral and placental blood were subjected
to complete blood count. Granulocyte numbers in (A) peripheral and (B) placental blood are shown. (C) Depicts the ratio of placental to peripheral blood granulocyte
numbers, HIV-/PM-, n = 131; HIV-/PM+, n = 33; HIV+/PM-, n = 32; HIV+/PM+, n = 28. (A–C) Statistics by Kruskal-Wallis test with post-hoc group-wise comparisons
by Dunn’s multiple comparisons test. (D), pairwise comparisons by Wilcoxon matched-pairs signed rank test. PM-=placental malaria negative; PM+=placental malaria positive;
HIV-=human immunodeficiency virus seronegative; HIV+=human immunodeficiency virus seropositive.
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Granulocyte Counts Correlate With
Indicators of PM Severity but Not
Birth Outcomes
PM often manifests as a chronic maternal inflammatory
response dominated by accumulation of monocytes (5, 20, 26,
69). To assess the extent to which granulocyte counts might be
influenced by severity of PM, correlation analysis of counts
among PM+ women (combined HIV- and HIV+) were
performed with parasite density and the percentage of WBCs
bearing Hz in the placental blood space, which is taken as an
indicator of chronicity of placental infection. The placental
granulocyte count is unrelated to placental parasite density
(Figure 3A) but positively correlates with Hz-bearing WBCs
(Figure 3C). In contrast, the peripheral granulocyte count is
inversely related to peripheral parasite density (Figure 3B) and
Hz-bearing WBCs in the placenta (Figure 3D).

While granulocyte levels appear to be influenced by the
intensity of the PM infection, no relationship with infant birth
weight or gestational age is evident (Supplemental Table 2) nor
do counts vary as a function of maternal self-reported fever (data
not shown).
Frontiers in Immunology | www.frontiersin.org 8
Placental Blood MPO Increases With
Placental Inflammation
Based upon parameters including presence of parasites,
inflammatory cell infiltration, and presence of Hz, PM has
been variously categorized in histopathological examination in
attempts to summarize severity and longevity of PM and
associated birth outcomes (70–73). As a first step toward
probing functional attributes of neutrophils in PM, a pilot
study was conducted to measure levels of MPO in placental
plasma from HIV-seronegative primigravidae whose placentae
were histologically categorized into four groups (uninfected,
acute, chronic, and chronic, inflammatory infection). MPO is
released upon activation of neutrophils in the blood and tissues
into both the phagolysosomal compartment and the extracellular
environment, as well as in NETs (74, 75). Relative to uninfected
samples, placental plasma from tissues with evidence of chronic,
inflammatory infection shows significantly elevated MPO levels
(Figure 4A). Correspondingly, this group tends toward lower
infant birth weights relative to uninfected women (Figure 4B).
Placental MPO levels correlate positively with percent of Hz-
bearing WBCs in the placenta (Figure 4C). MPO levels are
A B

C D

FIGURE 3 | Relationships of granulocyte numbers with measures of placental malaria vary as a function of blood source. Placental granulocyte counts measured by
complete blood count in women with PM are unrelated to (A) placental parasite density but positively correlate with (C) the level of Hz-bearing WBCs in the placental
intervillous space. Peripheral granulocyte counts negatively correlate with (B) peripheral parasite density and (D) level of Hz-bearing WBCs in the placental intervillous
space. Both infection measures are log transformed. Results of Spearman’s correlation analysis are shown. (A, B) n = 61; (C, D) n = 63.
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elevated with self-reported fever in these women and tend
toward higher levels in those delivering low birth weight
infants (Figure 4D). Overall, these data indicate that high
MPO concentrations are associated with PM, especially
chronic, inflammatory infection, and relevant clinical outcomes.

Malaria and HIV Infection Impact Placental
but Not Peripheral Levels of Soluble
Markers of Neutrophil Activation
Building upon these initial observations, a larger analysis was
undertaken to identify the extent to which malaria and PM/HIV
co-infections in pregnant women impact indicators of neutrophil
function. In addition toMPO, keymarkers of activated neutrophils,
MMP9, and PRTN3, and a key neutrophil chemoattractant,
CXCL8, were measured in peripheral and placental plasma of
paucigravid women. In peripheral blood, MPO and CXCL8 levels
are not impacted by PM, regardless of HIV infection status
(Figures 5A, B). Additionally, peripheral MPO and CXCL8 levels
are unrelated to infant birth weight and gestational age at birth
(Supplemental Figures 3E, F). In contrast, placental blood levels of
MPO are significantly elevated with PM and PM/HIV co-infection
relative to uninfected and HIV+ women, respectively (Figure 6A),
Frontiers in Immunology | www.frontiersin.org 9
and in mothers who reported recent fever (Figure 6B). CXCL8
levels in PM+HIV+ women are elevated relative to levels in
uninfected women (Figure 6C), and tend toward a weak
enhancement with reported fever (Figure 6D). While MMP9
levels remain unchanged with infection (Figure 6E), levels are
enhanced with reported fever (Figure 6F). Finally, like MPO,
PRTN3 levels are enhanced by PM in both HIV- and HIV+
women (Figure 6G), and are increased with recent fever
(Figure 6H). Despite associations with PM, none of the measured
markers differ as a function of birth weight or gestational age
(Supplemental Figure 3). Placental levels of all of these factors
significantly positively correlatewith eachother (Table 2), andwith
the exception of CXCL8, all positively correlate with placental
parasite density (Figures 7A–D), and percent Hz-bearing WBCs
in the placenta (Figures 7E–H). However, contrary to expectation,
none of these factors correlate with granulocyte counts or
percentages (data not shown).

Placental MPO Detection by
Immunohistochemistry and Western Blot
To further characterize MPO expression in the placenta, tissue
sections from a subgroup of patients were probed using
A B

C D

FIGURE 4 | Placental blood MPO levels increase in chronic, inflammatory placental malaria, together with reduced birth weight. (A)MPOmeasured in placental plasma by
ELISA from primigravid women with and without PM stratified by placental histopathological status (see Methods). (B) Infant birth weight from the same women is similarly
stratified. (C)MPO levels collectively analyzed by Spearman’s correlation test with percent placental leukocytes (WBCs) bearing engulfed hemozoin. (D) Placental MPO levels
measured by ELISA assessed for relationships with self-reported fever and infant birth weight. Statistics by Kruskal-Wallis test with post-hoc group-wise comparisons by
Dunn’s multiple comparisons test. PM- = placental malaria negative (n = 10); A = acute infection (n = 4); C = chronic infection (n = 5); CI = chronic inflammatory infection
(n = 9); NBW= normal birth weight (n = 19); LBW = low birth weight (n = 9); no self-reported fever (n = 18), reported fever (n = 10).
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immunohistochemistry. MPO+ cells are frequently observed in
these placentae, even in the absence of PM (Figures 8A–D).
Frequency (Figure 8E) and intensity of MPO expression
(Figure 8F), however, tend to be enhanced in PM+HIV- but not
PM+HIV+ tissues. Probing for MPO by western blot of proteins
derived from whole placental tissue may serve as a proxy for
intensity of MPO expression, but preliminary analysis thereto
does not reveal compelling evidence for influence of protein levels
by infection status (Supplemental Figures 4A, C). Similarly, NE
protein levels in whole placental tissue extracts are independent of
infection status (Supplemental Figure 4B, D).

Plasma Markers of NETosis Are Not
Affected by PM
Although NETosis has been linked to severe malaria in
nonpregnant patients (38, 56, 57), this mechanism has not to our
knowledge been explored in PM. Using detection of nonspecific
(cell-free DNA; Supplemental Figure 5A) and known markers of
NET formation (NE-DNA, Supplemental Figure 5B; cell-free
histones, Supplemental Figure 5C), no evidence of significant
PM-induced NETosis in placental plasma is observed in HIV-
Frontiers in Immunology | www.frontiersin.org 10
primigravidae (as in Figure 4), regardless of placental
histopathological status. Similarly, citrullinated histone H3
(citH3), an additional marker of NET formation, does not differ
in paucigravid placental plasma as a function of PM regardless of
HIV infection (Supplemental Figure 6A), although elevated levels
are evident in two PM+ women. Nonetheless, citrullinated histone
H3 levels tend to positively correlate with placental granulocyte
count (Supplemental Figure 6B).

In Situ Evidence for Netosis in
Placental Tissue
As an alternate indicator of NETosis, fixed placental tissue was
probed by immunohistochemistry for citH3. Some weakly positive
cells are evident in the intervillous space, and, surprisingly,
occasional stronger staining is seen in syncytiotrophoblast
(Supplemental Figure 7A, B). Extracellular evidence of citH3,
structures that would be consistent with NETosis, however, is
rarely observed (Supplemental Figure 4B).

Althoughattempts to identify soluble componentsofNETosis in
placental plasma and in situ in fixed, paraffin-embedded placental
tissue does not provide compelling evidence of PMwith or without
HIV co-infection as a driver of placental NETosis, it is not possible
to conclude that this process does not occur in PM, since sample
collection, processing and storage, for example, could impede such
detection.As analternate approach, placental tissuesflash-frozen in
OCT were assessed by immunofluorescence staining for MPO, NE
andDNA. Inmost samples, regardless of infection status, structures
that are suggestive of NETs are evident (Figure 9; Supplemental
Figure 8). The presumptive NETs are highly pleomorphic. Some
structures are composed of single cells in the intervillous space that
have streaky, comet-like nuclei and cytoplasm containing blue
fluorescence (DNA) that colocalizes with green fluorescence
(MPO) and red fluorescence (NE) (Figures 9M–P, R–T). Most
frequently, the NETs are characterized by small to large aggregates
of two or more pleomorphic cells with indistinct cell limits and
pleomorphic nuclei encroached in a large MPO+/NE+ cytoplasm
(Figures 9M–O, Q–S). Frequently, the cytoplasmic projections
colocalizewithMPO,NEandDNAmaterial (Figures9M–O,Q–S).
These presumptive NETs are observed in maternal intervillous
blood spaces, within the villus stroma, and occasionally inside the
fetal vasculature (Figures 9S, T).

The small sample size of this experiment impacts statistical
power; however, counts of singly stained MPO+, NE+ and MPO
+/NE+ double stained cells do not vary with PM, including with
stratification by HIV serostatus (Supplemental Figures 8A–C).
Small, non-NETosing neutrophils (double MPO+/NE+, <102
mm2) tend to be more numerous with PM (median, IQR, PM-:
12, 4.5 – 60; PM+: 22, 18 – 41; P = 0.0928) whereas larger
putatively NETosing MPO+/NE+ cells are unchanged (median,
IQR, PM-: 9.0, 2.0 – 35; PM+: 19, 15 – 34; P = 0.3735). Further
stratification by HIV infection status yields no significant
differences between the groups for small and large cells,
including assessment of large NETosing cells as a percent of all
MPO+/NE+ cells (Supplemental Figures 8D–F). Counts of
MPO+/NE+ cells, including those classified as large, positively
correlate with placental levels of CXCL8 (Figures 10A, B), with a
similar tendency for small MPO+/NE+ neutrophils
A

B

FIGURE 5 | Peripheral blood MPO and CXCL8 levels do not change as a
function of placental malaria and HIV seropositivity. Peripheral plasma samples
from paucigravid women were analyzed for (A)MPO and (B) CXCL8 levels by
bead array. No statistically significant differences among the groups are evident
(Kruskal-Wallis test with post-hoc group-wise comparisons by Dunn’s multiple
comparisons test). HIV-/PM-, n = 22; HIV-/PM+, n = 25; HIV+/PM-, n = 20; HIV
+/PM+, n = 14 (MPO), n = 13 (CXCL8.) Groups as defined in Figure 2.
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(Figure 10C). Likewise, weak positive correlations are observed
between MMP9 and MPO+/NE+ cells as well as small
neutrophils (Figures 10D, F) but not between MMP9 and
large cell count (Figure 10E). Placental levels of MPO are
unrelated to these cell counts (Supplemental Figure 9).
DISCUSSION

In this study, we analyzed maternal peripheral and placental
granulocyte levels as well as markers of neutrophil activation,
including NET-specific markers and structures, in women with
Frontiers in Immunology | www.frontiersin.org 11
and without PM and HIV infection at the time of delivery. The
results show that maternal peripheral granulocyte counts decrease
with PM in the presence and absence of pre-existingHIV infection.
Although a differential to discern neutrophil counts among the
granulocytes was not performed, these findings are consistent with
previous work that reported reduced neutrophil counts inmalaria-
infected pregnant compared to uninfected women (3, 76). A study
in rhesus monkeys (Macacamulatta) infected with P. coatneyi also
showed a significant decrease in neutrophil levels starting at
gestation week 9 (77). This contrasts with the observation that
neutrophil counts are enhanced with HIV infection in pregnant
women (78). Our results suggest that PM overcomes this apparent
HIV-driven neutrophilia, since HIV seropositive women with PM
A B C D

G HE F

FIGURE 6 | Markers of neutrophil activation are variably altered by placental malaria and HIV seropositivity. Placental plasma from paucigravid women was analyzed
for (A, B) myeloperoxidase (MPO), (C, D) CXCL8, (E, F) matrix metalloproteinase 9 (MMP9), and (G, H) proteinase 3 (PRTN3) levels by bead array and ELISA and
stratified by (A, C, E, G) infection status and (B, D, F, H) self-reported fever (independent of infection status). (A, C, E, G) Statistics by Kruskal-Wallis test with post-
hoc group-wise comparisons by Dunn’s multiple comparisons test and (B, D, F, H) by Mann-Whitney U test. MPO: HIV-/PM-, n = 50; HIV-/PM+, n = 53; HIV+/PM-,
n = 31; HIV+/PM+, n = 24. CXCL8, HIV-/PM-, n = 27; HIV-/PM+, n = 33; HIV+/PM-, n = 13; HIV+/PM+, n = 16. MMP9, HIV-/PM-, n = 35; HIV-/PM+, n = 40; HIV+
/PM-, n = 21; HIV+/PM+, n = 21. PRTN3, HIV-/PM-, n = 25; HIV-/PM+, n = 28; HIV+/PM-, n = 14; HIV+/PM+, n = 15. Groups as defined in Figure 2.
TABLE 2 | Correlation matrix of placental markers of neutrophil activation.

MPO MMP9 PRTN3 CXCL8

r, IQR* P r, IQR P r, IQR P r, IQR P

MPO 1 - 0.7287, 0.6273 - 0.8058 <0.0001 0.9179, 0.8737 - 0.9471 <0.0001 0.4485, 0.2002 - 0.6426 0.0006
MMP9 0.7287, 0.6273 - 0.8058 <0.0001 1 - 0.7626, 0.6500 - 0.8424 <0.0001 0.3797, 0.0804 - 0.6161 0.0120
PRTN3 0.9179, 0.8737 - 0.9471 <0.0001 0.7626, 0.6500 - 0.8424 <0.0001 1 - 0.4106, 0.0615 - 0.6701 0.0196
CXCL8 0.4485, 0.2002 - 0.6426 0.0006 0.3796, 0.0804 - 0.6161 0.0120 0.4106, 0.0615 - 0.6701 0.0196 1 -
October
 2021 | Volume 12 | Article
*Data represent results of Spearman’s test with IQR, interquartile range.
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have significantly suppressed granulocyte counts in the
peripheral blood.

Contrary to expectation, no differences in granulocyte counts
in the placenta are evident in this cohort of women. However, the
enhanced ratios of placental to peripheral blood granulocyte
numbers at the population level support the conclusion that
during PM and PM/HIV co-infection, granulocytes accumulate
in the placenta at the expense of the periphery, or, at minimum,
are relatively more stable in the placenta. The physiological
control of this phenomenon is worthy of further investigation,
particularly given our observation that overall, granulocytes
make up a lower proportion of total leukocytes in the placenta
than in the peripheral blood and thus may be differentially
regulated in these two blood spaces. Neutrophils are a key
component of the normal process of labor, with accumulation
of these cells in the uterine wall; the reductions observed here
may be indicative of an exodus of neutrophils from the
intervillous space to the myometrium [reviewed in (79)].
Despite the tendency toward lower granulocyte percentages
and counts in placental relative to peripheral blood in the
absence of infection, pairwise comparison at the individual
patient level shows an overall tendency for granulocyte counts
in placenta to increase uniquely with PM/HIV co-infection.
However, granulocytes as a percent of total WBCs in the
placenta are significantly reduced with co-infection. This may
indicate that the massive overall increase in placental WBCs seen
in this group (Supplemental Table 1) is heavily attributable to
other cell subsets, likely monocytes (20).

Other researchers have reported significant accumulation of
neutrophils in the placenta with PM (19, 20). What may be
driving accumulation or preservation of these cells in the
maternal placental blood, and why the current study shows
Frontiers in Immunology | www.frontiersin.org 12
placental granulocyte count stability but not accumulation with
PM is unclear. Aside from the obvious differences in
methodology and cell identification, placental granulocyte
levels as measured here appear to be influenced by infection
intensity, as counts positively correlate with the percent of
placental WBCs bearing phagocytosed Hz. Thus, differences
across studies could also be due to differences in infection
intensity or chronicity. In general, local production of
chemokines, including CXCL8, a factor that promotes
neutrophil chemotaxis (80), may be an important determining
factor in granulocyte/neutrophil presence in the intervillous
blood, as is the case for recruitment to the uterus at parturition
[reviewed in (79)]. Importantly, CXCL8 is elevated in PM+HIV+
placentae. The source of CXCL8 in the placenta that might
participate in this response is not clear but could be maternal
monocytes (22, 26), fetal syncytiotrophoblast (3, 22, 81, 82), or
uterine/decidual stromal cells (83).

Previous studies have indicated that neutrophils may play a
pathogenic role in PM and could serve as prognostic markers for
malaria-associated low birth weight (18). We report that in this
population of parturient women, granulocyte counts do not
associate with infant birth outcomes. This may be due to
inadequate sample size, lack of differential analysis to directly
count neutrophils, or may be related to the overall patient
recruitment strategy, which excluded complicated pregnancies
and deliveries and health issues other than malaria and HIV
infections. Because an interesting relationship between
neutrophils and malaria parasites is emerging [reviewed in
(36)] and neutrophils are key cells at multiple stages of normal
and abnormal pregnancy [reviewed in (79)], it is imperative for
future studies to definitively identify neutrophils in the
granulocyte population, and to further consider neutrophil
A B C D
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FIGURE 7 | Placental blood MPO, MMP9, and PRTN3 levels positively correlate with placental parasite density and hemozoin-bearing white blood cells. (A, E)
MPO, (B, F) CXCL8, (C, G) MMP9, and (D, H) PRTN3 levels measured by bead array in plasma are collectively analyzed by Spearman’s correlation test with (A–D)
thick smear placental parasite density (log transformed) and (E–H) percent placental WBCs bearing engulfed hemozoin (log transformed). (A), n = 77; (B), n = 49;
(C), n = 61; (D), n = 43; (E), n = 73; (F), n = 47; (G), n = 57; (H), n = 40.
October 2021 | Volume 12 | Article 682668

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sarr et al. Myeloperoxidase in Placental Malaria
subsets and functional parameters to discern potential
relationships with pathogenic outcomes of PM.

One of the many consequences of neutrophil activation is the
secretion of granules containing MPO, MMP9, NE, and PRTN3.
Neutrophils produce massive amounts of these proteins, in the
case of MPO, representing 5% of the total cellular protein (84).
Our data show for the first time that placental blood MPO and
PRTN3 levels are elevated with PM in both HIV- and HIV+
paucigravid women relative to PM-HIV- women. It was
unexpected to find that none of these markers correlates with
placental granulocyte counts, emphasizing the need for further
work to definitively identify the source of these factors in
placental plasma and fully characterize neutrophil function in
Frontiers in Immunology | www.frontiersin.org 13
PM. Importantly, observations of MPO in fixed placental tissue
sections suggest that this factor may be produced by both
intervillous neutrophils and monocytes, yet most MPO-
expressing cells observed by immunofluorescence are co-
stained for NE, identifying them as neutrophils.

Placental levels of MPO, MMP9, and PRTN3 all positively
correlate with placental parasitemia as well as placental
hemozoin bearing WBCs, suggesting that production is
enhanced by chronic infection. Since MPO attenuates
pathogen clearance during P. yoelii nonlethal infection (85), it
is tempting to speculate that this enzyme may inhibit parasite
clearance in PM as well. In an initial pilot study, we found
placental blood MPO levels to be increased significantly with
FIGURE 8 | Placental WBCs from PM+HIV- women show more robust MPO expression by immunohistochemistry relative to uninfected and co-infected women.
Frequency and intensity of MPO staining is lower in (A) uninfected placenta and (B) PM+HIV+ placenta relative to (C) PM+HIV- placenta. (D) Segmented nucleus
clearly delineates MPO staining in a neutrophil (arrow). ST, syncytiotrophoblast; FM, fetal mesenchyme; FV, fetal vessel; IVS, intervillous space. Scale bars represent
50 mm. (E) Percent cells expressing MPO weakly tends to be higher in PM+HIV- relative to uninfected women. (F) MPO staining intensity tends to be higher in PM+
HIV- relative to uninfected women. Statistics by Kruskal-Wallis test with post-hoc group-wise comparisons by Dunn’s multiple comparisons test. PM-/HIV-, n = 5;
PM+/HIV-, n = 4; PM+/HIV+, n = 4. Groups as defined in Figure 2.
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chronic, inflammatory PM in primigravidae. MPO is associated
with vascular dysfunct ion (86) and under l ies the
pathophysiology of numerous vascular inflammatory diseases
including arteriosclerosis and coronary artery disease (87, 88).
Inflammation and endothelial dysfunction are characteristics of
preeclampsia, and increased MPO levels in placental and
peripheral circulation in preeclamptic women have been
described (89, 90). The extent to which PM and PM/HIV
coinfection may contribute to preeclampsia via MPO
production or modification of other neutrophil functions
remains to be determined. This may be an exciting avenue to
Frontiers in Immunology | www.frontiersin.org 14
pursue given increasing evidence that malaria predisposes
women to this hypertensive disorder (91, 92).

Elevated neutrophil activation, as evidenced by higher plasma
concentrations not only of MPO but also of PRTN3 and NE, is
associated with severe pediatric malaria (39). Likewise, MMP9, an
endopeptidase released by neutrophils and monocytes, is
implicated in the pathogenesis of severe malaria (93–95). An
MMP9 polymorphism protects against PM, further implicating
an important role for this enzyme in P. falciparum infection (96).
Importantly, MPO, MMP9 and PRTN3 levels in the placenta
associate with self-reported fever in this cohort of parturient
FIGURE 9 | Detection of NETs by immunfluorescence in placental tissue. Immunolocalization of MPO (green), NE (red) in term placenta. The DNA was labeled with
Hoescht 33342 (blue). (A, E, I, M, Q) uninfected placenta; (B, F, J, N, R) PM+HIV- placenta; (C, G, K, O, S) PM-HIV+ placenta; and (D, H, L, P, T) PM+HIV+
placenta. The first row (A–D) shows the colocalization of MPO with DNA, the second row (E–H), colocalization of NE and DNA, the third row (I–L), colocalization of
MPO and NE and the fourth row (M–P), colocalization of MPO, NE and DNA. The last row shows in higher magnification the dotted areas in panels (M–P) that
contain putative NET-like structures (Q–T). Arrows in panels (A, E, I) indicate NET-like structures. Groups are as defined in Figure 2.
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women. However, while pilot data in HIV seronegative
primigravidae suggest a tendency for placental MPO to be higher
in women with low birth weight infants, in a larger cohort of
paucigravid malaria-exposed women that also considered HIV
infection, no relationship with birth weight or gestational age
emerges for any of these markers. This is unexpected given that
the factors do correlate with parameters (placental parasite density
and Hz-bearing WBCs) that are typically associated with poor
outcomes in PM. Indeed, Hz-bearing neutrophils in the peripheral
blood of pregnant women predict low birth weight (18). While
additional work will be required to resolve this discrepancy, these
results suggest that the mechanism by which neutrophils mediate
poor birth outcomes may not be directly related to the release of
neutrophil granules in the placental blood space. One potential
alternate mechanism may be downstream effects of these factors,
which were not measured here. High concentrations of neutrophil-
derived antimicrobial compounds canmake these cells detrimental
to the host (97–99). For example, activated neutrophils exacerbate
preeclampsia by releasing ROS (100–105). Of note, MPO catalyzes
the formation of aggressive reactive oxygen intermediates,
including hypochlorous, hypobromous, and hypothiocyanous
acids, respectively (106, 107), which contribute to oxidative killing
(108). Oxidative stress is a feature of PM (43, 44), but the extent to
which neutrophils contribute to it remains to be established.

Contrary to expectation, this study finds no evidence of a
relationship between PM and levels of soluble markers of NETosis
Frontiers in Immunology | www.frontiersin.org 15
in the placenta. Similarly, while structures consistent with NETs
(MPO, NE, and DNA co-localization) are observed in the
intervillous space, a relationship with PM is not evident.
Alternatively, non-activated, resting, “small” neutrophils tend to
be elevated with PM in this study. Because NETs have been
observed in the placental intervillous space in pregnancies
complicated by preeclampsia (103, 105), and given parallels
between PM and preeclampsia, it was our expectation that
NETosis would be enhanced in placentae of infected women.
While further research designed specifically to address this
question is warranted, it is tempting to speculate that NETosis
may be subject to unique and as yet poorly understood control
mechanisms in the placenta that are not specifically activated
or perturbed by PM. The overall reduction of granulocyte
counts in the placenta relative to the peripheral blood hints at
this possibility.

In conclusion, the present study demonstrates that PM and
PM/HIV co-infection perturb granulocyte levels, and soluble
signatures of neutrophil activation associate with indicators of
PM infection and associated symptoms. The findings do not
authoritatively distinguish between a protective or pathogenic
role for neutrophils or products of their activation, nor is an
association of PM with NETosis established. Further exploration
of neutrophil function in the context of malaria and HIV in
pregnant women, particularly direct assessment of activity, is
required to fill remaining gaps in knowledge.
A B C

D E F

FIGURE 10 | Correlation analysis of CXCL8 and MMP9 with neutrophils in placental tissue. Counts of neutrophils detected in frozen cryosections as (A, D) MPO+
/NE+, and MPO+/NE+ cells stratified by size as (B, E) large: >102 mm2, and (C, F) small: <102 mm2 collectively correlated with placental plasma levels of (A–C)
CXCL8 and (D–F) MMP9. Cell counts determined by analysis of immunofluorescence of tissues. Statistics by Spearman’s correlation test. PM-/HIV-, n = 5; PM+
/HIV-, n = 5; PM-/HIV+, n = 4; PM+/HIV+, n = 4. Groups as defined in Figure 2.
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