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The objective of this study was to identify potential biomarkers and possible
metabolic pathways of malignant and benign thyroid nodules through lipidomics
study. A total of 47 papillary thyroid carcinomas (PTC) and 33 control check
(CK) were enrolled. Plasma samples were collected for UPLC-Q-TOF MS system
detection, and then OPLS-DA model was used to identify differential metabolites.
Based on classical statistical methods and machine learning, potential biomarkers
were characterized and related metabolic pathways were identified. According to
the metabolic spectrum, 13 metabolites were identified between PTC group and
CK group, and a total of five metabolites were obtained after further screening.
Its metabolic pathways were involved in glycerophospholipid metabolism, linoleic
acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol (GPI)—
anchor biosynthesis, Phosphatidylinositol signaling system and the metabolism of
arachidonic acid metabolism. The metabolomics method based on PROTON nuclear
magnetic resonance (NMR) had great potential for distinguishing normal subjects from
PTC. GlcCer(d14:1/24:1), PE-NME (18:1/18:1), SM(d16:1/24:1), SM(d18:1/15:0), and
SM(d18:1/16:1) can be used as potential serum markers for the diagnosis of PTC.

Keywords: papillary thyroid carcinoma, pathway, lipidomics, plasma samples, orthogonal partial least square
discriminant analysis

INTRODUCTION

Thyroid cancer is the most common endocrine-related malignancy and the most prevalent cancer
of the head and neck in the past decades (Omur and Baran, 2014). It accounts for 95% of all
endocrine malignancies and 2.9% of all malignant diseases. The incidence of thyroid cancer has
been ranked among the top 10 malignant neoplasms, including fifth place among female malignant
neoplasms. It is estimated that 52,890 new cases of thyroid cancer are diagnosed in the United States
each year (Siegel et al., 2020). Papillary thyroid carcinoma (PTC) is the most frequently common
subtype of thyroid cancer (Hirsch et al., 2017), and discrimination of different types of thyroid
cancers and benign nodules is currently carried out using various methods, usually in combination,
namely, ultrasound, computed tomography, magnetic resonance imaging, cytology, fine needle
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aspiration (FNA), and surgery. FNA, being the most current
effective preoperative method, still has its own challenges
(Miccoli et al., 2012; Feldkamp et al., 2016). For example, it can
cause harm to patients. The majority of PTC is indolent, but 1/3
of the patients still have persistent enlargement or recurrence and
metastasis, so the benefit of distinguishing PTC patients is to
closely follow up and monitor the PTC patients, so that the 1/3
patients can receive timely treatment (Bhargav et al., 2010).

At the same time, researchers have been searching for
molecular markers that are valuable in diagnosing thyroid
cancer, such as BRAF, RET/PTC, RAS, PAX8/PPARδ, P53,
NTRK1, galectin-3. CK19, VEGF, Aurora-A, P16, AR, HBME-
1, etc. (Grogan et al., 2010), but disappointingly, all these
biomarkers either lack specificity to some extent or have a
limited positive predictive value (Guo et al., 2015). Attempts
are therefore still ongoing to identify a specific reliable
biomarker. Moreover, a non-invasive screening method of
thyroid malignancy remains unavailable.

Lipids played critical roles in cellular structures and functions,
including cellular barriers, membrane matrices, signaling and
energy storage. They undergo constant changes in physiological,
pathological, and environmental conditions. Lipids play essential
roles in cell growth and metabolism, therefore they are associated
with carcinogenic pathways. Lipidomics, the metabolism of
lipids, is defined as “the full characterization of lipid molecular
species and of their biological roles with respect to expression
of proteins involved in lipid metabolism and function, including
gene regulation” (Zhao et al., 2015). First introduced by Han
and Gross in 2003 (Han and Gross, 2003), lipidomics is an
emerging system-based methodology for the systematic study
of multiple lipids, and it helps to advance current knowledge
in the field of lipid biology and steady-state. Lipidomics, by
identifying alterations in cellular lipid metabolism, trafficking,
and steady state, has been instrumental in determining the
biochemical mechanisms of lipid-related disease. In recent years,
it has been observed that many lipid species are significantly
altered in patients with thyroid cancer (Ishikawa et al., 2012;
Farrokhi Yekta et al., 2017), so that the lipid profile of the
alterations may play a central role in the pathogenesis of
thyroid carcinoma.

Recent advances in mass spectrometry (MS), nuclear magnetic
resonance (NMR) and other spectroscopic methods have greatly
facilitated the development and application of lipidomics (Hu
et al., 2009), and MS has been used successfully either directly
or in combination with chromatographic methods including
ultra performance liquid chromatography-MS (UPLC-MS), gas
chromatography-MS (GC-MS), and capillary electrophoresis-
MS (CE-MS) to identify and quantify specific lipid species. In
this study, we developed a UPLC-quadrupole time-polarization
MSE (UPLC-QTOF-MSE)-based technique for determination of
total lipids present in patient plasma to identify the potential
diagnostic biomarkers for thyroid cancer. UPLC-Q-TOF-MS
has been used in systems analysis of complicated metabolome
(Noh et al., 2016). Differential lipid metabolites between thyroid
cancer patients and controls were identified by univariate and
multivariate analysis. The identified biomarkers were validated
and their diagnostic performance was accessed.

MATERIALS AND METHODS

Patients and Study Design
Serum samples from PTC (n = 47) and control check (CK)
(n = 33) were collected from the First Hospital of Tsinghua
University from August 2016 to September 2019. The patients
were selected according to the following criteria: (1) all patients
with papillary thyroid carcinoma were diagnosed by pathology;
(2) no patients received preoperative treatment, including
adjuvant chemotherapy and radiotherapy; and (3) patients do
not have hyperlipidemia, diabetes, and other diseases that might
affect lipid metabolism. (4) Patients with a history of other
malignancies or recurrent tumors were excluded. The selected
healthy controls include age and gender-matched healthy subjects
with no metabolic diseases and were proven to lack any
lesions in thyroid after the physical examination followed by
ultrasonography of the thyroid.

Plasma Metabolite Extraction
Fasting venous blood samples were collected in EDTA
anticoagulant tube. The fresh blood samples were transported to
the laboratory for 20 min by cold chain (4◦C), and the plasma
was obtained by centrifugation at 1,000 g and 4◦C. The plasma
was cold extracted in a liquid nitrogen tank for 15 min, and then
put into the –80◦C freezer for analysis.

Untargeted Metabolomic Detection
Mass spectrometry was an analytical method which ionizes
the substance to be measured, separated it according to the
mass/charge ratio of ions, and measured the intensity of various
ion spectrum peaks to achieve the purpose of analysis. Mass
was one of the inherent characteristics of substances. Different
substances had different MS. Use this property, qualitative
analysis (including molecular mass and related structural
information) can be carried out. The peak intensity was also
related to the content of the compound it represented and can
be used for quantitative analysis.

Data Processing and Statistical Analysis
Statistical analysis was conducted on clinical data, gender
variables were analyzed using the chi-square test, and
independent t-test was used for age variables. Metabolic
changes in Plasma extract were analyzed by using UPLC-Q-TOF
MS system and its software Progenesis QI (Waters). The original
tandem mass spectrometry datasets were generated on the
Waters XEVO-G2XS QTOF instrument and processed by the
commercial software Progenesis QI 2.0, including raw data
import, selection of possible adducts, peak set alignment, peak
detection, deconvolution, dataset filtering, noise reduction,
compound identification, and normalization with some method.
The original data was preprocessed and the linear model was
adjusted. Orthogonal Partial least squares discriminant analysis
(OPLS-DA) was first used for classification discrimination.
OPLS-DA was a supervised statistical method for discriminant
analysis. OPLS-DA was used to establish a model of the
relationship between the metabolite expression and the sample
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type, so as to realize the prediction of sample type (Worley and
Powers, 2013). The reliability of the model was verified by cross
validation and displacement test. The parameters R2 and Q2
were used to evaluate the interpretability and predictability of the
model, respectively. By P-value (P < 0.05), VIP value (VIP > 1),
and FDR value (FDR < 0.05) Standard potential difference
marker is selected. The best truncation value was determined
by using The Youden index. Finally, potential biomarkers were
correlated with metabolic pathways through KEGG.

All statistical analyses were performed used R version 3.6.3,
and P < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics of the Subjects
There were 47 PTC patients (11 men and 36 women; age range,
23–72 years), and 33 healthy controls (6 women and 27 men; age
range, 27 and 63 years). The clinical information of the samples
was shown in Table 1.

Plasma Metabolomics Profiles in the
PTC and CK
Screening of Differential Metabolites in Plasma
Samples Between the Two Groups
The data were originally divided into a validation set and a
training set. To describe the changes between PTC group and CK
group, an OPLS-DA model was developed (Figure 1).

As can be seen in the figure, the plasma lipid profile of the two
groups changed significantly. In addition, we obtained the S-plot
showing a good curve, and the further away the metabolites
from the origin in the figure, the greater the contribution to
the grouping (Figure 2). Thirty metabolites with VIP >1 were
selected based on the variable importance projection (VIP)

TABLE 1 | Baseline characteristics of the participants.

Characteristic CK PTC

(n = 33) (n = 47)

Age, year

Mean ± SD 45.9 ± 10.1 45.5 ± 11.5

Range 27–63 23–72

Sex, no. (%)

Female 27 (81.8) 36 (76.6)

Male 6 (18.2) 11 (23.4)

Lymph nodes metastasis

Negative 21

Positive 26

Stages

I 31

II 3

III 13

IV 0

PTC, papillary thyroid carcinoma; CK, healthy controls.

values in the OPLS-DA model. Univariate statistical analysis
was performed using R project to further verify the statistical
significance of the metabolite differences between the thyroid
cancer group and the healthy control group (P < 0.05).

Thirteen metabolites with adjusted P < 0.05 were
selected by the classic one-stage method (Table 2). The
thirteen metabolites are PG(17:0/14:1), PE(16:0/20:2),
PE(P-18:0/18:2), PE(O-18:0/20:5), SM(d18:1/15:0), PE(O-
18:0/18:3), SM(d18:1/16:1), PS(20:3/18:0), GlcCer(d14:1/24:1),
PC(O-14:0/15:0), SM(d16:1/24:1), PE-NMe(18:1/18:1), and
PS(20:4/18:0). Butterfly diagram analysis (Figure 3) showed
how these 13 lipid metabolites differed between thyroid
cancer patients and healthy control populations. As can be
seen from Figure 3, PTC group was significantly higher
than CK group in SM(d18:1/16:1), SM(d18:1/15:0), PE-
Nme (18:1/18:1), GlcCer(d14:1/1/24:1), SM(d16:1/24:1), and
SM(d16:1/24:1), while CK group was significantly higher than
PTC group in PG(17:0/14:1), PS(20:3/18:0), PS(20:4/18:0), and
PE(O-18:0/20:5).

Using the Youden Index Formula to Select the Best
Cut-off Values
To further assess the diagnostic performance of the lipid
species identified, we selected the Youden analysis. As shown in
Table 3, variables with the Youden index greater than 0.6 are
selected for model analysis, including GlcCer(d14:1/24:1),
PE-NMe(18:1/18:1), SM(d16:1/24:1), SM(d18:1/15:0),
and SM(d18:1/16:1).

Development and Validation of a Predictive Model
Multivariate statistical analysis was used for further study. We
chose Logistic Regression (LG), Recursive Partitioning (RPART),
Support Vector Machine (SVM), Random Forest (RF), Gradient
Boosting Machine (GBM) as the alternative algorithm. Through
the 7-fold cross-validation, the indexes of each model were
calculated, including accuracy, sensitivity, specificity and AUC.
Statistical analysis of the results of 7-fold cross- validation showed
that the classification effect of Logistic Regression was similar to
that of SVM, which showed high AUC valued and high accuracy
(Table 4). Validation set of the aforementioned model was shown
in Figure 4. It can be seen from the figure that the AUC value of
LG model was the highest: 0.945.

Pathway Analysis
Metabolomics Pathway Analysis (MetPA) is a part of many
functions of MetaboAnalyst network database. It can
visualize the metabolic pathway information of potential
biomarkers with the help of METLIN, HMDB, and KEGG
database. As shown in Figure 5, the top seven dysregulated
lipid pathways in thyroid cancer, as assessed by p-value or
pathway impact, were associated with Glycerophospholipid
metabolism (a), Linoleic acid (b), alpha-Linolenic acid
metabolism (c), Glycosylphosphatidylinositol (GPI) (d),
Glycerolipid metabolism (e), Phosphatidylinositol signaling
system (f), and Arachidonic acid metabolism (g). Table 5
shows the details of each pathway. There were three different
metabolites involved in glycerol metabolism pathway.
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FIGURE 1 | The OPLS-DA score plots based on Q-TOF data sets of metabolites in the plasma of patients with papillary thyroid carcinoma patient and healthy
control groups. PTC represents one papillary thyroid carcinoma patient; CK represents one healthy control.

Also, the network of significantly perturbed metabolomic
data associated with differential lipids is summarized in
Figure 6.

FIGURE 2 | The S-plot based on p-values of correlation and covariance
between metabolites in the plasma of patients with papillary thyroid carcinoma
patient and healthy control groups.

DISCUSSION

In our study, UPLC-Q-TOF MS metabolomics technology was
used to analyze the plasma of PTC group and CK group. Based
on the classical statistical method, appropriate metabolites were
selected for pathway analysis to determine the potential metabolic
pathways and mechanisms.

Tumor progression is a complex process involving
proliferation, hypoxia, angiogenesis, apoptosis, metastasis,
immunity, and increased tolerance to reactive oxygen species
(Townson et al., 2003; Colin et al., 2014; Schito and Semenza,
2016; Karsch-Bluman et al., 2019; Messmer et al., 2019). These
tumor-associated processes significantly affect primary metabolic
pathways; Thus, it is primarily metabolic alterations that
distinguish tumor cells from normally differentiated cells. In
terms of lipid metabolism, tumor metabolites are characterized
by an increase in lipid content, which happens to be necessary
for the construction of cell membranes. Phospholipids are the
main components of cell membranes and maintain the shape
and fluidity of cells. Alterations in membrane phospholipids may
be critical in influencing cancer phenotypes such as invasiveness
and metastatic potential (Lavie et al., 1999).

Phospholipids are divided into two main groups,
glycerophospholipids (GPs) and sphingophospholipids.
Depending on the different substituents at the sn-3 position
of the glycerol backbone, GPs fall into phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidyl glycerol
(PG), phosphatidylserine (PS), phosphatidylinositol (PI),
phosphatidic acid (PA), and cardiolipins. There is evidence
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TABLE 2 | Identified differentiating lipids between thyroid papillary cancer patients and healthy controls.

No Compounds m/z Class VIPa FCb FDRc p-valued

1 PG(17:0/14:1(9Z)) 707.49 Glycerophospholipids 13.15 0.07 0.007 0.000

2 PE(16:0/20:2(11Z,14Z)) 742.54 Glycerophospholipids 3.51 0.02 0.036 0.036

3 PE(P-18:0/18:2(9Z,12Z)) 728.56 Glycerophospholipids 2.05 4955.03 0.013 0.002

4 PE(O-18:0/20:5(5Z,8Z,11Z,14Z,17Z)) 752.56 Glycerophospholipids 1.95 16.39 0.014 0.002

5 SM(d18:1/15:0) 687.54 Sphingolipids 1.79 0.28 0.062 0.023

6 PE(O-18:0/18:3(6Z,9Z,12Z)) 748.52 Glycerophospholipids 1.65 0.13 0.066 0.026

7 SM(d18:1/16:1) 745.55 Sphingolipids 1.62 1.41E-08 0.082 0.036

8 PS(20:3(8Z,11Z,14Z)/18:0) 834.52 Glycerophospholipids 1.43 0.1 0.005 0.000

9 GlcCer(d14:1(4E)/24:1(15Z)) 804.57 Sphingolipids 1.43 5E-04 0.013 0.002

10 PC(O-14:0/15:0) 700.53 Glycerophospholipids 1.37 2.86E + 08 0.013 0.002

11 SM(d16:1/24:1) 829.64 Sphingolipids 1.36 0.11 0.050 0.016

12 PE-NMe(18:1(9E)/18:1(9E)) 802.56 Glycerophospholipids 1.32 0.37 0.039 0.011

13 PS(20:4(5Z,8Z,11Z,14Z)/18:0) 810.53 Glycerophospholipids 1.12 0.32 0.065 0.025

aVIP value was obtained from OPLS-DA with a threshold of 1.0.
bFC value was calculated by the average value of the thyroid papillary cancer group divided by the average value of the healthy control group. FC with a value larger
than 1 indicates a higher level of the compound in plasma of patients with thyroid papillary cancer, while a FC value lower than 1 indicates a lower level, compared to
healthy controls.
cFDR, false discovery rate.
dp-values are calculated from the Wilcoxon rank-sum test.

FIGURE 3 | Butterfly diagram analysis of 13 different metabolites.

that PC, PE and sphingomyelin (SM) are major components of
eukaryotic cell membranes.

PE is a key phospholipid that helps maintain cell membrane
fluidity. Lee et al. (2019) found that the concentrations of PE
(36:1), PE (36:3), PE (38:6), and PE (18:0p/20:4) were increased
in papillary thyroid cancer patients, but the changes of PE (38:3),
PE (38:4), PE (40:6), and PE (18:0p/20:4) were in opposite
directions in papillary thyroid cancer patients. In our study,
PE (16:0/20:2), PE(O-18:0/18:3), PE(O-18:0/20:5), and PE (P-
18:0/18:2) levels were down regulated in papillary thyroid cancer
patients, however, PE-NMe (18:1/18:1) was in opposite directions
in papillary thyroid cancer patients. PE is closely related to the

regulation of calcium transport in cell signaling (Kester and
Sokolove, 1990). In thyroid cancer cells, calcium transport is
remodeled to provide help for cell proliferation and invasion
(Gumbiner, 2005).

SM is an important component of biofilm composition.
SM and its metabolites such as ceramide (Cer), sphingosine
(Sph), and sphingosinephosphate (S1P) are an important class of
biologically active signaling molecules involved in the regulation
of many important signal transduction processes such as cell
growth, differentiation, senescence and death are involved
(Perry, 1999). Among them, Cer is the central molecule of SM
metabolism, which together with Sph is a negative regulator
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TABLE 3 | Diagnostic performance of serum biomarkers in discriminating papillary
thyroid carcinoma from healthy controls.

No Metabolites Youden

1 GlcCer(d14:1/24:1) 0.707

2 PE-NMe(18:1/18:1) 0.669

3 SM(d16:1/24:1) 0.659

4 SM(d18:1/15:0) 0.651

5 SM(d18:1/16:1) 0.639

6 PE(16:0/20:2) 0.362

7 PE(O-18:0/18:3) 0.353

8 PS(20:4/18:0) 0.352

9 PE(O-18:0/20:5) 0.299

10 PC(O-14:0/15:0) 0.292

11 PE(P-18:0/18:2) 0.291

12 PG(17:0/14:1) 0.266

13 PS(20:3/18:0) 0.248

TABLE 4 | Calculation of accuracy, sensitivity, specificity, and AUC after 7-fold
cross-validation for different classifiers.

Accuracy Sensitivity Specificity AUC

LG 73.81 0.727 0.739 0.811

DT 59.84 0.391 0.713 0.679

SVM 64.45 0.56 0.69 0.713

RF 69.37 0.536 0.784 0.757

GBM 58.41 0.391 0.689 0.589

LG, logistic regression; DT, decision tree; SVM, support vector machine; RF,
random forest; GBM, gradient boosting machine.

of cell proliferation and can inhibit cell growth and promote
apoptosis, while S1P stimulates cell growth and inhibits cell
apoptosis. Together, they form a dynamic system of "Sphingolipid
Rheostat" (Kohama et al., 1998; Hannun and Obeid, 2002).
Previous studies found SM(d18:0/16:1) was significantly higher
in thyroid papillary carcinoma than in normal thyroid tissue
(Ishikawa et al., 2012). In our study, the levels of SM(d18:1/15:0),
SM(d18:1/16:1), and SM(d16:1/24:1) were increased in patients
with thyroid cancer patients, which seems to be inconsistent
with the previous report. We believe that this may be related to
the dynamic balance of sphingolipid variable blockers, and the
deeper mechanism needs to be investigated further.

In cells, PC is mediated by phospholipase A2 (PLA2), a
family of enzymes that hydrolyze glycerophospholipids to fatty
acids and lysophosphatidylcholine. PLA2 is significantly more
active in thyroid cancer cells than in normal thyroid tissue, and
thus PC, along with its choline metabolites produced during
metabolism, has an important role in tumor proliferation and
survival (Cummings et al., 2000; Laye and Gill, 2003). Guo et al.
(2015) found that PC (38:6) in plasma was significantly lower in
malignant thyroid cancer than in healthy controls. Accordingly,
our study also showed that PC(O-14:0/15:0) was down regulated
in thyroid cancer patients. They are down-regulated probably due
to higher rates of utilization as a result of increased demand for
the membrane biosynthesis of tumor cells (Yang et al., 2017). It is
consistent with some of the previous findings and is thought to be
potentially relevant to the biological behavior of thyroid cancer.

FIGURE 4 | ROC curves: purple: LG; red: the SVM; black: RF; yellow: GBM.

FIGURE 5 | Ingenuity pathway analysis based on the 13 lipid metabolites with
higher diagnostic performance. The p-value (y-axis) was represented by the
color of the circle and the pathway impact (x-axis) was indicated by the size of
the circle. Glycerophospholipid metabolism (a), Linoleic acid (b),
alpha-Linolenic acid metabolism (c), Glycosylphosphatidylinositol (GPI) (d),
Glycerolipid metabolism (e), Phosphatidylinositol signaling system (f), and
Arachidonic acid metabolism (g).

Various glycosphingolipids were first hydrolyzed
to glucosylceramide by glucoencephalosidase and
glucosidase in lysosome and then converted to ceramide
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TABLE 5 | The main metabolic pathways of biomarkers.

Pathway name Hits/Total p-value FDR –log(p) Impact

Glycerophospholipid metabolism 3/36 1.15E-05 0.000968 4.9383 0.33882

Linoleic acid metabolism 1/5 0.009652 0.4054 2.0154 0

alpha-Linolenic acid metabolism 1/13 0.024967 0.51524 1.6026 0

Glycosylphosphatidylinositol (GPI) 1/14 0.02687 0.51524 1.5707 0.00399

Glycerolipid metabolism 1/16 0.030669 0.51524 1.5133 0.01246

Phosphatidylinositol signaling system 1/28 0.053254 0.74556 1.2736 0.00152

Arachidonic acid metabolism 1/36 0.068115 0.81737 1.1668 0

Total: the number of all metabolites in the metabolic pathway. Hits: the number of differentiated metabolites selected in the metabolic pathway. p-value: the original
calculated P-value of the enrichment analysis. FDR: the value of FDR in multiplex checking. Impact: the influence value calculated by path topology analysis.

FIGURE 6 | Network of the remarkably perturbed metabolic pathways in IBD by MetScape analysis. The red hexagons indicate the differential lipid metabolites
identified in our study. And the pink ones are the involved metabolites not been identified in our study. The significant changed metabolites (p < 0.05) in IBD were
shown as green line hexagons. The fold change of metabolites was indicated by hexagon’s size.

(Hannun and Obeid, 2002; Yuan et al., 2017). Ceramide is
the central molecule of phospholipid metabolism, which
mainly regulates the anti-proliferation effect. Such as inhibiting
cell growth, inducing apoptosis, regulating senescence and
autophagy. In the present study, the level of GlcCer (d14:1/24:1)
was significantly increased in patients with thyroid cancer, which
may be related to the fact that Ceramide can inhibit tumor
growth by regulating the direct target of tumor growth and
up-regulate the de novo synthesis of ceramide pathway Enzymes
can reverse drug resistance in cancer cells (Wątek et al., 2019).

As an essential fatty acid, Alpha-Linolenic acid (ALA) mainly
exists in body tissues in the form of complex lipids. The
research results of Sauer et al. (2000). It is considered that the

decrease of cell uptake of LA and its gene mutation enters the
mitotic factor 13-hydroxyoctadecadienoic acid (13-HODE), thus
inhibiting the growth of tumor. The study of Kato et al. (2002).
found that the average tumor weight of nude mice inoculated
with human colon cancer cells was significantly decreased in the
high herring oil feed group and high alga oil feed group compared
with the two control groups after 53 days of eating different
diets, fully confirming that N-3 fatty acids can significantly
inhibit tumor growth.

Linoleic acid, as an unsaturated fatty acid, has many
functions. First, LA inhibits tumors by inducing the formation
of lipid peroxidation products (Chen et al., 2001). Furthermore,
LA can inhibit tumor formation through lipid metabolism
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(Sirui Mo, 2017). Finally, LA can induce the apoptosis of tumor
cells (Yuan et al., 2009).

Glycosylated phosphatidylinositol (GPI) proteins are proteins
that are anchored to the surface of eukaryotic cell membranes
by a glycosylated phosphatidylinositol-anchored structure at
the carboxyl terminus. GPI ethanolamine phosphate transferase
participates in glycosylphosphatidylinositol biosynthesis. The
relationship between GPI and tumor. First, GPI-anchored
proteins are associated with tumor markers (Yinguang et al.,
2009). GPI-anchored proteins are also involved in tumor
cell signal transduction (Shumin et al., 2007). Furthermore,
GPI-anchored proteins are associated with tumor metastasis
(Philippova et al., 2005). Finally, GPI-anchored proteins are also
involved in immune escape from tumors (Ge et al., 2016).

According to the current study, sphingolipids are the most
recognized lipid markers. Sphingolipids play an important
role in cell proliferation, migration, inflammatory response to
anticancer drugs and other cancer-related functions as well as
in preventing the occurrence and development of cancer (Canals
et al., 2011). but no sphingolipid metabolism pathway was found
in our pathway analysis, which may be due to the problem of
the samples we selected. In addition, our sample size is relatively
small, because we matched the basic clinical information, so the
sample size is too small.

We didn’t find the sphingolipid pathway in our metabolic
pathway, but phospholipids and glycolipids are complex
lipids composed of simple lipids and non-lipid components
(phosphoric acid, sugar, base, etc.). Phospholipids are lipids
containing phosphoric acid. They can be divided into glycerol
phospholipids and sphingosine phospholipids according to the
different alcohols in the molecules. In addition, these two
pathways can be interrelated through phosphoethanolamine and
ceramide. In future experiments, we will expand the sample size
and carefully screen the samples for further verification of the
results. We would like to explore the role and association of
sphingolipid metabolism in cancer.

This study culminated in the design of a predictive model
that was constructed using altered lipid metabolites found
previously in several patients with thyroid cancer, which will
hopefully help in future work to diagnose thyroid cancer. Early
diagnosis can enable PTC patients to receive more effective
follow-up monitoring, especially high-risk patients to receive
timely treatment to reduce the higher medical costs and physical
injuries caused by delayed progression of the disease. Although
ultrasound is the preferred method for the diagnosis of thyroid
nodules, its application in the differential diagnosis of benign
thyroid nodules and papillary thyroid carcinoma is controversial,
and the diagnostic accuracy range is between 20 and 76% (Lin
et al., 2015). The application of the gene expression abnormalities
approach to cancer also has drawbacks. For example, The
physiological reproducibility varied significantly among the
various tumor heterogeneity features under investigation, only
a few of them being identified as reproducible (Tixier et al.,
2012). Since these lipid metabolites are common indicators,
we believe that this diagnostic tool will be easily generalized
and applied. However, it needs to be verified by expanding
the sample size.

The limitations of our study include a relatively small
sample size and a study group. Follicular, anaplastic, and poorly
differentiated tumor samples were not included in our study
because of their low incidence. In this study, we did not
compare the changes in the lipid spectra of rai-refractory and rai-
responsive. The samples selected in this study were patients with
papillary thyroid carcinoma confirmed by pathology. There is no
clear distinction between early-stage (I-II) and late-stage (III-IV)
tumors. Another limitation of this study is the small data set. In
the future, the sample size should be enlarged.

CONCLUSION

The lipids in the serum of patients with PTC and in the healthy
control groups were comprehensively analyzed using UPLC-
QTOF/MS. Thirteen lipid species are proposed as potential
biomarkers for the diagnosis of PTC. These species showed
significant differences between the PTC and healthy control
group. The identified biomarker or panels showed excellent
diagnostic accuracies for distinguishing among PTC patients,
and normal individuals. The predictive model showed good
diagnostic performance and it could be gradually incorporated
as a support method for the diagnosis of PTC.
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