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Abstract

In this research, the capabilities of culture supernatants generated by the oxalate-producing fungus Aspergillus niger for the
bioprecipitation and biorecovery of cobalt and nickel were investigated, as was the influence of extracellular polymeric sub-
stances (EPS) on these processes. The removal of cobalt from solution was >90% for all tested Co concentrations: maximal nickel
recovery was >80%. Energy-dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) confirmed the formation of cobalt
and nickel oxalate. In a mixture of cobalt and nickel, cobalt oxalate appeared to predominate precipitation and was dependent on
the mixture ratios of the two metals. The presence of EPS together with oxalate in solution decreased the recovery of nickel but
did not influence the recovery of cobalt. Concentrations of extracellular protein showed a significant decrease after precipitation
while no significant difference was found for extracellular polysaccharide concentrations before and after oxalate precipitation.
These results showed that extracellular protein rather than extracellular polysaccharide played a more important role in influenc-
ing the biorecovery of metal oxalates from solution. Excitation—emission matrix (EEM) fluorescence spectroscopy showed that
aromatic protein-like and hydrophobic acid-like substances from the EPS complexed with cobalt but did not for nickel. The
humic acid-like substances from the EPS showed a higher affinity for cobalt than for nickel.

Keywords Aspergillus niger - Biorecovery - Extracellular polymeric substances - Fluorescence quenching - Cobalt - Nickel -
Oxalate

Introduction

Microorganisms can play an important role in both the reme-
diation and biorecovery of metals (Gadd 2010; Liang and
Gadd 2017). Although metals cannot be degraded into harm-
less compounds, their chemical form, mobility, toxicity, and
bioavailability can be changed via the growth, metabolism,
and metabolic products of microorganisms (Peng et al.
2018). Metal immobilization or recovery from solution can
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be achieved by bioprecipitation where metals are transformed
from soluble species to insoluble compounds, such as oxides,
carbonates, phosphates, oxalates, and sulfides (Haferburg and
Kothe 2007; Tsezos 2009; Gadd et al. 2014; Liang and Gadd
2017). For example, Fe, Zn, and Cd in wastewater showed
more than 99% precipitation rates in downflow fluidized bed
reactors containing sulfate-reducing bacteria (SRB)
(Gallegos-Garcia et al. 2009). Biological sulfide precipitation
combined with solvent extraction can even result in nanosized
metal sulfides for biorecovery (Nanusha et al. 2019).
Microbially induced calcite precipitation (MICP) is also a
promising biotechnology for recovery or immobilization of
metals from wastewater or groundwater (Li et al. 2014; Li
and Gadd 2017a, b; Kumari et al. 2016; Zhu and Dittrich
2016; Torres-Aravena et al. 2018). A total of 61% of calcium
and 56% of strontium precipitation rates were obtained in
porous media reactors via MICP mediated by the bacterium
Sporosarcina pasteurii (Lauchnor et al. 2013). Calcium recov-
ery of more than 90% was achieved from a calcium-rich in-
dustrial wastewater using bacterial MICP (Hammes et al.
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2003). Supernatants obtained from ureolytic fungi are also
very efficient in forming copper and other metal carbonate
nanoparticles for biorecovery (Li et al. 2014, 2015, 2019; Li
and Gadd, 2017a, b; Liu et al. 2019).

Organic acids, e.g. oxalic acid produced by fungi, can also
play an important role in the immobilization or biorecovery of
metals (Clarholm et al. 2015; Gadd 1999; Gadd et al. 2014,
Mishra et al. 2017; Yang et al. 2019). Wood-rotting fungi can
immobilize toxic metals in a metal-amended substrate by pre-
cipitation as metal oxalates (Kaewdoung et al. 2016). Lead
immobilization via oxalates was also found with fluorapatite
and Aspergillus niger (Li et al. 2016). In previous studies, it
was also found that metabolites of the geoactive fungi
Aspergillus niger and Beauveria caledonica could immobilize
rare earth elements and toxic metals as oxalates (Fomina et al.
2005; Kang et al. 2019). Chemical oxalate precipitation is also
widely used for the recovery of actinides (Abraham et al.
2014). High purity magnesium oxalate was obtained from
Uyuni salar brine via chemical oxalate precipitation (Tran
et al. 2013). Nickel is a primary co-existing element in Co
minerals (Hazen et al. 2017), while industrially, cobalt, and
nickel are also normal elements used in several kinds of bat-
teries (Lupi et al. 2005; Rodrigues and Mansur 2010; Chen
etal. 2011). In this research, we have used fungal products for
biorecovery of cobalt and nickel from solution to (1) investi-
gate the efficiency of culture supernatants from Aspergillus
niger for cobalt and nickel biorecovery, (2) identify the
bioprecipitation products formed, (3) determine the possible
influence of extracellular polymeric substances (EPS) on the
biorecovery process. This study will provide insights into the
roles of fungal metabolites in metal-mineral interactions and
their potential for metal biorecovery from solution.

Methods and materials
Microorganism and media

The experimental fungus used in this study was Aspergillus
niger (ATCC 1015), which was incubated on malt extract agar
slants (Lab M Limited, Heywood, Lancashire, UK) at 25 °C in
the dark for 7 days to prepare spore suspensions for inocula-
tion of liquid media according to a previous study (Kang et al.
2019). Modified Czapek-Dox (MCD) medium consisted of
(g L! Milli-Q water): D-glucose, 30; NaNOs, 3; Na,HPOy,
1; MgS0,47H,0, 0.5; KCl, 0.5; and FeSO47H,0, 0.01. All
components were individually prepared as 100 mL stock so-
lutions at the appropriate concentration and sterilized at 115
°C for 20 min prior to experiments. The initial pH of MCD
media was adjusted to pH 5.5 using 1 M HCl before autoclav-
ing. The initial spore concentration in the medium was 5 x

10° mL™". A. niger was grown in 100-mL liquid medium in
250-mL Erlenmeyer flasks incubated on a shaker at 150 rpm
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at 25 °C in the dark. Biomass-free culture supernatants after 1-
or 2-week incubation were obtained by filtering the medium
through 0.45-um cellulose nitrate membrane filters (Minisart
syringe filters, Sartorius, Gottingen, Germany). All chemicals
were obtained from Sigma-Aldrich Ltd., St. Louis, MO, USA
unless stated otherwise.

Recovery of cobalt and nickel via bioprecipitation
by fungal supernatants

Different concentrations of cobalt, nickel, and their mixture
were used to examine their recovery from solution as biogenic
minerals. Aliquots from stock solutions of 100 mM
CoCl,-4H,0 and/or NiCl,'6H,O were added to 27 mL
biomass-free supernatants to reach a total volume of 30 mL,
with or without the addition of Milli-Q H,O, in 50-mL tubes
and mixed at 60 rpm for 24 h on a tube rotator. The resulting
precipitate and supernatants from the tubes were collected
after centrifugation (2012 g, 30 min). The concentrations of
cobalt and nickel in the supernatants were measured by atomic
absorption spectrophotometry (AAS) (AAnalyst 400 Atomic
Absorption Spectrophotometer, PerkinElmer Ltd.,
Beaconsfield, UK). All experiments were carried out at least
in triplicate.

Environmental scanning electron microscopy (ESEM) and
X-ray diffraction (XRD) analysis of the collected precipitates
were used to examine the morphology and mineralogical com-
position of the precipitated minerals. Detailed experimental
procedures can be found in previous publications (Li et al.
2014; Li and Gadd 2017a). Precipitates were dried in a desic-
cator at ambient temperature for at least 5 days, mounted on
aluminum stubs using carbon adhesive tape and coated with
10 nm Au/Pd using a Cressington 208 HR sputter coater
(Cressington, Watford, UK) and examined using a Philips
XL30 ESEM (Philips XL 30 ESEM FEG) operating at an
accelerating voltage of 15 kV. The mineral phases of the pre-
cipitates were identified using a Hiltonbrooks X-ray diffrac-
tometer (HiltonBrooks Ltd., Crewe, UK) equipped with a sin-
gle graphite crystal monochromatic CuKx chronometer
(30 mA, 40 kV).

Influence of extracellular polymeric substances
on recovery of cobalt and nickel

Supernatants were collected from MCD media after growth of
A. niger and then dialyzed using dialysis membrane to obtain
an extracellular polymeric substances (EPS) solution. Twenty-
five millimolar of sodium oxalate was dissolved in the EPS
solution, and the pH was adjusted to pH 2.2 using 1 M HCI,
the same value as in oxalate-free supernatants. The EPS solu-
tion containing oxalate was then used to precipitate cobalt and
nickel from single and mixed solutions and using a 25-mM
sodium oxalate solution treatment as a control. The content of
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extracellular polysaccharide and protein before and after pre-
cipitation was determined using the phenol-sulfuric acid meth-
od (DuBois et al. 1956) and Bradford method (Bradford
1976), respectively.

Excitation emission matrix fluorescence spectroscopy
and quenching titrations

A Hitachi F-7000 fluorescence spectroscope (Hitachi, Tokyo,
Japan), equipped with a 1.0-cm quartz cell and thermostatic
bath, was used to determine the excitation emission matrix
(EEM) spectra of EPS obtained from the A. niger culture
supernatants. EEM spectra were obtained according to pub-
lished methods (Song et al. 2012; Wang et al. 2018). For the
quenching titration, the EPS solution was titrated with incre-
mental microliter additions of Co(Il) and Ni(Il) solution at
308 K (35 °C). After each addition of metal salt, the solution
was mixed using a magnetic stirrer for 15 min and EEM spec-
tra were recorded during this process. Fifteen minutes was set
as the equilibrium time because the fluorescence intensities
showed almost no change after 15-min reaction.

Results

Recovery of cobalt and nickel as oxalate minerals
using A. niger biomass-free culture supernatants

The biomass-free supernatants collected from A. niger lig-
uid cultures after 7 and 14 days exhibited excellent precip-
itation and recovery of cobalt from solution (Fig. 1).
Recovery of cobalt from solution was above 90% for all
tested cobalt concentrations. There was no significant
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Fig. 1 Removal of cobalt and nickel from solution using supernatants of
A. niger ([____]7-day supernatants + Co; [ 14-day supernatants +
Co; [__] 7-day supernatants + Ni; [___] 14-day supernatants + Ni).
Bars are the standard error of the mean (n = 3)

difference in cobalt recovery between supernatants har-
vested after 7 and 14 days (p > 0.05). Nickel precipitation
and recovery from A. niger 7- and 14-day-old supernatants
increased as the concentration of nickel increased from 5 to
20 mM. Maximum recovery (81.44%) of nickel occurred at
a concentration of 20 mM NiCl, 6H,0O using supernatants
collected after 7 days. The 7-day-old supernatants collect-
ed from A. niger cultures exhibited significantly higher
recovery of nickel than supernatants collected after 14 days
(p <0.05). Since the 7-day old supernatants exhibited such
high recovery rates for both cobalt and nickel, these were
used for subsequent experiments. Figure 2 shows the re-
covery of cobalt and nickel from solutions with different
concentration ratios (1:1, 1:2 and 1:4). The results revealed
that the removal of cobalt from a mixture of cobalt and
nickel were all above 98%, except for 2.5 mM cobalt and
nickel. The recovery of nickel from the mixture was in the
range 44.9-93.1%. Recovery of cobalt and nickel from the
supernatants therefore depended on the mixture ratios of
the two metals.

Influence of extracellular polymeric substances
on recovery of cobalt and nickel

The influence of EPS on the efficiency of metal removal
was investigated. From Fig. 3, it can be seen that EPS did
not influence the recovery of cobalt from solution.
However, the presence of EPS decreased nickel recovery
significantly. Nickel recoveries from 10 mM nickel and a
mixed solution of 5 mM cobalt and 5 mM nickel using a
chemical oxalate solution were 59.1% and 98.2%, respec-
tively. When using an EPS solution containing oxalate,
nickel recoveries from 10 mM nickel and a mixed solu-
tion of 5 mM cobalt and 5 mM nickel were 38.5% and
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+10 mM Ni

25mMCo 5mMCo 10 mM Co
+25mMNi +5mMNi  +10 mM Ni

Fig. 2 The removal of cobalt and nickel from a mixed solution using
supernatants of A. niger collected after 7 days ([_] Co; [
Ni). Bars are the standard error of the mean (n = 3)
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Fig.3 The removal of cobalt and nickel from solutions using oxalate with
or without extracellular polymeric substances (EPS) (] oxalate;
[ oxalate + EPS). Bars are the standard error of the mean (n=3)

88.3%, respectively. The polysaccharide concentration in
the EPS solution before precipitation was 1.50 mg L™
(Fig. 4). Extracellular polysaccharide concentrations in
solution after precipitation of cobalt and nickel from sin-
gle solutions and their mixture were 1.40, 1.39, and
1.40 mg L', respectively. An insignificant decrease in
the extracellular polysaccharide concentration therefore
occurred after oxalate precipitation. The concentration of
extracellular protein before precipitation was 1.88 mg L™".
Extracellular protein concentrations in solution after pre-
cipitation with cobalt, nickel, and their mixture were 0.83,
1.25, and 0.61 mg L', respectively. A significant reduc-
tion of extracellular protein in solution therefore resulted
after oxalate precipitation (p <0.05). It can also be noted
that more extracellular protein disappeared during the co-
balt treatment compared to the nickel treatment.
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Fig. 4 Changes in extracellular polymeric substances (EPS)
concentration before and after removal of cobalt and nickel using
oxalate with EPS (Il cxtracellular polysaccharide; ]
extracellular protein). Bars are the standard error of the mean (n = 3)
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Characterization of cobalt and nickel oxalate minerals

Figure 5 shows the morphology of cobalt and nickel crystal
precipitates obtained under different experimental conditions.
Micro-rod shaped crystals were obtained for cobalt with
biomass-free supernatants, EPS solution containing oxalate,
and chemically prepared oxalate solution. Micropolyhedrons
were observed for nickel when reacted with culture superna-
tants, EPS solution containing oxalate, and chemically prepared
oxalate solution. No obvious differences were apparent be-
tween the three treatments for cobalt and nickel precipitation
from single metal solutions suggesting that neither supernatants
nor the EPS solution had an influence on precipitate morphol-
ogy in the single metal solutions. However, crystalline mor-
phology observed in the metal mixture was as a smooth layered
form using supernatants and EPS solution containing oxalate in
contrast to the precipitate from a mixture of nickel and cobalt
using chemically prepared oxalate which displayed a rough and
non-uniform shape. This demonstrated that the supernatants
containing EPS influenced the morphology of precipitated min-
erals in a mixture of cobalt and nickel compared with chemical
oxalate. Figure 6 shows EDXA and XRD of the precipitation
obtained using supernatants with single solutions of cobalt,
nickel, and their mixture. The elemental composition of C, O,
and Co/Ni from EDXA and the XRD pattern of the mineral
precipitate using supernatants with single cobalt or nickel solu-
tion showed that cobalt or nickel oxalate formed (Fig. 6a, b).
For the precipitate produced from the mixture of cobalt and
nickel, EDXA showed that it was composed of cobalt, nickel,
carbon and oxygen. However, the XRD pattern of a mixed Co/
Ni solution showed more similarity with cobalt oxalate (Fig.
6¢). This could suggest a difficulty in distinguishing Co and Ni
oxalate when precipitating together. In addition, it is possible
that a mixed Co-Ni oxalate phase may exist as well as adsorp-
tion or other kinds of association with the crystals in poorly or
non-crystallized forms.

Fluorescence properties of EPS from A. niger

Three-dimensional fluorescence spectra of EPS from
Aspergillus niger in the absence and presence of the metals
are shown in Fig. 7. Four fluorescence peaks were obtained in
the EEM spectra of EPS. Peaks A (Ex/Em 230/325-340) and
B (Ex/Em 235/400—405) can be attributed to aromatic protein-
like and hydrophobic acid-like fluorophores, respectively;
peak C (Ex/Em 275-280/340) and D (Ex/Em 290-295/405)
is attributed to humic acid-like fluorophores (Chen et al.,
2003). The fluorescence position and intensity of EPS in the
absence and presence of different metal ions at the concentra-
tion of 3.67 mM are shown in Table 1. For most fluorescence
peaks, the fluorescence intensity decreased after the addition
of cobalt and nickel indicating that cobalt and nickel could
quench the fluorescence of most fluorescent substances,
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Fig. 5 Scanning electron
microscopy images of the Co/Ni
precipitates (10 mM cobalt,

10 mM nickel and a mixture of
5 mM cobalt and 5 mM nickel
reacted with culture supernatants,
oxalate with EPS and oxalate,
respectively). Scale bars (1 pum).
Typical images are shown from
several separate examinations

Cobalt 10 mM

Nickel 10 mM

Cobalt/Nickel
5 mM/5 mM

especially aromatic protein-like (peak A) and humic acid-like
(peak C) substances. The fluorescence intensity of hydropho-
bic acid-like substances (peak B) showed little change after
addition of nickel, showing that nickel did not quench its
fluorescence but cobalt did. Otherwise, nickel could quench
the fluorescence of the other kind of humic acid-like sub-
stances (peak D) and the increasing intensity after addition
of cobalt indicated that more fluorophores might be unfolded
under cobalt stress.

Supernatants

Counts (arbitrary units)

0 12 3 4 5 6 7 8 9 10

X-ray energy (keV)

EPS+Oxalate Oxalate

Fluorescence quenching

The fluorescence quenching process can be dynamic
quenching, which is due to collision between the
fluorophore and quencher, or static quenching due to
complexation between the fluorophore and the quencher.
The Stern—Volmer Eq. (1) was used to judge whether
the quenching processes were dynamic or static
(Keizer 1983):

N—-—-——J _AJ__)t A
b A A M—/\AS—Q—_
ALL__A.UA(_L,\
Cobalt oxalate (PDF 25-250)
o lliudn

A ACL

Intensity

Nickel oxalate (PDF 25-281)
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Fig. 6 Energy-dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) of the bioprecipitates using obtained culture supernatants reacted with
10 mM cobalt (a), 10 mM nickel (b), and mixture of 5 mM cobalt and 5 mM nickel (¢). Typical images are shown from several separate examinations
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Fig.7 EEM spectra of EPS at 25 °C in the absence and presence of metal ions (5 mM cobalt and nickel). Typical spectra are shown from several separate

determinations

Fo/F =1+ kymo[0] = 14 K, [O] (1)

where Fy and F represent the fluorescence intensity in the
absence and presence of the quencher, respectively; K, is the
quenching rate constant; K, is the quenching constant; 7y is
the average lifetime of the fluorescence in the absence of
quencher, which is taken as 10"® s; and [Q] is the metal con-
centration. The values of the quenching constants (K,) and R>
are summarized in Table 2.

The quenching rate constant (K,) values were one order of
magnitude larger than the maximum diffusion collision
quenching rate constant (2.0 x 10'%M/s), indicating that the
fluorescence quenching process was mainly governed by stat-
ic quenching by formation of complexes. However, if the K
value was smaller than 2.0 x 10'%/M/s, this indicated the fluo-
rescence quenching process was dominated by dynamic
quenching by intermolecular collisions. According to the
quenching constant rates shown in Table 2, it was observed
that the fluorescence quenching of EPS by cobalt was due to
complexation. The fluorescence quenching of EPS by Ni was
both a dynamic (peak A and peak D) and static process (peak
C). Furthermore, the quenching strength of cobalt to fluores-
cence of EPS was larger than that for nickel.

Binding constants and binding sites

For ligand molecules that bind independently to a set of equiv-
alent sites on a macromolecule, the equilibrium between free
and bound molecules is given by the Hill (2013) Eq. (2):

log|[(Fo=F)/ F| = logK} + nlog|Q)] (2)

where F,, and F are the fluorescence intensities in the ab-
sence and presence of quencher, respectively; Kj, is the bind-
ing constant; # is the number of binding sites; and [Q] is the
concentration of metal. The binding constant (Ky,) reflects the
interactive intensity between EPS and the metal.

The binding constants (log K},) and the number of binding
sites (n) of the EPS-metal system are listed in Table 3. The
aromatic protein-like (peak A) and hydrophobic acid-like sub-
stances (peak B) possessed cobalt binding ability but exhibit-
ed no complexation with nickel. Both the binding ability and
binding sites of cobalt with humic acid-like substances (peak
C) were much larger than those for nickel. The maximum
value of log K, was obtained from the EPS-cobalt system at
peak B, indicating that hydrophobic acid-like fluorophores
possessed a strong binding ability for cobalt.

Discussion

Bioprecipitation is regarded as a potential technique for the
removal and recovery of metals from solution (Gadd et al.
2014; Gadd and Pan 2016; Liang and Gadd 2017; Torres-
Aravena et al. 2018). For example, carbonates, oxides, phos-
phates, and oxalates produced by microbial activities can
transform metals from soluble species into the corresponding
insoluble compounds via precipitation (Li and Gadd 2017a, b;
Liang and Gadd 2017; Peng et al. 2018). Oxalic acid is pro-
duced by a wide variety of fungi, and this plays an important

Table 1 The fluorescence

position (Ex/Em, nm) and System Peak A Peak B Peak C Peak D

intensity (arbitrary units) of EPS

in the absence and presence of Ex/Em Intensity ~ Ex/Em Intensity ~ Ex/Em Intensity ~ Ex/Em Intensity

cobalt and nickel at

concentrations of 3.67 mM EPS 230/335 1070 235/405 1473 275/340 1216 295/405 3198
EPS-Co  230/335 748 235/405 1300 275/340 891 295/405 3353
EPS-Ni ~ 230/340 953 235/400 1435 275/340 888 295/405 3062
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Table 2 Stern—Volmer fluorescence quenching constant, Kg,, and
quenching rate constant, K, of EPS in the presence of different metals
(cobalt concentration range 0-5.67 mM; nickel concentration range 0—
3.67 mM; R*: determination coefficients)

Quencher Quenching constants,  Quenching rate R’
K, (x 10°/M) constants,
Ky (< 10"/MJs)

Co Peak A 4906 4.906 0.9703
Peak B 1.801 1.801 0.9188
Peak C  3.850 3.850 0.9772
Peak D  — - -

Ni Peak A 0.786 0.786 0.2010
Peak B - - -
Peak C  2.927 2.927 0.8817
Peak D 0.592 0.592 0.2531

role in metal detoxification, weathering and cycling of metals,
bioleaching, and biomineralization (Anjum et al. 2010;
Fomina et al. 2008; Gadd 2007; Gadd et al. 2014; Kang
et al. 2019; Nancharaiah et al. 2016; Yang et al. 2019).
Metal oxalate crystal formation has been widely found using
Aspergillus species, such as zinc oxalate (Sutjaritvorakul et al.
2016), lanthanum oxalate (Kang et al. 2019), manganese 0x-
alate (Wei et al. 2012), and calcium oxalate (Pinzari et al.
2010). Chemically produced oxalate has also been used as a
precipitant for recovery of valuable metals from a bioleaching
solution of spent lithium-ion batteries (Sun and Qiu 2012) and
as a leaching solution for monazite (de Vasconcellos et al.
2006). Copper recovery can reach 99.5% using chemical ox-
alate precipitation (Gyliene and Salkauskas 1995). Cobalt re-
covery from a spent lithium-ion batteries leachate could reach
~93% using chemical oxalate (Chen et al. 2011). In this work,
approximately 94% and 98% cobalt recovery from a 10-mM
solution were obtained using biomass-free A. niger culture
supernatants and chemical oxalate, respectively, thus demon-
strating that supernatants from A. niger were almost as effi-
cient as chemical means to recover cobalt via bioprecipitation.
Moreover, culture supernatants were more efficient for recov-
ery of nickel compared with the chemical oxalate treatment. In
a Co/Ni mixture, cobalt and nickel recoveries were increased

Table 3  Binding constants (logK;,) and binding sites (n) of peaks A, B,
and C from EPS complexation with different metals (cobalt concentration
range 0-5.67 mM; nickel concentration range 0-3.67 mM; R*:
determination coefficients)

Metal ion Binding constant, Binding sites n R
log K
Co Peak A 3.56 1.62 0.9564
Peak B 6.65 3.16 0.9664
Peak C 3.20 1.51 0.9575
Ni Peak C 1.51 0.85 0.8517

compared to the single metal treatments. However, the appar-
ent dominance of cobalt oxalate in the mixed Co/Ni precipi-
tate could be explained by the solubility product constants
(Ksp) of the two oxalate minerals. The Ksp of cobalt oxalate
(2.70 x 10~ is significantly smaller than that of nickel oxa-
late (1.2 x 10°) (IUPAC-NIST Solubility Database).

Extracellular polymeric substances (proteins and/or poly-
saccharides) can play an important role in biomineralization,
regulating and controlling nucleation, and growth of crystal
structures (Ercole et al. 2012; Kawaguchi and Decho 2002; Li
and Gadd 2017a, b; Perri et al. 2018; Tourney and Ngwenya
2014). In our study, it was found that the supernatants, or EPS
obtained from supernatants, did not exert a significant influ-
ence on crystal morphology compared with chemical methods
during the formation of cobalt and nickel oxalate. Only for the
Co/Ni—mixed solution was there a difference in crystal mor-
phology between those derived from the supernatants and the
chemical system (Fig. 5). In other studies, fungal growth su-
pernatants from Neurospora crassa were found to greatly in-
fluence the scale of crystal morphology for metal carbonates
(Li and Gadd 2017a, b). Although EPS did not change the
morphology of the nickel precipitate in the single metal solu-
tion, it did influence nickel recovery (Fig. 3).

In other studies, significant amounts of extracellular protein
in fungal supernatants were removed by precipitation of cop-
per carbonate (Li and Gadd 2017a, b; Liu et al. 2019). Here,
extracellular protein was only partly removed during oxalate
precipitation, while the extracellular polysaccharide concen-
tration did not show much change compared to the control.
Much more protein was removed with cobalt compared to
nickel. It is well known that extracellular polymeric sub-
stances contain a variety of metal-binding groups (Wang
et al. 2014; Liu et al. 2015; Song et al. 2016). Lower binding
affinities between nickel and EPS could lead to a decrease in
recovery of Ni in the presence of EPS in the oxalate solution
compared to cobalt (Fig. 3). The aromatic protein-like, hydro-
phobic acid-like substances and humic acid-like substances
(peak C) had a clear binding affinity for cobalt. Aromatic
protein-like and humic acid-like substances have been found
to easily trap copper (Wang et al. 2015; Wei et al. 2017). The
differences in affinities of these substances for metals could
explain the differences in the recovery efficiency for cobalt
and nickel influenced by EPS. This work has demonstrated
that fungal derived oxalate can be used for the recovery of
cobalt from solution and provides insights into the role of
other extracellular products during this process.
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