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Aims There is a need for better phenotypic characterization of the asymptomatic stages of cardiac maladaptation. We
tested the hypothesis that an unsupervised clustering analysis utilizing echocardiographic indexes reflecting left
heart structure and function could identify phenotypically distinct groups of asymptomatic individuals in the general
population.

...................................................................................................................................................................................................
Methods
and results

We prospectively studied 1407 community-dwelling individuals (mean age, 51.2 years; 51.1% women), in whom we
performed clinical and echocardiographic examination at baseline and collected cardiac events on average 8.8 years
later. Cardiac phenotypes that were correlated at r > 0.8 were filtered, leaving 21 echocardiographic features, and
systolic blood pressure for phenogrouping. We employed hierarchical and Gaussian mixture model-based cluster-
ing. Cox regression was used to demonstrate the clinical validity of constructed phenogroups. Unsupervised
clustering analyses classified study participants into three distinct phenogroups that differed markedly in echocar-
diographic indexes. Indeed, cluster 3 had the worst left ventricular (LV) diastolic function (i.e. lowest e’ velocity
and left atrial (LA) reservoir strain, highest E/e’, and LA volume index) and LV remodelling. The phenogroups were
also different in cardiovascular risk factor profiles. We observed increase in the risk for incidence of adverse events
across phenogroups. In the third phenogroup, the multivariable adjusted risk was significantly higher than the aver-
age population risk for major cardiovascular events (51%, P = 0.0028).

...................................................................................................................................................................................................
Conclusion Unsupervised learning algorithms integrating routinely measured cardiac imaging and haemodynamic data can pro-

vide a clinically meaningful classification of cardiac health in asymptomatic individuals. This approach might facilitate
early detection of cardiac maladaptation and improve risk stratification.
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Introduction

At present, the heart health status could be characterized by using
widely available imaging techniques, such as echocardiography. The
current diagnostic imaging algorithms used in clinic to detect cardiac
dysfunction and remodelling focuses on advanced stages of heart fail-
ure (HF) and, therefore, might be less helpful in identifying asymptom-
atic patients who are at risk of cardiovascular adverse events. To date,

numerous population studies validated the best imaging criteria for de-
tection of left heart dysfunction and remodelling in the community.1–5

For instance, in a general population cohort, echocardiographic
indexes reflecting left ventricular (LV) diastolic dysfunction, low longi-
tudinal strain, left atrial (LA) dysfunction, and cardiac remodelling/
hypertrophy emerged independently from traditional risk factors asso-
ciated with fatal and non-fatal cardiovascular outcome.5 Thus, the
amount of information to improve cardiovascular risk stratification in
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asymptomatic subjects that can be derived from echocardiographic
images, is substantial.

Nowadays, echocardiography is relatively affordable as compared
to other imaging techniques, and in the new era of precise ultrasound
characterization of myocardial performance and automatic post-
processing of echocardiographic images it becomes an important in-
strument in preventive cardiology.6 However, until now we have not
fully explored the potential of such vast amount of data. Recent
efforts aimed at the characterization of cardiac performance using un-
supervised cluster analysis approaches, which offer the potential of
unbiased mapping of echocardiographic features. However, these
studies are limited to the prognosis mainly in symptomatic HF
patients.7–9 To our knowledge, no such analyses were done in asymp-
tomatic subjects at risk recruited from the general population so far.
Therefore, in this study, we tested the hypothesis that unsupervised
clustering analysis utilizing routinely measured echocardiographic
indexes reflecting left heart structure and function could identify
phenotypically distinct groups of individuals in the general population.
We also explored whether these echocardiographic phenogroups
(profiles) were associated with different prognoses.

Methods

Study participants
The ethics committee of the University of Leuven approved the Flemish
Study on Environment, Genes, and Health Outcomes (FLEMENGHO), a
large family-based population resource on the genetic epidemiology of
cardiovascular phenotypes.2,5 From 1985 to 2005, we identified a random
population sample stratified by sex and age from a geographically defined
area in northern Belgium as described elsewhere.2 From 2005 to 2014,
we invited 1851 former participants for a technical examination, including
echocardiography. We obtained written informed consent from 1447
subjects (participation rate, 78.2%). For this analysis, we excluded 40 sub-
jects from analysis, because of atrial fibrillation (n = 10), the presence of
an artificial pacemaker (n = 6), or suboptimal echocardiographic image
quality (n = 24). Thus, the study cohort included 1407 participants with
complete information for echocardiographic variables.

Echocardiography
Echocardiographic methods are detailed in the online Supplementary ma-
terial online, Methods section.

Data acquisition

Two experienced observers did the ultrasound examination, using a
Vivid7 Pro and Vivid E9 (GE Vingmed, Horten, Norway) interfaced with a
2.5–3.5-MHz phased-array probe, according to the standardized proto-
col2 and the recent recommendations. With the subjects in partial left de-
cubitus and breathing normally, the observer obtained images, together
with a simultaneous ECG signal, along with the parasternal long and short
axes and from the apical four- and two-chamber long-axis views. All
recordings included at least five cardiac cycles and were digitally stored
for off-line analysis.

Off-line analysis

The post-processing of echocardiograms was performed by one experi-
enced observer (T.K.) blinded to the participants’ characteristics. Digitally
stored images were analysed using a workstation running the EchoPac
software, version BT113 (GE Vingmed, Horten, Norway). All

measurements were averaged over three heart cycles for statistical ana-
lysis. The methodology of echocardiographic indexes assessment is pro-
vided in the Supplementary material online, Methods.

Clinical data
We administered a standardized questionnaire to collect information on
the subject’s medical history, smoking and drinking habits, and medication
intake. We verified and supplemented self-reported diseases by medical
records provided by general practitioners and regional hospitals. Body
mass index (BMI) was weight in kilograms divided by the square of height
in metres. Brachial blood pressure (BP) was the average of five ausculta-
tory readings obtained in seated position. Hypertension was defined as a
BP of at least 140 mmHg systolic or 90 mmHg diastolic or the use of anti-
hypertensive drugs. Fasting blood samples were drawn for measurement
of important routinely measured biochemical features, such as blood glu-
cose, and lipid profile. Diabetes mellitus was determined by self-report, a
fasting glucose level of at least 126 mg/dL, or the use of antidiabetic
agents. We applied the sex-specific Pooled Cohort Equations for white
participants between 40 and 79 years old (n = 1039) to estimate the 10-
year risk for a first atherosclerotic cardiovascular disease (ASCVD) event
as endorsed by the 2013 ACC/AHA Guideline on the Assessment of
Cardiovascular Risk.10

Assessment of outcome
Outcomes were adjudicated against source documents, as described in
previous publications.2,5 We ascertained vital status of FLEMENGHO
participants until 31 December 2019. We obtained the International
Classification of Disease codes for the immediate and underlying cause of
death. We collected information on the incidence of cardiovascular non-
fatal events via a follow-up visit or a telephone interview with repeat ad-
ministration of the same standardized questionnaire used at baseline. In
all participants (n = 1407), we also checked and ascertained information
on diseases against the medical records of general practitioners and in the
regional hospitals. Major cardiovascular events comprised cardiovascular
death, non-fatal stroke, and cardiac events (myocardial infarction, coron-
ary revascularization, HF, atrial fibrillation, and pacemaker). In the study,
participants who experienced cardiovascular events, we only considered
the first event per participant.

Cluster analysis
We used Python 3.8 (https://www.python.org) environment to conduct
the unsupervised analysis to identify specific participant phenogroups and
investigate their associations with clinical parameters at baseline or inci-
dence of cardiovascular events.11 R (4.0.2, https://www.r-project.org) was
used for unsupervised feature selection using library VarSelLCM (2.1.3),
the remaining libraries are for Python. Figure 1 presents the steps of a ma-
chine learning pipeline applied in our analysis. A Jupyter notebook with
Python code producing the results is available at the following link:
https://github.com/HCVE/echo-clustering.

Features selection

For the cluster analysis, we considered 30 routinely measured echocar-
diographic and haemodynamic features, which were standardized to the
mean of 0 and the standard deviation of 1. We constructed Pearson’s
correlation matrix using pandas library (1.1.2) to identify highly correlated
features (>0.8) and kept the more representative of the correlated
parameters based on their clinical relevance and previously reported rela-
tionships with adverse events. Additionally, we plotted Maximal
Information Coefficient (MIC) matrix to further check association be-
tween the variables. We also employed weighted network analysis meth-
ods to illustrate the interrelations of measured variables. First, the
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.
reduced feature set was used to construct Pearson’s correlation matrix.
Second, the correlation matrix was passed to NetworkX (2.5) library,
which was utilized to compute weighted node connectivity (the sum of
the edge weights for edges incident to that node), and layout the graph
using Fruchterman–Reingold force-directed algorithm.12 Third, we
applied the Louvain method for module detection in this network using
the python-louvain (0.14) package.13

Consequently, we applied the R package VarSelLCM, version 2.1.3 for
automatic feature selection. VarSelLCM selects relevant features using a
model-based clustering framework by optimizing a modified integrated
complete-data likelihood.14

Model fitting

The clustering approaches were taken from the scikit-learn library, ver-
sion 0.23.11 First, we performed preliminary analysis with biclustering
heatmap based on hierarchical clustering with Euclidean distance and
Ward linkage to identify echocardiographic patterns that would define
subsets of participants. The heatmap was created using the seaborn li-
brary, version 0.10.1. As a second step, we used Gaussian mixture
model-based clustering, fit with an expectation maximization algorithm.15

Advantages of Gaussian mixture model-based clustering over other
approaches are related to (i) possibilities of statistical analysis using the
underlying probabilistic framework, (ii) estimating cluster parameters

from soft assignments, (iii) noise modelling, and (iv) formation of clusters
of different size and shape.15 The optimal number of clusters (k) was
obtained based on the Bayesian information criterion (BIC) for every
tested k and its associated selected features as implemented in the scikit-
learn library.11 Then, k with the lowest BIC is the estimate of an appropri-
ate number of clusters. Radar charts were used to visualize echocardio-
graphic and haemodynamic features across clusters.

Statistical analysis

For database management and conventional statistics, we used SAS
software, version 9.3 (SAS Institute, Cary, NC, USA).

Validation of phenogroups
First, we compared clinical and echocardiographic characteristics
across phenogroups to characterize their clinical relevance. Means of
continuous variables and proportions of categorical variables were
compared using a large sample z-test and the v2 statistics, respective-
ly. Second, we used the Kaplan–Meier method to estimate the cumu-
lative incidence of adverse events according to the phenogroups and
to compute standardized hazard ratios (HRs) using Cox regression.

Figure 1 Unsupervised machine learning workflow. The blue and orange rhomboids represent the input data and the output of the analysis, re-
spectively. Rectangles describe the performed analytical steps. Arrows show the workflow of the analysis. The dashed line represents the supportive
evidence for the phenogroups. For a detailed explanation see the Methods section.
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We expressed the risk in each phenogroup relative to the overall risk
in the whole study population. The baseline cardiovascular risk fac-
tors considered as covariables in Cox regression were sex, age, body
mass index, smoking, serum cholesterol, antihypertensive treatment,
and diabetes mellitus. We also calculated Cox regression HR for
major cardiovascular events per cluster while adjusting the model for
continuous ASCVD risk. Finally, we assessed the added ability of phe-
nogroups to predict fatal and nonfatal major cardiovascular events,
using the net reclassification improvement (NRI) as described by
Pencina et al.16

Results

Cluster analysis of echocardiographic
features
The 1407 participants (51.1% women) included 611 (43.4%) hyper-
tensive subjects of whom 347 (56.8%) were on antihypertensive drug
treatment. The mean age at baseline was 51.2± 15.7 years. We
determined the correlation among the echocardiographic and
haemodynamic features used for clustering in order to select a fea-
ture subset for subsequent modelling (Supplementary material on-
line, Figure S1A). We removed seven highly correlated features (LA
area change, LA EDV index, LA diastolic and systolic area index, e’/a’,
intraventricular septum thickness, and Pulse pressure; Supplementary
material online, Figure S1C). We also checked the correlation using
MIC (Supplementary material online, Figure S1B). Although MIC is
scaled differently, it shares a strongly overlapping subset of features
with Pearson’s correlation coefficient (Supplementary material on-
line, Figure S1C). We kept the more representative of the correlated
parameters, leaving 23 features for subsequent unsupervised learning
analysis. The network constructed on the preselected echocardio-
graphic features using the weighted correlation network analysis
methods is shown in Supplementary material online, Figure S1D. The
network analysis mainly serves as a visualization of the interconnect-
edness of the echocardiographic parameters and justifies the use of
distribution-based clustering that can capture correlation and de-
pendence between features.

Figure 2 presents a phenogrouping heatmap based on agglomera-
tive hierarchical biclustering. A visual inspection of this heatmap indi-
cated the presence of two or three clusters (Figure 2). According to
the BIC value for every k, the optimal number of clusters was three
as a lower BIC value means a better fit (Figure 3). In addition,
VarSelLCM package was used to demonstrate importance of relevant
features for clustering. For k = 3, all included echocardiographic fea-
tures and systolic blood pressure were considered as relevant except
heart rate. Discriminative power of each of used features is shown in
Figure 4. The fact that heart rate was less discriminative was also vis-
ible in the biclustering heatmap (Figure 2) and, thus, was not consid-
ered in the future cluster analysis.

Model-based clustering produces a mixture with every individual’s
membership assigned to each of the clusters with a certain probabil-
ity. Supplementary material online, Figure S2 shows such probabilistic
assignments of individuals to the clusters. Most individuals (n = 1282;
91%) belonged to a single cluster with a probability of >95%, although
some participants (n = 125) were located between two clusters.

Supplementary material online, Figure S2B shows principal compo-
nent analysis plot of the individuals with two components assigned to
a particular cluster.

Clinical relevance of constructed
phenogroups (clusters)
Table 1 lists the important clinical and echocardiographic characteris-
tics by phenogroups. In addition, radar charts of the echocardio-
graphic features (Figure 5) visualize the profile of these features in the
three phenogroups (clusters) derived from the model-based cluster-
ing approach. Phenogroup 1 had the lowest LV mass, LA maximum
volume, E/e’ ratio, peak A and a’ velocities, and the highest e’ velocity
and LA reservoir strain and emptying fraction (Figure 5). This cluster
included predominantly young and healthy participants with the low-
est rate of hypertension and other risk factors (Table 1). On the other
hand, phenogroup 3 had the highest LV mass, LA maximum volume, E/
e’ ratio, and the lowest e’, s’, and LA reservoir strain. This cluster
comprised mainly of participants with hypertension, diabetes, and
previous cardiac events. For phenogroup 2, average values of echo-
cardiographic indexes used for clustering were in between those of
clusters 1 and 3 (Table 1 and Figure 5).

Outcome analysis
In our population-based cohort, the median follow-up was 8.8 years
(5th to 95th percentile, 4.1–13.2). During 11 947 person-years of fol-
low-up, 104 participants experienced at least one fatal or non-fatal
major cardiovascular endpoint (8.7 events per 1000 person-years).
Supplementary material online, Table S1 lists the cause-specific inci-
dence of cardiovascular mortality and morbidity during follow-up.

We observed a significant increase in the risk for all major cardio-
vascular outcome across phenogroups: from 4 in the first (incidence
rate, 1.2/1000 person-years), 64 in the second (9.6/1000 person-
years), and 36 in the third cluster (15.2/1000 person-years). Figure 6A
demonstrates the Kaplan–Meier cumulative incidence of composite
major cardiovascular events in clusters (log-rank test P < 0.0001) and
the fully adjusted HRs expressing the risk in each cluster compared
with the average risk in the whole cohort. In the third phenogroup,
the risk was significantly higher than the average risk for major cardio-
vascular events (51%, P = 0.0028), whereas in the first phenogroup,
the risk was significantly lower by 56% (P = 0.014) for all cardiovascu-
lar events (Figure 6B). Similar results were obtained when we adjusted
the Cox model for the ASCVD score in 1039 subjects with calculated
scores (Figure 6C).

The category-free NRIs for the addition phenogroups in predicting
major cardiovascular events was 0.39 (95% CI: 0.18–0.57;
P = 0.00016), representing a significant improvement of the ability of
the Cox model including phenogroups to discriminate between sub-
jects with and without adverse events.

Discussion

To facilitate early detection of cardiac maladaptation, we applied un-
supervised clustering analysis utilizing routinely measured echocar-
diographic indexes reflecting left heart structure and function in a
large prospective general population study. In our analysis, we identi-
fied three clusters of participants with similar patterns of left heart
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..phenotypes. Because of the unsupervised nature of clustering, the
validation of the resulting echocardiographic-based cardiac profiling
is a key issue. With this regard, we demonstrated that after full adjust-
ment for important covariables or ASCVD score, participants
belonging to the third cluster had significantly increased risks of major
cardiovascular events as compared to the average risk in the whole
cohort. As quantified by the NRI statistics, including echocardio-
graphic phenogroups to the Cox model improved the discrimination
between subjects with and without adverse events as compared to a
model including conventional cardiovascular risk factors.

Echocardiography plays a central role in the evaluation of heart
function and structure. In addition to conventional and Doppler
echocardiography and along with measurements of LV volumes and
ejection fraction, the speckle tracking technique opens up the possi-
bility of non-invasively evaluating myocardial deformation (strain) of
left atrium and ventricle.17 Studies in patients and populations
explored the independent prognostic role of the echocardiographic
indexes.1–5,18,19 Recently, we demonstrated that a combination of
these echocardiographic criteria was complementary to traditional
risk factors (ASCVD score) to predict outcome in 984 community-

Figure 2 Phenogrouping heatmap showing grouping of individuals based on agglomerative hierarchical biclustering analysis of echocardiographic
and haemodynamic variables. The rows represent individuals, the columns represent features, and the colour indicates z-score of the particular value.
Red indicates increased values; blue indicates decreased values. A, late peak diastolic velocity of mitral blood flow; a’, late peak diastolic myocardial vel-
ocity; E, early peak diastolic velocity of mitral blood flow; e’, early peak diastolic myocardial velocity; ESVi, end-systolic volume index; IVRT, isovolu-
metric relaxation time; LV, left ventricular; LA, left atrial; LA EF, left atrial emptying fraction; LV EF, left ventricular ejection fraction; LS, longitudinal
strain; MV, mitral velocity; RWT, relative wall thickness; s’, peak systolic myocardial velocity.
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dwelling individuals between 40 and 79 years old without a history of
cardiovascular diseases.2 Indeed, the incidence rate of the composite
cardiovascular and cardiac events increased with the increasing num-
ber of LV abnormalities, suggesting that all these features (abnormal
diastolic function parameters, increased LV mass, low LA and ven-
tricular strain, etc.) are useful for risk stratification in the community
if they were analysed in complex.2 Therefore, the comprehensive as-
sessment of cardiac function and structure, in which phenogrouping
plays a major role, would be important for a better stratification in
patients at high cardiovascular risk.

However, current threshold values and available decision tree
algorithms combining the echocardiographic parameters for assess-
ment of, for instance, LV diastolic function are based on expert opin-
ion and observations in symptomatic HF patients and, therefore, are
not always helpful to detect cardiac malfunction especially in individu-
als with early changes in cardiac function but who are at high cardio-
vascular risk.19 Moreover, the complexity of the numerous schemas
used for assessment of LV diastolic function and interactions of the
echocardiographic features as demonstrated in our network analysis
should also be acknowledged. To address this issue of unbiased as-
sessment of cardiac function and structure, we demonstrated that
unsupervised machine learning algorithms integrating routinely meas-
ured cardiac imaging data can provide a clinically meaningful profiling
of cardiac health in asymptomatic individuals at risk. Indeed, in this
study, the participants belonging to the first phenogroup of echocar-
diographic profile were characterized by favourable LV function and
structure characteristics as well as cardiovascular risk function pro-
files (younger subjects, low prevalence of hypertension, obesity, and
diabetes). As expected, the risk of adverse cardiovascular outcomes
was the lowest in this cluster as compared to the average population
risk. On the other hand, cluster 3 included older subjects with un-
favourable echocardiographic profiles (left heart dysfunction and
hypertrophy) and prevalent cardiovascular risk factors who had a
higher risk of adverse cardiovascular events during follow-up. Cluster

2 was intermediate between clusters 1 and 3 with regards to preva-
lence of cardiovascular risk profile and left heart dysfunction and
remodelling as well as incidence of cardiovascular events. Of note,
after full adjustment for important risk factors, the risks of major car-
diovascular events were significantly elevated in participants belong-
ing to echocardiographic phenogroup 3 as compared to the average
population risk after more than 7 years of follow-up.

This study also extends the applications of machine learning
approaches to echocardiographic phenogrouping to a general popu-
lation. Indeed, previously published studies utilized mainly supervised
machine learning techniques that rely on a predefined outcome such
as mortality to learn specific discriminative information that could be
derived from a mixture of clinical as well as echocardiographic fea-
tures.20 This approach is different from the unsupervised method we
applied. In fact, unsupervised methods offer a more exploratory ap-
proach to high-throughput data analysis in which it is not necessary
to predefine patterns of interest (or outcome). Unsupervised analysis
also has the advantage that it is unbiased by prior ‘expert’ knowledge,
such as the arbitrary discretization of diastolic function patterns, into
easily recognizable classes particularly in asymptomatic individuals.

Figure 3 Selection of optimal number of clusters (k) according to
the Bayesian Information Criterion. The values were normalized to
range (0, 1). Lower value means better fit.

Figure 4 Discriminative power of echocardiographic features
and systolic blood pressure used for phenogrouping. Discriminative
power of each of variable is defined as the logarithm of the ratio be-
tween the probability that the variable is relevant for the clustering,
given the best partition, and that the variable is irrelevant for the
clustering. The greater this index, the more the variable distin-
guishes the clusters. Heart rate is marked in red because it was not
selected by VarSelLCM as relevant feature for clustering. A, late
peak diastolic velocity of mitral blood flow; a’, late peak diastolic
myocardial velocity; E, early peak diastolic velocity of mitral blood
flow; e’, early peak diastolic myocardial velocity; ESVi, end-systolic
volume index; IVRT, isovolumetric relaxation time; LV, left ventricu-
lar; LA, left atrial; LA EF, left atrial emptying fraction; LV EF, left ven-
tricular ejection fraction; LS, longitudinal strain; MV, mitral velocity;
RWT, relative wall thickness; s’, peak systolic myocardial velocity.
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Table 1 Clinical characteristics of participants by phenogroups

Characteristics Phenogroup 1

n 5 611

Phenogroup 2

n 5 619

Phenogroup 3

n 5 177

Anthropometrics

Female, n (%) 303 (49.6) 325 (52.5) 91 (51.4)

Age, years 38.3 ± 11.4 59.9 ± 10.2* 65.1 ± 11.3*,**

Body mass index, kg/m2 24.5 ± 3.65 27.9 ± 4.32* 28.2 ± 4.52*

Systolic pressure, mmHg 120.7 ± 11.9 136.2 ± 16.8* 143.4 ± 18.3*,**

Diastolic pressure, mmHg 77.5 ± 8.87 83.6 ± 9.55* 81.3 ± 9.97*,**

Heart rate, b.p.m. 63.6 ± 9.11 64.2 ± 9.16 63.0 ± 10.5

Questionnaire data

Current smoking, n (%) 144 (23.5) 89 (14.4)* 15 (8.5)*

Drinking alcohol, n (%) 277 (45.3) 220 (35.5)* 63 (35.6)*

Hypertensive, n (%) 88 (14.4) 393 (63.5)* 130 (73.5)*

Treated for hypertension, n (%) 29 (4.75) 221 (35.7)* 97 (54.8)*,**

History of cardiac disease, n (%) 3 (0.49) 41 (6.62)* 38 (21.5)*,**

Diabetes, n (%) 2 (0.33) 41 (6.62)* 18 (10.2)*

History of renal disease, n (%) 21 (3.4) 152 (24.6)* 58 (32.8)*,**

History of chronic obstructive

lung disease, n (%)

19 (3.1) 34 (5.5)* 14 (7.9)*

Biochemical data

Serum creatinine, lmol/L 77.6 ± 13.9 81.2 ± 18.3* 81.5 ± 16.4*

Total cholesterol, mmol/L 4.91 ± 0.92 5.28 ± 0.97* 5.10 ± 0.98*,**

ASCVD risk score 3.72 (040–20.9) 15.4 (1.41–42.6)* 24.0 (1.82–55.0)*,**

Echocardiographic indexes

Aorta diameter, cm 2.88 ± 0.36 3.17 ± 0.42* 3.23 ± 0.40*

LV structure

LV internal diameter, cm 5.04 ± 0.44 4.96 ± 0.45* 5.21 ± 0.55*,**

LV wall thickness, cm 0.83 ± 0.11 0.94 ± 0.12* 0.97 ± 0.13*,**

Relative wall thickness 0.34 ± 0.04 0.39 ± 0.06* 0.39 ± 0.06*

LV mass index, g/m2.7 82.6 ± 16.6 93.9 ± 19.4* 108.9 ± 27.5*,**

LV hypertrophy, n (%) 36 (5.89) 153 (24.7)* 83 (46.9)*,**

LV systolic function

LV end-systolic volume index,

mL/m2

21.1 ± 5.20 19.9 ± 4.61* 23.6 ± 10.13*,**

Stroke volume index, mL/m2 33.5 ± 6.79 30.3 ± 6.16* 34.6 ± 10.03**

Ejection fraction, % 61.4 ± 5.42 60.3 ± 5.23* 61.3 ± 9.51

LV longitudinal strain, % 19.5 ± 2.01 19.2 ± 2.21* 18.7 ± 3.05*,**

s’ peak, cm/s 9.62 ± 1.34 8.18 ± 1.26* 7.52 ± 1.55*,**

Left atrium

LA maximal volume index, mL/m2 27.9 ± 6.71 32.0 ± 8.99* 38.7 ± 11.90*,**

LA emptying fraction, % 62.3 ± 6.65 57.7 ± 8.09* 53.1 ± 10.53*,**

LA reservoir strain, % 37.5 ± 8.23 28.1 ± 7.90* 24.4 ± 7.05*,**

LV diastolic velocities and time

E peak, cm/s 79.2 ± 14.6 67.9 ± 15.0* 70.7 ± 19.8*

A peak, cm/s 49.5 ± 10.5 69.9 ± 13.2* 73.8 ± 21.8*,**

E/A ratio 1.67 ± 0.48 0.99 ± 0.23* 1.06 ± 0.47*

e’ peak, cm/s 14.3 ± 2.53 8.86 ± 1.74* 7.42 ± 2.39*

a’ peak, cm/s 8.53 ± 1.91 10.57 ± 1.79* 9.89 ± 2.32*,**

E/e’ ratio 5.59 ± 0.95 7.74 ± 1.39* 10.27 ± 3.94*,**

IVRT, ms 83.6 ± 14.7 95.6 ± 16.7* 95.5 ± 18.3*

Continued
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..For these reasons, unsupervised cluster analysis could be a vital and
easy applicable tool in the evaluation of echocardiograms in high-risk
patients with hypertension, diabetes, obesity, etc. With this regard,
Lancaster et al.21 explored the usefulness of applying unsupervised
clustering in 886 consecutive patients referred for echocardiographic
assessment of cardiac (diastolic) function. By utilizing a very limited

set of the echocardiographic features (n = 4), the authors demon-
strated that unsupervised hierarchical clustering might help to better
characterize diastolic function patterns in this preselected group of
patients.21 On the other hand, to our knowledge, our study is the first
to apply automatic model-based clustering to construct integrative
echocardiography-based profiles of cardiac health in a general

....................................................................................................................................................................................................................

Table 1 Continued

Characteristics Phenogroup 1

n 5 611

Phenogroup 2

n 5 619

Phenogroup 3

n 5 177

Deceleration time, ms 149.0 ± 24.3 174.8 ± 38.7* 183.7 ± 50.5*,**

LV diastolic dysfunction, n (%) 3 (0.49) 146 (23.6)* 103 (58.2)*,**

Values are expressed as mean (±SD) or number of subjects (%). LV hypertrophy was a LV mass index of 52 g/m2.7 in men and 45 g/m2.7 in women or more. A, late peak dia-
stolic velocity of mitral blood flow; a’, late peak diastolic myocardial velocity; ASCVD, atherosclerotic cardiovascular disease; E early peak diastolic velocity of mitral blood flow;
e’, early peak diastolic myocardial velocity; IVRT, isovolumetric relaxation time; LV, left ventricular; LA, left atrial; s’, peak systolic myocardial velocity. Significance for between-
phenogroups differences *P < 0.05 vs. Cluster 1. Significance for between-phenogroups differences **P < 0.05 vs. Cluster 2.

Figure 5 Radar charts of the echocardiographic features and systolic blood pressure illustrate the superposition of these features in each of the
three clusters. The green, orange, and red plot lines compare the cluster standardized values expressed as z-score relative to the population average
(0) across all of the 22 dimensions used as inputs to the clustering process. A, late peak diastolic velocity of mitral blood flow; a’, late peak diastolic
myocardial velocity; E, early peak diastolic velocity of mitral blood flow; e’, early peak diastolic myocardial velocity; ESVi, end-systolic volume index;
IVRT, isovolumetric relaxation time; LV, left ventricular; LA, left atrial; LA EF, left atrial emptying fraction; LV EF, left ventricular ejection fraction; LS,
longitudinal strain; MV, mitral velocity; RWT, relative wall thickness; s’, peak systolic myocardial velocity.
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population and validate the predictive value of these profiles using
the multivariate Cox proportional hazards model and the NRI index.

Despite the overwhelming evidence highlighting the usefulness of
echocardiographic phenotyping for cardiovascular risk stratification
in a subclinical setting, current guidelines do not support the use of
echocardiography for basic screening in primary prevention of car-
diovascular diseases.22,23 Main reason for this is the lack of clear se-
lective screening strategies to identify individuals at risk who would
benefit most from in-depth cardiac phenotyping. Recently, we built
machine learning classifiers combining routinely measured clinical and
laboratory data and ECG which have shown high accuracy for LV

diastolic dysfunction and hypertrophy prediction in a population-
based cohort.24 These machine learning classifiers might be used in
clinical practice as a screening tool to preselect subjects for cardiac
phenomapping and, therefore, tailored risk factors management.24

However, both recently developed machine learning applications re-
quire further validation in external population cohorts and integra-
tion in software for research and clinical use. On the other hand,
other imaging modalities such as cardiac magnetic resonance charac-
terizing cardiac structure and function might be also used for patient
phenogrouping, although more research needs to be done regarding
the clinical relevance and cost-effectiveness of this approach particu-
larly in the primary care settings.

Limitations
Our study has to be interpreted within the context of its potential
limitations and strengths. First, echocardiographic measurements are
prone to error. In this study, one experienced observer recorded all
echocardiographic images using a highly standardized imaging proto-
col. All digitally stored images were centrally post-processed by a sin-
gle observer. Second, our phenogroups were derived from a
particular community-based cohort from Belgium. We might im-
prove the generalizability of our phenogroups by further validation of
this computer algorithm in other cohorts for precise and fast cardiac
health profiling. Third, we included in our analysis 82 (5.8%) partici-
pants with a previous history of cardiac diseases. However, we
applied adjustment for previous cardiac disease. Moreover, in a sensi-
tivity analysis, after exclusion participants with previous cardiac dis-
eases, our findings remained consistent (Supplementary material
online, Figure S3).

Conclusions

In conclusion, unsupervised learning algorithms integrating routinely
measured cardiac imaging and haemodynamic data can provide a clin-
ically meaningful classification of cardiac health in asymptomatic indi-
viduals. Using these phenogroups, we might facilitate early detection
of cardiac dysfunction/remodelling and improve risk stratification.
Indeed, as we demonstrated in this study, our clustering model can
triage high-risk individuals in the primary care settings in addition to
commonly used ASCVD risk scores. This would create opportunities
to intervene early in the course of heart maladaptation and prevent
progression to more advanced stages and adverse events.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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Figure 6 Risk for major cardiovascular events by phenogroup.
(A) Incidence of adverse events are shown by clusters. P log rank
was <0.0001 for both plots. (B) Cox regression hazard ratios (95%
confidence interval) The hazard ratios express the risks in each clus-
ter compared with the average risk in the whole cohort. In the
upper panel, the model was adjusted for the following the covari-
ables: sex, age, body mass index, serum cholesterol, current smok-
ing, antihypertensive drug treatment, and diabetes mellitus. In the
bottom panel, the model was adjusted for ASCVD risk score.
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.Data availability
The data that support the findings of this study are available on rea-
sonable request from the corresponding author (T.K.). The datasets
are not publicly available as they contain information that could com-
promise the privacy of the research participants. A Jupyter notebook
with Python code producing the clustering results is available at the
following link: https://github.com/HCVE/echo-clustering.
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