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Abstract

Target selection is the first and pivotal step in drug discovery. An incorrect choice may not

manifest itself for many years after hundreds of millions of research dollars have been

spent. We collected a set of 332 targets that succeeded or failed in phase III clinical trials,

and explored whether Omic features describing the target genes could predict clinical suc-

cess. We obtained features from the recently published comprehensive resource: Harmoni-

zome. Nineteen features appeared to be significantly correlated with phase III clinical trial

outcomes, but only 4 passed validation schemes that used bootstrapping or modified per-

mutation tests to assess feature robustness and generalizability while accounting for target

class selection bias. We also used classifiers to perform multivariate feature selection and

found that classifiers with a single feature performed as well in cross-validation as classifiers

with more features (AUROC = 0.57 and AUPR = 0.81). The two predominantly selected fea-

tures were mean mRNA expression across tissues and standard deviation of expression

across tissues, where successful targets tended to have lower mean expression and higher

expression variance than failed targets. This finding supports the conventional wisdom that

it is favorable for a target to be present in the tissue(s) affected by a disease and absent

from other tissues. Overall, our results suggest that it is feasible to construct a model inte-

grating interpretable target features to inform target selection. We anticipate deeper insights

and better models in the future, as researchers can reuse the data we have provided to

improve methods for handling sample biases and learn more informative features. Code,

documentation, and data for this study have been deposited on GitHub at https://github.

com/arouillard/omic-features-successful-targets.

Author summary

Drug discovery often begins with a hypothesis that changing the abundance or activity of a

target—a biological molecule, usually a protein—will cure a disease or ameliorate its symp-

toms. Whether a target hypothesis translates into a successful therapy depends in part on the
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characteristics of the target, but it is not completely understood which target characteristics

are important for success. We sought to answer this question with a supervised machine

learning approach. We obtained outcomes of target hypotheses tested in clinical trials, scor-

ing targets as successful or failed, and then obtained thousands of features (i.e. properties or

characteristics) of targets from dozens of biological datasets. We statistically tested which fea-

tures differed between successful and failed targets, and built a computational model that

used these features to predict success or failure of targets in clinical trials. We found that suc-

cessful targets tended to have more variable mRNA abundance from tissue to tissue and

lower average abundance across tissues than failed targets. Thus, it is probably favorable for a

target to be present in the tissue(s) affected by a disease and absent from other tissues. Our

work demonstrates the feasibility of predicting clinical trial outcomes from target features.

Introduction

More than half of drug candidates that advance beyond phase I clinical trials fail due to lack of effi-

cacy [1, 2]. One possible explanation for these failures is sub-optimal target selection [3]. Many fac-

tors must be considered when selecting a target for drug discovery [4, 5]. Intrinsic factors include

the likelihood of the target to be tractable (can the target’s activity be altered by a compound, anti-

body, or other drug modality?), safe (will altering the target’s activity cause serious adverse events?),

and efficacious (will altering the target’s activity provide significant benefit to patients?). Extrinsic

factors include the availability of investigational reagents and disease models for preclinical target

validation, whether biomarkers are known for measuring target engagement or therapeutic effect,

the duration and complexity of clinical trials required to prove safety and efficacy, and the unmet

need of patients with diseases that might be treated by modulating the target.

Over the past decade, technologies have matured enabling high-throughput genome-, tran-

scriptome-, and proteome-wide profiling of cells and tissues in normal, disease, and experi-

mentally perturbed states. In parallel, researchers have made substantial progress curating or

text-mining biomedical literature to extract and organize information about genes and pro-

teins, such as molecular functions and signaling pathways, into structured datasets. Taken

together, both efforts have given rise to a vast amount of primary, curated, and text-mined

data about genes and proteins, which are stored in online repositories and amenable to

computational analysis [6, 7].

To improve the success rate of drug discovery projects, researchers have investigated

whether any features of genes or proteins are useful for target selection. These computational

studies can be categorized according to whether the researchers were trying to predict tracta-

bility [8, 9], safety [10–13], efficacy (no publications to our knowledge), or overall success

(alternatively termed “drug target likeness”) [8, 13–26]. Closely related efforts include disease

gene prediction, where the goal is to predict genes mechanistically involved in a given disease

[27–32], and disease target prediction, where the goal is to predict genes that would make suc-

cessful drug targets for a given disease [33–35].

To our knowledge, we report the first screen for features of genes or proteins that distin-

guish targets of approved drugs from targets of drug candidates that failed in clinical trials. In

contrast, related prior studies have searched for features that distinguish targets of approved

drugs from the rest of the genome (or a representative subset) [13, 15–25]. Using the remain-

der of the genome for comparison has been useful for finding features enriched among suc-

cessful targets, but it is uncertain whether these features are specific to successful targets or are

enriched among targets of failed drug candidates as well. Our study aims to fill this knowledge
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gap by directly testing for features that separate targets by clinical outcome, expanding the

scope of prior studies that have investigated how genetic disease associations [36] and publica-

tion trends [37] of targets correlate with clinical outcome.

Our work has five additional innovative characteristics. First, we included only targets of drugs

that are presumed to be selective (no documented polypharmacology) to reduce ambiguity in

assigning clinical trial outcomes to targets. Second, we included only phase III failures to enrich

for target efficacy failures, as opposed to safety and target engagement failures, which are more

common in phase I and phase II [2]. Third, we excluded targets of assets only indicated for cancer,

as studies have observed that features of successful targets for cancer differ from features of suc-

cessful targets for other indications [22, 23], moreover, cancer trials fail more frequently than trials

for other indications [2]. Fourth, we interrogated a diverse and comprehensive set of features,

over 150,000 features from 67 datasets covering 16 feature types, whereas prior studies have exam-

ined only features derived from protein sequence [16–18, 24, 25], protein-protein interactions

[13, 15, 18–23], Gene Ontology terms [13, 15, 16], and gene expression profiles [15, 19, 21, 25].

Fifth, because targets of drugs and drug candidates do not constitute a random sample of the

genome, we implemented a suite of tests to assess the robustness and generalizability of features

identified as significantly separating successes from failures in the biased sample.

A handful of the initial 150,000+ features passed our tests for robustness and generalizabil-

ity to new targets or target classes. Interestingly, these features were predominantly derived

from gene expression datasets. Notably, two significant features were discovered repeatedly in
multiple datasets: successful targets tended to have lower mean mRNA expression across tissues
and higher expression variance than failed targets. We also trained a classifier to predict phase

III success probabilities for untested targets (no phase III clinical trial outcomes reported for

drug candidates that selectively modulate these targets). We identified 943 targets with suffi-

ciently unfavorable expression characteristics to be predicted twice as likely to fail in phase III

clinical trials as past phase III targets. Furthermore, we identified 2,700,856 target pairs pre-

dicted with 99% consistency to have a 2-fold difference in success probability. Such pairwise

comparisons may be useful for prioritizing short lists of targets under consideration for a ther-

apeutic program. We conclude this paper with a discussion of the biases and limitations faced

when attempting to analyze, model, or interpret data on clinical trial outcomes.

Results

Examples of successful and failed targets obtained from phase III clinical

trial reports

We extracted phase III clinical trial outcomes reported in Pharmaprojects [38] for drug candi-

dates reported to be selective (single documented target) and tested as treatments for non-can-

cer diseases. We grouped the outcomes by target, scored targets with at least one approved

drug as successful (NS = 259), and scored targets with no approved drugs and at least one doc-

umented phase III failure as failed (NF = 72) (S1 Table). The target success rate (77%) appears

to be inflated relative to typically reported phase III success rates (58%) [2] because we scored

targets by their best outcome across multiple trials.

Comprehensive and diverse collection of target features obtained from the

Harmonizome

We obtained target features from the Harmonizome [39], a recently published collection of

features of genes and proteins extracted from over 100 Omics datasets. We limited our analysis

to 67 datasets that are in the public domain or GSK had independently licensed (Table 1).
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Table 1. Datasets tested for features significantly separating successful targets from failed targets.

Dataset Feature Type Total

Genes

Covered

Samples

Total

Features

Covered

Features

Reduced

Features

Roadmap Epigenomics Cell and Tissue DNA

Methylation Profiles

cell or tissue DNA methylation 13835 227 26 26 4

Allen Brain Atlas Adult Human Brain Tissue Gene

Expression Profiles

cell or tissue expression 17979 287 416 416 2

Allen Brain Atlas Adult Mouse Brain Tissue Gene

Expression Profiles

cell or tissue expression 14248 287 2234 2234 2

BioGPS Human Cell Type and Tissue Gene

Expression Profiles

cell or tissue expression 16383 320 86 86 2

BioGPS Mouse Cell Type and Tissue Gene

Expression Profiles

cell or tissue expression 15443 313 76 76 2

GTEx Tissue Gene Expression Profiles cell or tissue expression 26005 328 31 31 2

GTEx Tissue Sample Gene Expression Profiles cell or tissue expression 19250 301 2920 2920 2

HPA Cell Line Gene Expression Profiles cell or tissue expression 15868 259 45 45 1

HPA Tissue Gene Expression Profiles cell or tissue expression 17496 314 33 33 2

HPA Tissue Protein Expression Profiles cell or tissue expression 15788 266 46 46 11

HPA Tissue Sample Gene Expression Profiles cell or tissue expression 16742 300 123 123 2

HPM Cell Type and Tissue Protein Expression

Profiles

cell or tissue expression 7274 94 6 6 2

ProteomicsDB Cell Type and Tissue Protein

Expression Profiles

cell or tissue expression 2776 28 55 55 5

Roadmap Epigenomics Cell and Tissue Gene

Expression Profiles

cell or tissue expression 12824 164 59 59 6

TISSUES Curated Tissue Protein Expression

Evidence Scores

cell or tissue expression 16216 317 645 245 106

TISSUES Experimental Tissue Protein Expression

Evidence Scores

cell or tissue expression 17922 316 245 244 44

TISSUES Text-mining Tissue Protein Expression

Evidence Scores

cell or tissue expression 16184 330 4189 2974 2118

ENCODE Histone Modification Site Profiles cell or tissue histone modification

sites

22382 330 437 432 91

Roadmap Epigenomics Histone Modification Site

Profiles

cell or tissue histone modification

sites

21032 313 385 295 282

ENCODE Transcription Factor Binding Site

Profiles

cell or tissue transcription factor

binding sites

22845 330 1681 1591 723

JASPAR Predicted Transcription Factor Targets cell or tissue transcription factor

binding sites

21547 330 113 80 77

COMPARTMENTS Curated Protein Localization

Evidence Scores

cellular compartment associations 16738 330 1465 228 105

COMPARTMENTS Experimental Protein

Localization Evidence Scores

cellular compartment associations 6495 73 61 37 10

COMPARTMENTS Text-mining Protein

Localization Evidence Scores

cellular compartment associations 14375 330 2083 877 545

GO Cellular Component Annotations cellular compartment associations 16757 328 1549 208 124

LOCATE Curated Protein Localization

Annotations

cellular compartment associations 9639 269 80 50 20

LOCATE Predicted Protein Localization

Annotations

cellular compartment associations 19747 325 26 23 10

CTD Gene-Chemical Interactions chemical interactions 11125 321 9518 2222 2042

Guide to Pharmacology Chemical Ligands of

Receptors

chemical interactions 899 209 4896 189 52

Kinativ Kinase Inhibitor Bioactivity Profiles chemical interactions 232 9 28 28 25

(Continued)
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Table 1. (Continued)

Dataset Feature Type Total

Genes

Covered

Samples

Total

Features

Covered

Features

Reduced

Features

KinomeScan Kinase Inhibitor Targets chemical interactions 287 10 75 75 72

CMAP Signatures of Differentially Expressed

Genes for Small Molecules

chemical perturbation differentially

expressed genes

12148 300 6102 5066 5065

ClinVar SNP-Phenotype Associations disease or phenotype associations 2458 143 3293 3 2

CTD Gene-Disease Associations disease or phenotype associations 21582 331 6327 2926 2116

dbGAP Gene-Trait Associations disease or phenotype associations 5668 147 512 51 49

DISEASES Curated Gene-Disease Assocation

Evidence Scores

disease or phenotype associations 2252 115 772 94 49

DISEASES Experimental Gene-Disease Assocation

Evidence Scores

disease or phenotype associations 4055 131 352 106 43

DISEASES Text-mining Gene-Disease Assocation

Evidence Scores

disease or phenotype associations 15309 330 4630 2559 1850

GAD Gene-Disease Associations disease or phenotype associations 10705 318 12780 1189 980

GAD High Level Gene-Disease Associations disease or phenotype associations 8016 314 20 19 16

GWAS Catalog Gene-Disease Associations disease or phenotype associations 4356 127 1009 30 28

GWASdb SNP-Disease Associations disease or phenotype associations 11805 253 587 252 126

GWASdb SNP-Phenotype Associations disease or phenotype associations 12488 261 824 397 150

HPO Gene-Disease Associations disease or phenotype associations 3158 171 6844 1187 667

HuGE Navigator Gene-Phenotype Associations disease or phenotype associations 12055 322 2755 1241 1153

MPO Gene-Phenotype Associations disease or phenotype associations 7798 299 8581 2434 1444

OMIM Gene-Disease Associations disease or phenotype associations 4553 209 6177 5 4

GeneSigDB Published Gene Signatures gene signatures or modules 19723 331 3517 1363 1313

MSigDB Cancer Gene Co-expression Modules gene signatures or modules 4869 135 358 135 95

MiRTarBase microRNA Targets microRNA targets 12086 218 598 93 91

TargetScan Predicted Conserved microRNA

Targets

microRNA targets 14923 283 1539 1020 791

TargetScan Predicted Nonconserved microRNA

Targets

microRNA targets 18210 324 1541 1534 1236

GO Biological Process Annotations pathway, function, or process

associations

15717 328 13214 2436 1215

GO Molecular Function Annotations pathway, function, or process

associations

15777 327 4164 367 204

HumanCyc Pathways pathway, function, or process

associations

932 41 288 11 8

KEGG Pathways pathway, function, or process

associations

7016 298 303 185 179

PANTHER Pathways pathway, function, or process

associations

1962 138 147 40 39

Reactome Pathways pathway, function, or process

associations

9005 309 1814 289 159

Wikipathways Pathways pathway, function, or process

associations

4958 263 301 140 137

DEPOD Substrates of Phosphatases phosphatase interactions 293 19 114 13 9

NURSA Protein Complexes protein complex associations 9785 141 1798 1182 1181

InterPro Predicted Protein Domain Annotations protein domain associations 18002 329 11017 119 63

BioGRID Protein-Protein Interactions protein interactions 15270 306 15272 1191 1163

DIP Protein-Protein Interactions protein interactions 2709 140 2711 32 24

Guide to Pharmacology Protein Ligands of

Receptors

protein interactions 187 46 213 5 4

IntAct Biomolecular Interactions protein interactions 12303 269 12305 422 417

(Continued)
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Each dataset in the Harmonizome is organized into a matrix with genes labeling the rows and

features such as diseases, phenotypes, tissues, and pathways labeling the columns. We included

the mean and standard deviation calculated along the rows of each dataset as additional target

features. These summary statistics provide potentially useful and interpretable information

about targets, such as how many pathway associations a target has or how variable a target’s

expression is across tissues.

The datasets contained a total of 174,228 features covering 16 feature types (Table 1). We

restricted our analysis to 44,092 features that had at least three non-zero values for targets

assigned a phase III outcome. Many datasets had strong correlations among their features. To

reduce feature redundancy and avoid excessive multiple hypothesis testing while maintaining

interpretability of features, we replaced each group of highly correlated features with the group

mean feature and assigned it a representative label (Fig 1, S2 Table). The number of features

shrunk to 28,562 after reducing redundancy.

Target features tested for correlation with phase III outcome

We performed permutation tests [40, 41] on the remaining 28,562 target features to find fea-

tures with a significant difference between the successful and failed targets, and we corrected

p-values for multiple hypothesis testing using the Benjamini-Yekutieli method [42] (Fig 1, S2

Table). We used permutation testing to apply the same significance testing method to all fea-

tures, since they had heterogeneous data distributions. We detected 19 features correlated with

clinical outcome at a within-dataset false discovery rate of 0.05 (Table 2). The significant fea-

tures were derived from 7 datasets, of which 6 datasets were gene expression atlases: Allen

Brain Atlas adult human brain tissues [43, 44], Allen Brain Atlas adult mouse brain tissues [43,

45], BioGPS human cell types and tissues [46–48], BioGPS mouse cell types and tissues [46–

48], Genotype-Tissue Expression Project (GTEx) human tissues [49, 50], and Human Protein

Atlas (HPA) human tissues [51]. The remaining dataset, TISSUES [52], was an integration of

experimental gene and protein tissue expression evidence from multiple sources. Two correla-

tions were significant in multiple datasets: successful targets tended to have lower mean

expression across tissues and higher expression variance than failed targets.

Significant features tested for robustness to sample variation and

generalization across target classes

Because targets of drugs and drug candidates do not constitute a random sample of the

genome, features that separate successful targets from failed targets in our sample may perform

poorly as genome-wide predictors of success versus failure. We performed three analyses to

address this issue (Fig 1).

Robustness to sample variation. We used bootstrapping [53, 54] (sampling with replace-

ment from the original set of examples to construct sets of examples equal in size to the origi-

nal set) to investigate how robust our significance findings were to variation in the success and

failure examples. For each dataset that yielded significant features in our primary analysis, we

repeated the analysis on 1000 bootstrap samples and quantified the replication probability [55]

Table 1. (Continued)

Dataset Feature Type Total

Genes

Covered

Samples

Total

Features

Covered

Features

Reduced

Features

GTEx eQTL SNP eQTL targets 7898 107 7817 2 1

TOTALS NA NA NA 174228 44092 28562

https://doi.org/10.1371/journal.pcbi.1006142.t001
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of each feature as the fraction of bootstraps yielding a significant correlation with phase III

outcome at a within-dataset false discovery rate of 0.05. Twelve features had less than 80%

probability (considered a strong replication probability in [55]) that their correlation with clin-

ical outcome will generalize to new examples (Table 2).

Robustness to target class variation. We tested if any of the significance findings

depended upon the presence of targets from a single target class in our sample. We obtained

target class labels (i.e. gene family labels) from the HUGO Gene Nomenclature Committee

[56], tested if any target classes were significantly correlated with phase III outcome, and then

tested if these classes were correlated with any features. The GPCR and integrin classes were

correlated with phase III outcome as well as several features (Table 2). This raised the possibil-

ity that instead of these features being genome-wide indicators of clinical outcome, they were

simply reflecting the fact that many GPCRs have succeeded (62/70, p<0.05) or that integrins

have failed (3/3, p<0.01). To test this possibility, we repeated the bootstrapping procedure

Fig 1. Feature selection pipeline. Each dataset took the form of a matrix with genes labeling the rows and features labeling the columns. We appended the mean and

standard deviation computed across all features as two additional features. Step 1: We filtered the columns to eliminate redundant features, replacing each group of

correlated features with the group average feature, where a group was defined as features with squared pair-wise correlation coefficient r2� 0.5. If the dataset mean feature

was included in a group of correlated features, we replaced the group with the dataset mean. Step 2: We filtered the rows for targets with clinical trial outcomes of interest:

targets of selective drugs approved for non-cancer indications (successes) and targets of selective drug candidates that failed in phase III clinical trials for non-cancer

indications (failures). Step 3: We tested the significance of each feature as an indicator of success or failure using permutation tests to quantify the significance of the

difference between the means of the successful and failed targets. We corrected for multiple hypothesis testing using the Benjamini-Yekutieli method to control the false

discovery rate at 0.05 within each dataset. Step 4: We “stressed” the significant features with additional tests to assess their robustness and generalizability. For example, we

used bootstrapping to estimate probabilities that the significance findings will replicate on similar sets of targets.

https://doi.org/10.1371/journal.pcbi.1006142.g001
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described above to obtain replication probabilities, except excluded GPCRs and integrins from

being drawn in the bootstrap samples. Six features had less than 80% probability that their cor-

relation with clinical outcome will generalize to new target classes (Table 2).

Generalization across target classes. In the preceding analysis, we checked one target

class at a time for its impact on our significance findings. To broadly test whether features gen-

eralize across target classes, we repeated the permutation testing described in our initial analy-

sis, but only shuffled the success/failure labels within target classes, inspired by the work of

Epstein et al. [57] on correcting for confounders in permutation testing. By generating a null

distribution with preserved ratio of successes to failures within each target class, features must

correlate with clinical outcome within multiple classes to be significant, while features that dis-

criminate between classes will not be significant. We repeated the modified permutation tests

Table 2. Features significantly correlated with phase III outcome.

Dataset Feature Corr

Pval

Correl-

ation Sign

Correlated Target

Classes (and sign)

Repl Prob

(Bootstrap)

Repl Prob (Class

Holdout Bootstrap)

Repl Prob (Within Class

Permutation Bootstrap)

BioGPS Human Cell Type and Tissue

Gene Expression Profiles

[mean] 0.001 -1 GPCRs (-1) 0.89 0.98 0.83

BioGPS Human Cell Type and Tissue

Gene Expression Profiles

stdv 0.010 -1 GPCRs (-1), Integrins

(+1)

0.69 0.56 0.32

BioGPS Mouse Cell Type and Tissue

Gene Expression Profiles

[mean] 0.042 -1 GPCRs (-1) 0.55 0.71 0.56

Allen Brain Atlas Adult Human Brain

Tissue Gene Expression Profiles

[mean] 0.006 -1 GPCRs (-1) 0.78 0.80 0.78

Allen Brain Atlas Adult Mouse Brain

Tissue Gene Expression Profiles

r3 roof plate 0.002 -1 None 0.88 1.00 0.89

Allen Brain Atlas Adult Mouse Brain

Tissue Gene Expression Profiles

[mean] 0.007 -1 None 0.76 1.00 0.79

GTEx Tissue Gene Expression Profiles [mean] 0.014 -1 GPCRs (-1) 0.65 0.60 0.76

GTEx Tissue Gene Expression Profiles stdv 0.014 +1 GPCRs (+1) 0.69 0.94 0.76

HPA Tissue Gene Expression Profiles [mean] 0.004 -1 GPCRs (-1) 0.80 0.90 0.85

HPA Tissue Gene Expression Profiles stdv 0.004 +1 None 0.81 1.00 0.81

TISSUES Experimental Tissue Protein

Expression Evidence Scores

bone marrow 0.001 -1 GPCRs (-1) 0.92 0.96 0.66

TISSUES Experimental Tissue Protein

Expression Evidence Scores

[hematopoietic cells] 0.001 -1 GPCRs (-1), Integrins

(+1)

0.93 1.00 0.72

TISSUES Experimental Tissue Protein

Expression Evidence Scores

[mean] 0.001 -1 GPCRs (-1) 0.85 0.99 0.76

TISSUES Experimental Tissue Protein

Expression Evidence Scores

[epithalamus and

pineal gland]

0.012 -1 None 0.73 0.97 0.49

TISSUES Experimental Tissue Protein

Expression Evidence Scores

erythroid cell 0.015 -1 None 0.68 0.94 0.45

TISSUES Experimental Tissue Protein

Expression Evidence Scores

[t-lymphocyte] 0.017 -1 None 0.65 0.95 0.65

TISSUES Experimental Tissue Protein

Expression Evidence Scores

[miscellaneous

tissues]

0.017 -1 GPCRs (-1) 0.64 0.64 0.63

TISSUES Experimental Tissue Protein

Expression Evidence Scores

[thymus and thorax] 0.017 -1 Integrins (+1) 0.60 0.37 0.44

TISSUES Experimental Tissue Protein

Expression Evidence Scores

adrenal cortex 0.043 -1 None 0.44 0.62 0.45

Footnotes

Abbreviations: Corr Pval = p-value corrected for multiple hypothesis testing, Repl Prob = replication probability.

[Square brackets] denote groups of features.

[miscellaneous tissues] is a heterogeneous group of digestive, respiratory, urogenital, reproductive, nervous, cardiovascular, and hematopoietic system tissues.

White background indicates features that passed all tests for robustness and generalizability.

Gray background indicates features that failed at least one test for robustness or generalizability. Strikethrough italics indicates the failed test(s).

https://doi.org/10.1371/journal.pcbi.1006142.t002
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on 1000 bootstrap samples to obtain replication probabilities. We rejected fifteen features that

had less than 80% probability that their correlation with clinical outcome generalizes across

target classes (Table 2). This set of fifteen features included all features with less than 80% repli-

cation probability in either of the previous two tests. The remaining robust and generalizable

features were: 1) mean mRNA expression across tissues (HPA and BioGPS human tissue

expression datasets), 2) standard deviation of expression across tissues (HPA human tissue

expression dataset), and 3) expression in r3 roof plate (Allen Brain Atlas adult mouse brain tis-

sue expression dataset). The r3 roof plate expression profile was correlated with mean expres-

sion across tissues in the Allen Brain Atlas dataset (r2 = 0.47), falling just below the r2 = 0.5

cut-off that would have grouped r3 roof plate with the mean expression profile during

dimensionality reduction.

Classifier-based assessment of feature usefulness and interpretability

Statistical significance did not guarantee the remaining features would be useful in practice for

discriminating between successes and failures. To test their utility, we trained a classifier to

predict target success or failure, using cross-validation to select a model type (Random Forest

or logistic regression) and a subset of features useful for prediction. Because we used all targets

with phase III outcomes for the feature selection procedure described above, simply using the

final set of features to train a classifier on the same data would yield overly optimistic perfor-

mance, even with cross-validation. Therefore, we implemented a nested cross-validation rou-

tine to perform both feature selection and model selection [58].

Cross-validation routine. The outer loop of the cross-validation routine had five steps

(Fig 2): 1) separation of targets with phase III outcomes into training and testing sets, 2) uni-

variate feature selection using the training set, 3) aggregation of features from different datasets

into a single feature matrix, 4) classifier-based feature selection and model selection using the

training set, and 5) evaluation of the classifier on the test set. Step 4 used an inner loop with

5-fold cross-validation repeated 20 times to estimate the performance of different classifier

types (Random Forest or logistic regression) and feature subsets (created by incremental fea-

ture elimination). The simplest classifier (least number of features, with logistic regression

considered simpler than Random Forest) with cross-validation values for area under the

receiver operating characteristic curve (AUROC) and area under the precision-recall curve

(AUPR) within 95% of maximum was selected. The outer loop used 5-fold cross-validation

repeated 200 times, which provided 1000 train-test cycles for estimating the generalization per-

formance of the classifier and characterizing the consistency of the selected features and model

type.

Classifier consistency. Simple models were consistently selected for the classifier

(Table 3, S3 Table). In 1000 train-test cycles, a logistic regression model with one feature was

selected most the time (66%), followed in frequency by a logistic regression model with two

features (8%), a Random Forest model with two features (8%), and a logistic regression model

with three features (6%). Other combinations of model type (logistic regression or Random

Forest) and number of features (ranging from 1 to 8) appeared 11% of the time (each 4% or

less). For one of the train-test cycles (0.1%), no significant features were found in the univari-

ate feature selection step, resulting in a null model. Note that the logistic regression models

were selected primarily because we imposed a preference for simple and interpretable models,

not because they performed better than Random Forest models. The Random Forest model

tended to perform as well as the logistic regression model on the inner cross-validation loop,

with AUROC = 0.62 ± 0.06 for Random Forest and 0.63 ± 0.05 for logistic regression (S4

Table).
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Gene expression features were consistently selected for the classifier (Table 4, S3 Table).

Mean mRNA expression across tissues and standard deviation of expression across tissues had

frequencies of 69% and 59%, respectively. More precisely, 36% of the models used mean

mRNA expression across tissues as the only feature, 31% used standard deviation of expression

as the only feature, and 12% used mean and standard deviation as the only two features. Other

expression features appeared in 21% of the models. These expression features tended to be

Fig 2. Modeling pipeline. We trained a classifier to predict phase III clinical trial outcomes, using 5-fold cross-validation repeated 200 times to assess the stability of the

classifier and estimate its generalization performance. For each fold of cross-validation, modeling began with the non-redundant features for each dataset. Step 1: We split

the targets with phase III outcomes into training and testing sets. Step 2: We performed univariate feature selection using permutation tests to quantify the significance of

the difference between the means of the successful and failed targets in the training examples. We controlled for target class as a confounding factor by only shuffling

outcomes within target classes. We accepted features with adjusted p-values less than 0.05 after correcting for multiple hypothesis testing using the Benjamini-Yekutieli

method. Step 3: We aggregated significant features from all datasets into a single feature matrix. Step 4: We performed incremental feature elimination with an inner

5-fold cross-validation loop repeated 20 times to select the type of classifier (Random Forest or logistic regression) and smallest subset of features that had cross-validation

area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPR) values within 95% of maximum. Step 5: We refit the

selected model using all the training examples and evaluated its performance on the test examples.

https://doi.org/10.1371/journal.pcbi.1006142.g002

Table 3. Distribution of train-test cycles by classifier type and number of selected features.

Selected Model Type

Logistic Regression Random Forest Total

Selected Features 1 662 5 667

2 82 84 166

3 57 41 98

4 22 2 24

5 24 1 25

6 11 0 11

7 6 0 6

8 2 0 2

Total 866 133 999�

Footnotes

� 1 train-test cycle yielded no significant features for modeling

https://doi.org/10.1371/journal.pcbi.1006142.t003
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correlated with mean expression across tissues (median r2 = 0.49). Disease association features

appeared in 0.4% of the models.

Classifier performance. The classifier consistently had better than random performance

in cross-validation (Fig 3, Table 5, S5 Table). The 2.5th, 50th, and 97.5th percentiles for AUROC

were 0.51, 0.57, and 0.61. For comparison, a random ordering of targets would yield an

AUROC of 0.50. The receiver operating characteristic curve showed that there was no single

cut-off that would provide satisfactory discrimination between successes and failures (Fig 3A).

For an alternative view, we used kernel density estimation [59] to fit distributions of the proba-

bility of success predicted by the classifier for the successful, failed, and unlabeled targets (Fig

3B, S1 Table). The distributions for successes and failures largely overlapped, except in the

tails.

We attempted to identify subsets of targets with high positive predictive value (PPV) or

high negative predictive value (NPV). The median PPV rose as high as 0.99, but uncertainty in

the PPV was so large that we could not be confident in identifying any subset of targets with a

predicted success rate better than the historical 0.77 (Fig 3C). The median NPV rose to 0.40,

roughly twice the historical failure rate of 0.23. Furthermore, at 0.40 median NPV, 99% of the

cross-validation repetitions had an NPV greater than the historical failure rate (Fig 3D). Using

this cut-off, we identified 943 unlabeled targets expected to be twice as likely to fail in phase III

clinical trials as past phase III targets.

We reasoned that a more practical use of the classifier would be to make pair-wise compari-

sons among a short list of targets already under consideration for a therapeutic program. To

assess the utility of the classifier for this purpose, for every pair of targets TA and TB, we com-

puted the fraction of cross-validation runs in which the classifier predicted greater probability

of success for TB than TA. We identified 67,270,678 target pairs (39%) with at least a 0.1 differ-

ence in median success probability where the classifier was 95% consistent in predicting

greater probability of success for TB than TA. The classifier was 99% consistent for 41528043

target pairs (24%). Requiring at least a 2-fold difference in median success probability between

TB and TA reduced these counts to 2,730,437 target pairs (1.6%) at 95% consistency and

2,700,856 target pairs (1.6%) at 99% consistency. We visualized these results by plotting the

95% and 99% consistency fraction thresholds smoothly interpolated as a function of the

median predicted probabilities of success of TA and TB (Fig 3E). For a median probability of

success of TA around 0.2, TB must have a median probability of success of 0.5 or greater at the

99% threshold. For lower TA success probabilities, the TB success probability must be even

higher because there is greater uncertainty about the low TA probabilities. For higher TA suc-

cess probabilities, the TB success probability at the 99% threshold increases steadily until a TA

success probability of about 0.6, where the TB success probability reaches 1. For TA success

probabilities above 0.6, no targets are predicted to have greater probability of success with 99%

consistency.

Table 4. Number of train-test cycles in which feature was selected for the classifier.

Feature Type Feature Count

cell or tissue expression mean across tissues 685

cell or tissue expression standard deviation across tissues 585

cell or tissue expression other 214

disease or phenotype associations mean across diseases 2

disease or phenotype associations other 2

pathway, function, or process associations any 1

https://doi.org/10.1371/journal.pcbi.1006142.t004
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Fig 3. Classifier performance. (A) Receiver operating characteristic (ROC) curve. The solid black line indicates the median performance across 200 repetitions of 5-fold

cross-validation and the gray area indicates the range of the 2.5 and 97.5 percentiles. The dotted black line indicates the performance of random rankings. (B)

Distributions of the probability of success predicted by the classifier for the successful, failed, and unlabeled targets. (C) Precision-recall curve for success predictions. (D)

Precision-recall curve for failure predictions. (E) Pairwise target comparisons. For each pair of targets, we computed the fraction of repetitions of cross-validation in which

Target B had a higher predicted probability of success greater than Target A. The heatmap illustrates this fraction, thresholded at 0.95 or 0.99, plotted as a function of the

median predicted probabilities of success of two targets. The upper left region is where the classifier is 95% (above solid black line) or 99% (above dotted blue line)

consistent in predicting greater probability of success of Target B than Target A. (F) Relationship between features and phase III outcomes. Heat map showing the

projection of the predicted success probabilities onto the two dominant features selected for the classifier: mean expression across tissues and standard deviation of

expression across tissues. Red, white, and blue background colors correspond to 1, 0.5, and 0 success probabilities. Red plusses and blue crosses mark the locations of the

success and failure examples. It appears the model has learned that failures tend to have high mean expression and low standard deviation of expression across tissues,
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Feature interpretation. To interpret the relationship inferred by the classifier between

target features and outcomes, we created a heatmap of the probability of success predicted by

the classifier projected onto the two features predominantly selected for the model: mean

expression and standard deviation of expression across tissues (Fig 3F). The probability of suc-

cess was high in the subspace with low mean expression and high standard deviation of expres-

sion, and transitioned to low probability in the subspace with high mean expression and low

standard deviation of expression. This trend appeared to be consistent with the distribution of

the success and failure examples in the space.

Discussion

Gene expression predicts phase III outcome

We searched over 150,000 target features from 67 datasets covering 16 feature types for predic-

tors of target success or failure in phase III clinical trials (Table 1, Fig 1). We found several fea-

tures significantly correlated with phase III outcome, robust to re-sampling, and generalizable

across target classes (Table 2). To assess the usefulness of such features, we implemented a

nested cross-validation routine to select features, train a classifier to predict the probability a

target will succeed in phase III clinical trials, and estimate the stability and generalization per-

formance of the model (Figs 2 and 3, Tables 3, 4 and 5). Ultimately, we found two features use-

ful for predicting success or failure of targets in phase III clinical trials. Successful targets

tended to have low mean mRNA expression across tissues and high standard deviation of

while successes tend to have low mean expression and high standard deviation of expression. The success and failure examples are not well separated, indicating that we

did not discover enough features to fully explain why targets succeed or fail in phase III clinical trials.

https://doi.org/10.1371/journal.pcbi.1006142.g003

Table 5. Classifier performance statistics.

Statistic 2.5 Percentile Median 97.5 Percentile

True Positives (TP) 91 220 243

False Positives (FP) 16 52 65

True Negatives (TN) 5 16 52

False Negatives (FN) 1 24 154

True Positive Rate (TPR) 0.370 0.903 0.995

False Positive Rate (FPR) 0.232 0.762 0.928

False Negative Rate (FNR) 0.005 0.096 0.630

True Negative Rate (TNR) 0.072 0.237 0.768

Misclassification Rate (MCR) 0.206 0.241 0.542

Accuracy (ACC) 0.458 0.759 0.794

False Discovery Rate (FDR) 0.149 0.194 0.213

Positive Predictive Value (PPV) 0.787 0.806 0.851

False Omission Rate (FOMR) 0.233 0.583 0.741

Negative Predictive Value (NPV) 0.259 0.417 0.767

Area Under Receiver Operating Characteristic Curve (AUROC) 0.512 0.574 0.615

Area Under Precision-Recall Curve (AUPR) 0.777 0.811 0.836

Positive Likelihood Ratio (PLR) 1.058 1.184 1.619

Negative Likelihood Ratio (NLR) 0.086 0.402 0.819

Diagnostic Odds Ratio (DOR) 1.748 3.066 13.344

Risk Ratio (RR) 1.143 1.387 3.447

Matthews Correlation Coefficient (MCC) 0.100 0.178 0.251

https://doi.org/10.1371/journal.pcbi.1006142.t005
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mRNA expression across tissues (Fig 3F). These features were significant in multiple gene

expression datasets, which increased our confidence that their relationship to phase III out-

come was real, at least for the targets in our sample, which included only targets of selective

drugs indicated for non-cancer diseases.

One interpretation of why the gene expression features were predictive of phase III out-

come is that they are informative of the specificity of a target’s expression across tissues. A tar-

get with tissue specific expression would have a high standard deviation relative to its mean

expression level. Tissue specific expression has been proposed by us and others as a favorable

target characteristic in the past [4, 14, 60–62], but the hypothesis had not been evaluated

empirically using examples of targets that have succeeded or failed in clinical trials. For a given

disease, if a target is expressed primarily in the disease tissue, it is considered more likely that a

drug will be able to exert a therapeutic effect on the disease tissue while avoiding adverse effects

on other tissues. Additionally, specific expression of a target in the tissue affected by a disease

could be an indicator that dysfunction of the target truly causes the disease.

The distribution of the success and failure examples in feature space (Fig 3F) partially

supports the hypothesis that tissue specific expression is a favorable target feature. Suc-

cesses were enriched among targets with low mean expression and high standard devia-

tion of expression (tissue specific expression), and failures were enriched among targets

with high mean expression and low standard deviation of expression (ubiquitous expres-

sion). However, it does not hold in general that, at any given mean expression level, tar-

gets with high standard deviation of expression tend to be more successful than targets

with low standard deviation of expression. To further investigate the relationship between

these features and phase III clinical trial outcomes, we re-ran the entire modeling pipeline

(Fig 2) with gene expression entropy, a feature explicitly quantifying specificity of gene

expression across tissues [21], appended to each tissue expression dataset (S1 Text).

Model performance was unchanged (S1 Fig); gene expression entropy across tissues

became the dominant selected feature, appearing in 610 models over 1000 train-test

cycles; and mean gene expression across tissues remained an important feature, appearing

in 381 models (S6 Table). To find concrete examples illustrating when tissue expression

may be predictive of clinical trial outcomes, we pulled additional information from the

Pharmaprojects database about targets at the two extremes of tissue expression (tissue

specific or ubiquitous). We found examples of: 1) successful tissue specific targets where

the target is specifically expressed in the tissue affected by the disease (Table 6), 2) failed

tissue specific targets with plausible explanations for failure despite tissue specific expres-

sion (Table 7), 3) failed ubiquitously expressed targets (Table 8), and 4) successful ubiqui-

tously expressed targets with plausible explanations for success despite ubiquitous

expression (Table 9). Our results encourage further investigation of the relationship

between tissue specific expression and clinical trial outcomes. Deeper insight may be

gleaned from analysis of clinical trial outcomes of target-indication pairs using gene

expression features explicitly designed to quantify specificity of a target’s expression in

the tissue(s) affected by the disease treated in each clinical trial.

Table 6. Examples of successful tissue specific targets.

Target Indication Expression Outcome

PNLIP Pancreatic insufficiency Pancreas 5-fold higher than other tissues Success

MMP8 Osteoarthritis Bone marrow 4-fold higher than other tissues Success

ATP4A Ulcer, gastro-esophageal reflux Stomach 3-fold higher than other tissues Success

GABRA1 Neurological diseases (anxiety, depression, addiction, pain, insomnia, epilepsy) Brain 3-fold higher than other tissues Success

https://doi.org/10.1371/journal.pcbi.1006142.t006
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Caveats and limitations

Latent factors (variables unaccounted for in this analysis) could confound relationships

between target features and phase III outcomes. For example, diseases pursued vary from tar-

get to target, and a target’s expression across tissues may be irrelevant for diseases where drugs

can be delivered locally or for Mendelian loss-of-function diseases where treatment requires

systemic replacement of a missing or defective protein. Also, clinical trial failure rates vary

across disease classes [2]. Although we excluded targets of cancer therapeutics from our analy-

sis, we otherwise did not control for disease class as a confounding explanatory factor. Modali-

ties (e.g. small molecule, antibody, antisense oligonucleotide, gene therapy, or protein

replacement) and directions (e.g. activation or inhibition) of target modulation also vary from

target to target and could be confounding explanatory factors or alter the dependency between

target features and outcomes.

The potential issues described above are symptoms of the fact that our analysis (and any

analysis of clinical trial outcomes) attempts to draw conclusions from a small (331 targets with

only 72 failures) and biased sample [63, 64]. The large uncertainty in the performance of the

classifier across 200 repetitions of 5-fold cross-validation is evidence of the difficulty in finding

robust signal in such a small dataset (Fig 3). For example, in the region where the model pre-

dicts highest probability of success (low mean expression and high standard deviation of

expression), there are no failed phase III targets (Fig 3F), which is why the median PPV rises

nearly to 1 (Fig 3C), but targets with phase III outcomes sparsely populate this region, so the

PPV varies widely depending upon how targets happen to fall into training and testing sets

during cross-validation. The small sample issue is compounded by latent factors, such as target

classes, disease classes, modalities, and directions of target modulation, that are not uniformly

represented in the sample. Correlations between target features and clinical trial outcomes

likely depend on these factors, but attempts to stratify, match, or otherwise control for these

factors are limited by the sample size. (The number of combinations of target class, disease

class, modality, and direction of modulation exceeds the sample size.) We employed several

tests to build confidence that our findings generalize across target classes, but did not address

other latent factors. Consequently, we cannot be sure that conclusions drawn from this study

apply equally to targets modulated in any direction, by any means, to treat any disease. For

specific cases, expert knowledge and common sense should be relied upon to determine

whether conclusions from this study (or similar studies) are relevant.

Another limitation is selection bias [63, 64]. Targets of drugs are not randomly selected

from the genome and cannot be considered representative of the population of all possible

Table 7. Examples of failed tissue specific targets with plausible exceptions.

Target Indication Expression Outcome Exception

BPI Bacterial

infections

Bone marrow 3-fold higher

than other tissues

Failure The drug is recombinant BPI, which is used for its anti-bacterial properties, thus modulation of

endogenous BPI is not directly relevant to efficacy of the therapy

TSHR Goiter Thyroid 4-fold higher than

other tissues

Failure The trial was canceled before enrollment, thus perhaps TSHR should not be counted as a phase

III failure

https://doi.org/10.1371/journal.pcbi.1006142.t007

Table 8. Examples of failed ubiquitously expressed targets.

Target Indication Expression Outcome

DPP8 Heart failure Ubiquitous Failure

CSNK2B Human papilloma virus infection Ubiquitous Failure

https://doi.org/10.1371/journal.pcbi.1006142.t008
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targets. Likewise, diseases treated by drugs are not randomly chosen; therefore, phase III clini-

cal trial outcomes for each target cannot be considered representative of the population of all

possible outcomes. Although we implemented tests to build confidence that our findings can

generalize to new targets and new target classes, ultimately, no matter how we dissect the sam-

ple, a degree of uncertainty will always remain about the relevance of any findings for new tar-

gets that lack a representative counterpart in the sample.

Additionally, data processing and modeling decisions have introduced bias into the analy-

sis. For example, we restricted the analysis to phase III clinical trial outcomes because failures

in phase III are more likely to be due to lack of target efficacy than failures in earlier phases,

but factors unrelated to target efficacy still could explain many of the phase III failures, such as

poor target engagement, poorly defined clinical trial endpoints, and a poorly defined patient

population. Also, we scored each target as successful or failed by its best outcome in all applica-

ble (selective drug, non-cancer indication) phase III clinical trials. This approach ignores

nuances. A target that succeeded in one trial and failed in all others is treated as equally suc-

cessful as a target that succeeded in all trials. Also, the outcome of a target tested in a single

trial is treated as equally certain as the outcome of a target tested in multiple trials. Represent-

ing target outcomes as success rates or probabilities may provide better signal for discovering

features predictive of outcomes.

Another decision was to use datasets of features as we found them, rather than trying to rea-

son about useful features that could be derived from the original data. Because of the breadth

of data we interrogated, the effort and expertise necessary to hand engineer features equally

well across all datasets exceeded our resources. Others have had success hand engineering fea-

tures for similar applications in the past, particularly with respect to computing topological

properties of targets in protein-protein interaction networks [18, 20, 21]. This analysis could

benefit from such efforts, potentially changing a dataset or feature type from yielding no target

features correlated with phase III outcomes to yielding one or several useful features [22]. On a

related point, because we placed a priority on discovering interpretable features, we performed

dimensionality reduction by averaging groups of highly correlated features and concatenating

their (usually semantically related) labels. Dimensionality reduction by principal components

analysis [65] or by training a deep auto-encoder [66] could yield more useful features, albeit at

the expense of interpretability.

We also employed a stringent univariate feature selection step (Fig 2, Step 2) to bias our

analysis toward yielding a simple and interpretable model. In doing so, we diminished the

chance of the multivariate feature selection step (Fig 2, Step 4) finding highly predictive combi-

nations of features that individually were insignificantly predictive. We addressed this concern

by re-running the entire modeling pipeline (Fig 2) with the threshold for the univariate feature

selection step made less stringent by eliminating the multiple hypothesis testing correction

and accepting features with nominal p-values less than 0.05 (S2 Text). This allowed hundreds

of features to pass through to the multivariate feature selection step (Random Forest with

incremental feature elimination) and ultimately dozens of features (median of 73) were

selected for each of the final models in the 1000 train-test cycles (S7 Table). Despite this

Table 9. Examples of successful ubiquitously expressed targets with plausible exceptions.

Target Indication Expression Outcome Exception

MTOR Restenosis Ubiquitous Success Tissue specificity is achieved via the delivery method (drug eluting stent)

IFNAR1 Eye infections Ubiquitous Success Tissue specificity is achieved via the delivery method (eye drops)

GBA Gaucher’s

disease

Ubiquitous Success Gaucher’s disease is a loss-of-function genetic disorder affecting multiple organ systems, thus therapy requires

system-wide replacement of the defective enzyme

https://doi.org/10.1371/journal.pcbi.1006142.t009
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increase in number of features, the mean expression and standard deviation of expression fea-

tures were still robustly selected, appearing in 958 and 745 models, respectively, and the mod-

els had a median AUROC of 0.56 and AUPRC of 0.75, performing no better than the simple

models (S2 Fig). This finding suggests that our sample size was not large enough to robustly

select predictive combinations of features from a large pool of candidate features [67, 68].

We cannot stress enough the importance of taking care not to draw broad conclusions from

our study, particularly with respect to the apparent dearth of features predictive of target success

or failure. We examined only a specific slice of clinical trial outcomes (phase III trials of selective

drugs indicated for non-cancer diseases) summarized in a particular way (net outcome per tar-

get, as opposed to outcome per target-indication pair). Failure of a feature to be significant in

our analysis should not be taken to mean it has no bearing on target selection. For example,

prior studies have quantitatively shown that genetic evidence of disease association(s) is a favor-

able target characteristic [3, 36], but we did not find a significant correlation between genetic

evidence and target success in phase III clinical trials. Our finding is consistent with the work of

Nelson et al. [36], who investigated the correlation between genetic evidence and drug develop-

ment outcomes at all phases and found a significant correlation overall and at all phases of

development except phase III. As a way of checking our work, we applied our methods to test

for features that differ between targets of approved drugs and the remainder of the druggable

genome (instead of targets of phase III failures), and we recovered the finding of Nelson et al.

that targets of approved drugs have significantly more genetic evidence than the remainder of

the druggable genome (S8 Table). This example serves as a reminder to be cognizant of the

domain of applicability of research findings. Though we believe we have performed a rigorous

and useful analysis, we have shed light on only a small piece of a large and complex puzzle.

Advances in machine learning enable and embolden us to create potentially powerful pre-

dictive models for target selection. However, as described in the limitations, scarce training

data are available, the data are far from ideal, and we must be cautious about building models

with biased data and interpreting their predictions. For example, many features that appeared

to be significantly correlated with phase III clinical trial outcomes in our primary analysis did

not hold up when we accounted for target class selection bias. This study highlights the need

for both domain knowledge and modeling expertise to tackle such challenging problems.

Conclusion

Our analysis revealed several features that significantly separated targets of approved drugs

from targets of drug candidates that failed in phase III clinical trials. This suggested that it is

feasible to construct a model integrating multiple interpretable target features derived from

Omics datasets to inform target selection. Only features derived from tissue expression data-

sets were promising predictors of success versus failure in phase III, specifically, mean mRNA

expression and standard deviation of expression across tissues. Although these features were

significant at a false discovery rate cut-off of 0.05, their effect sizes were too small to be useful

for classification of the majority of untested targets, however, even a two-fold improvement in

target quality can dramatically increase R&D productivity [69]. We identified 943 targets pre-

dicted to be twice as likely to fail in phase III clinical trials as past phase III targets, and, there-

fore, should be flagged as having unfavorable expression characteristics. We also identified

2,700,856 target pairs predicted with 99% consistency to have a 2-fold difference in success

probability, which could be useful for prioritizing short lists of targets with attractive disease

relevance.

It should be noted that our analysis was not designed or powered to show that specific data-

sets or data types have no bearing on target selection. There are many reasons why a dataset
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may not have yielded any significant features in our analysis. In particular, data processing and

filtering choices could determine whether or not a dataset or data type has predictive value.

Also, latent factors, such as target classes, disease classes, modalities, and directions of target

modulation, could confound or alter the dependency between target features and clinical trial

outcomes. Finally, although we implemented tests to ensure robustness and generalizability of

the target features significantly correlated with phase III outcomes, selection bias in the sample

of targets available for analysis is a non-negligible limitation of this study and others of its

kind. Nevertheless, we are encouraged by our results and anticipate deeper insights and better

models in the future, as researchers improve methods for handling sample biases and learn

more informative features.

Methods

Data

Clinical outcomes. We extracted data from Citeline’s Pharmaprojects database [38]

(downloaded May 27, 2016), reformatting available XML data into a single tab-delimited form

having one row for each asset (i.e. drug or drug candidate)/company combination. For each

asset, known targets, identified with EntrezGene [70] IDs and symbols, and indications are

reported. We obtained 107,120 asset-indication pairs and 37,211 asset-target pairs, correcting

a single outdated EntrezGene ID, for SCN2A, which we updated from 6325 to 6326.

An overall pipeline status of each asset (e.g. “Launched”, “Discontinued”, “No Development

Reported”) is reported in a single field (“Status”), and detailed information for each indication

being pursued is dispersed throughout several other fields (e.g., “Key Event Detail”, “Over-

view”, etc.). While many assets have been tried against a single indication, and thus the status

of the asset-indication pair is certain, the majority (N = 61,107) of asset-indication pairs are for

assets with multiple indications. For those pairs, we used a combination of string searching of

these fields and manual review of the results to determine the likely pipeline location and sta-

tus of each indication. For example, we excluded efforts where a trial of an asset was reported

as planned, but no further information was available. Asset-indication pairs were thus assigned

a status of Successful (“Launched”, “Registered”, or “Pre-registration”), Failed (“Discontin-

ued”, “No Development Reported”, “Withdrawn”, or “Suspended”), or In Progress, consisting

of 9,337, 72,269 and 25,159 pairs, respectively. We then used the pipeline location to assign

each asset-indication pair to one of 10 outcomes: Succeeded, In Progress-Preclinical, In Prog-

ress-Phase I, In Progress-Phase II, In Progress-Phase III, Failed-Preclinical, Failed-Phase I,

Failed-Phase II, Failed-Phase III, and Failed-Withdrawn. We discarded indications which

were diagnostic in nature or unspecified, mapping the remainder to Medical Subject Headings

(MeSH) [71]. We also observed that only 24% of the failures reported in Pharmaprojects are

clinical failures, suggesting a clinical success rate of nearly 35%, much higher than typically

cited [69].

We joined the list of asset-indication-outcome triples with the list of asset-target pairs to

produce a list of asset-target-indication-outcome quadruples. We then filtered the list to

remove: 1) assets with more than one target, 2) non-human targets, 3) cancer indications

(indications mapped to MeSH tree C04), and 4) outcomes labeled as In Progress at any stage

or Failed prior to Phase III. We scored the remaining targets (N = 331) as Succeeded

(N = 259), if the target had at least one successful asset remaining in the list, or Failed (N = 72),

otherwise.

Target features. We obtained target features from the Harmonizome [39], a recently pub-

lished collection of features of genes and proteins extracted from over 100 Omics datasets. We

downloaded (on June 30, 2016) a subset of Harmonizome datasets that were in the public
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domain or GSK had independently licensed (Table 1). Each dataset was structured as a matrix

with genes labeling the rows and features such as diseases, phenotypes, tissues, and pathways

labeling the columns. Genes were identified with EntrezGene IDs and symbols, enabling facile

integration with the clinical outcome data from Pharmaprojects. Some datasets were available

on the Harmonizome as a “cleaned” version and a “standardized” version. In all instances, we

used the cleaned version, which preserved the original data values (e.g. gene expression val-

ues), as opposed to the standardized version, in which the original data values were trans-

formed into scores indicating relative strengths of gene-feature associations intended to be

comparable across datasets. The data matrices were quantitative and filled-in (e.g. gene expres-

sion measured by microarray), quantitative and sparse (e.g. protein expression measured by

immunohistochemistry), or categorical (i.e. binary) and sparse (e.g. pathway associations

curated by experts). We standardized quantitative, filled-in features by subtracting the mean

and then dividing by the standard deviation. We scaled quantitative, sparse features by divid-

ing by the mean. We included the mean and standard deviation calculated along the rows of

each dataset as additional target features. We excluded features that had fewer than three non-

zero values for the targets with phase III clinical trial outcomes. The remaining features, upon

which our study was based, have been deposited at https://github.com/arouillard/omic-

features-successful-targets.

Dimensionality reduction

Our goals in performing dimensionality reduction were to identify groups of highly correlated

features, avoid excessive multiple hypothesis testing, and maintain interpretability of features.

For each dataset, we computed pair-wise feature correlations (r) using the Spearman correla-

tion coefficient [72–74] for quantitative, filled-in datasets, and the cosine coefficient [73, 74]

for sparse or categorical datasets. We thresholded the correlation matrix at r2 = 0.5 (for the

Spearman correlation coefficient, this corresponds to one feature explaining 50% of the vari-

ance of another feature, and for the cosine coefficient, this corresponds to one feature being

aligned within 45 degrees of another feature) and ordered the features by decreasing number

of correlated features. We created a group for the first feature and its correlated features. If the

dataset mean was included in the group, we replaced the group of features with the dataset

mean. Otherwise, we replaced the group of features with the group mean and assigned it the

label of the first feature (to indicate that the feature represents the average of features corre-

lated with the first feature), while also retaining a list of the labels of all features included in the

group. We continued through the list of features, repeating the grouping process as described

for the first feature, except excluding features already assigned to a group from being assigned

to a second group.

Feature selection

We performed permutation tests [40, 41] to find features with a significant difference between

successful and failed targets. We used permutation testing in order to apply the same signifi-

cance testing method to all features. The features in our collection had heterogeneous shapes

of their distributions and varying degrees of sparsity, and therefore no single parametric test

would be appropriate for all features. Furthermore, individual features frequently violated

assumptions required for parametric tests, such as normality for the t-test (for continuous-val-

ued features) or having at least five observations in each entry of the contingency table for the

Chi-squared test (for categorical features). For each feature, we performed 105 success/failure

label permutations to obtain a null distribution for the difference between the means of suc-

cessful and failed targets, and then calculated an empirical two-tailed p-value as the fraction of
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permutations that yielded a difference between means at least as extreme as the actual observed

difference. We used the Benjamini-Yekutieli method [42] to correct for multiple hypothesis

testing within each dataset and accepted features with corrected p-values less than 0.05 as sig-

nificantly correlated with phase III clinical trial outcomes, thus controlling the false discovery

rate at 0.05 within each dataset.

Feature robustness and generalizability

Robustness to sample variation. We used bootstrapping [53, 54] to investigate how

robust our significance findings were to variation in the success and failure examples. We cre-

ated a bootstrap sample by sampling with replacement from the original set of examples to

construct an equal sized set of examples. For each dataset that yielded significant features in

our primary analysis, we repeated the analysis on the bootstrap sample and recorded whether

the features were still significant at the aforementioned 0.05 false discovery rate cut-off. We

performed this procedure on 1000 bootstrap samples and quantified the replication probability

[55] of each feature as the fraction of bootstraps showing a significant correlation between the

feature and phase III clinical trial outcomes. We accepted features with replication probabili-

ties greater than 0.8 [55] as robust to sample variation.

Robustness to target class variation. We tested if any of the significance findings

depended upon the presence of targets from a single target class in our sample. We obtained

target class labels (i.e. gene family labels) from the HUGO Gene Nomenclature Committee

[56] (downloaded April 19, 2016) and created binary features indicating target class member-

ship. Using the same permutation testing and multiple hypothesis testing correction methods

described above for feature selection, we tested if any target classes were significantly corre-

lated with phase III clinical trial outcomes. Then, we tested if the significant target classes were

correlated with any significant features. Such features might be correlated with clinical out-

come only because they are surrogate indicators for particular target classes that have been his-

torically very successful or unsuccessful, as opposed to the features being predictors of clinical

outcome irrespective of target class. To test this possibility, we performed a bootstrapping pro-

cedure as described above, except did not allow examples from target classes correlated with

clinical outcome to be drawn when re-sampling. Thus, the modified bootstrapping procedure

provided replication probabilities conditioned upon missing information about target classes

correlated with clinical outcome. We accepted features with replication probabilities greater

than 0.8 as robust to target class variation.

Generalization across target classes. We implemented a modified permutation test,

inspired by the approach of Epstein et al. [57] to correct for confounders in permutation testing,

to select features correlated with phase III clinical trial outcomes while controlling for target class

as a confounding explanatory factor. In the modified permutation test, success/failure labels were

shuffled only within target classes, so the sets of null examples had the same ratios of successes to

failures within target classes as in the set of observed examples. Consequently, features had to cor-

relate with clinical outcome within multiple classes to be significant, while features that discrimi-

nated between classes would not be significant. We performed bootstrapping as described

previously to obtain replication probabilities for the significant features, in this case conditioned

upon including target class as an explanatory factor. We accepted features with replication proba-

bilities greater than 0.8 as generalizable across target classes represented in the sample.

Clinical outcome classifier

We trained a classifier to predict target success or failure in phase III clinical trials, using a pro-

cedure like the above for initial feature selection, then using cross-validation to select a model
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type (Random Forest or logistic regression) and subset of features useful for prediction. We

used an outer cross-validation loop with 5-folds repeated 200 times, yielding a total of 1000

train-test cycles, to estimate the generalization performance and stability of the feature selec-

tion and model selection procedure [58]. Each train-test cycle had five steps: 1) splitting exam-

ples into training and testing sets, 2) univariate feature selection on the training data, 3)

aggregation of significant features from different datasets into a single feature matrix, 4) model

selection and model-based (multivariate) feature selection on the training data, and 5) evalua-

tion of the classifier on the test data.

Step 2: Univariate feature selection. Beginning with the non-redundant features

obtained from dimensionality reduction, we performed modified permutation tests to find fea-

tures with a significant difference between successful and failed targets in the training exam-

ples. As described above, for the modified permutation test, success/failure labels were shuffled

only within target classes. This was done to control for target class as a confounding factor that

might explain correlations between phase III outcomes and features. For each feature, we per-

formed 104 success/failure label permutations and calculated an empirical two-tailed p-value.

We corrected for multiple hypothesis testing within each dataset and accepted features with

corrected p-values less than 0.05.

Step 3. Feature aggregation. Significant features from different datasets, each having dif-

ferent target coverage, had to be aggregated into a single feature matrix prior to training a clas-

sifier. When features from many datasets were aggregated, we found that the set of targets with

no missing data across all features could become very small. To mitigate this, we excluded fea-

tures from non-human datasets and small datasets (fewer than 2,000 genes). We also excluded

features from the Allen Brain Atlas human brain expression atlas, unless there were no other

significant features, because we noticed it had poor coverage of targets with phase III outcomes

(287) compared to other expression atlases, such as BioGPS (320), GTEx (328), and HPA

(314), which almost always yielded alternative significant expression-based features. After

aggregating features into a single matrix, we min-max scaled the features so that features from

different datasets would have the same range of values (from 0 to 1).

To reduce redundancy in the aggregated feature matrix, we grouped features as

described for the primary analysis. We used the cosine coefficient to compute pair-wise

feature correlations because some features were sparse. Instead of replacing groups of cor-

related features with the group mean, we selected the feature in each group that was best

correlated with phase III outcomes, because we preferred not to create features derived

from multiple datasets.

Step 4. Model selection and model-based feature selection. We hypothesized that a Ran-

dom Forest classifier [75] would be a reasonable model choice because the Random Forest

model does not make any assumptions about the distributions of the features and can seam-

lessly handle a mixture of quantitative, categorical, filled-in, or sparse features. Furthermore,

we expected each train-test cycle to yield only a handful of significant features. Consequently,

we would have 10- to 100-fold more training examples than features and could potentially

afford to explore non-linear feature combinations. We also trained logistic regression classifi-

ers and used an inner cross-validation loop (described below) to choose between Random For-

est and logistic regression for each train-test cycle of the outer cross-validation loop. We used

the implementations of the Random Forest and logistic regression classifiers available in the

Scikit-learn machine learning package for Python. To correct for unequal class sizes during

training, the loss functions of these models weighted the training examples inversely propor-

tional to the size of each example’s class.

We performed incremental feature elimination with an inner cross-validation loop to 1)

choose the type of classifier (Random Forest or logistic regression) and 2) choose the smallest
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subset of features needed to maximize the performance of the classifier. First, we trained Ran-

dom Forest and logistic regression models using the significant features aggregated in Step 2,

performing 5-fold cross-validation repeated 20 times to obtain averages for the area under the

receiver operating characteristic curve (AUROC) and area under the precision recall curve

(AUPR). We also obtained average feature importance scores from the Random Forest model.

Next, we eliminated the feature with lowest importance score and trained the models using the

reduced feature set, performing another round of 5-fold cross-validation repeated 20 times to

obtain AUROC, AUPR, and feature importance scores. We continued eliminating features

then obtaining cross-validation performance statistics and feature importance scores until no

features remained. Then, we found all models with performance within 95% of the maximum

AUROC and AUPR. If any logistic regression models satisfied this criterion, we selected the

qualifying logistic regression model with fewest features. Otherwise, we selected the qualifying

Random Forest model with fewest features.

Step 5. Classifier evaluation. For each train-test cycle, after selecting a set of features and

type of model (Random Forest or logistic regression) in Step 4, we re-fit the selected model to

the training data and predicted success probabilities for targets in the test set as well as unla-

beled targets. For each round of 5-fold cross-validation, we computed the classifier’s receiver

operating characteristic curve, precision-recall curve, and performance summary statistics,

including the true positive rate, false positive rate, positive predictive value, negative predictive

value, and Matthews correlation coefficient.

We computed distributions of the log odds ratios predicted by the classifier (log of the ratio

of the predicted probability of success over the probability of failure) for the successful, failed,

and untested (unlabeled) targets, aggregating predicted probabilities from the 200 repetitions

of 5-fold cross-validation. Histograms of the log odds ratios for the three groups of targets

were roughly bell-shaped, so we fit the distributions using kernel density estimation [59] with

a Gaussian kernel and applied Silverman’s rule for the bandwidth. We transformed the fitted

distributions from a function of log odds ratio to a function of probability of success using the

rule pdf(x) = pdf(y)�|dy/dx|.

We created a heatmap of the probability of success predicted by the classifier projected

onto the two dominant features in the model: mean mRNA expression across human tissues

and standard deviation of mRNA expression across human tissues. We examined the heatmap

to interpret the classifier’s decision function and assess its plausibility.

To more concretely assess the usefulness of the classifier, we found the probability cut-off

corresponding to the maximum median positive predictive value and determined the number

of unlabeled targets predicted to succeed at that cut-off. Likewise, we found the probability

cut-off corresponding to the maximum median negative predictive value and determined the

number of unlabeled targets predicted to fail at that cut-off. We also created a heatmap illus-

trating the separation needed between the median predicted success probabilities of two tar-

gets in order to be confident that one target is more likely to succeed than the other. This

heatmap was created by calculating the fraction of times Target B had greater probability of

success than Target A across the 200 repetitions of 5-fold cross-validation, for all pairs of

targets.

Implementation

Computational analyses were written in Python 3.4.5 and have the following package depen-

dencies: Fastcluster 1.1.20, Matplotlib 1.5.1, Numpy 1.11.3, Requests 2.13.0, Scikit-learn 0.18.1,

Scipy 0.18.1, and Statsmodels 0.6.1. Code, documentation, and data have been deposited on

GitHub at https://github.com/arouillard/omic-features-successful-targets.

Omic features of successful therapeutic targets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006142 May 21, 2018 22 / 28

https://github.com/arouillard/omic-features-successful-targets
https://doi.org/10.1371/journal.pcbi.1006142


Supporting information

S1 Table. List of targets with their phase III outcome labels and predicted success probabil-

ities for 200 cross-validation repetitions.

(XLSX)

S2 Table. List of non-redundant features with their similar features and p-values from the

basic permutation test.

(XLSX)

S3 Table. List of classifier attributes (selected features, selected model type, and test per-

formance) for 1000 train-test cycles.

(XLSX)

S4 Table. Comparison of inner cross-validation loop AUROC and AUPR values between

Random Forest and logistic regression models for 1000 train-test cycles.

(XLSX)

S5 Table. List of classifier test performance statistics for 200 cross-validation repetitions.

(XLSX)

S6 Table. For the modeling pipeline with gene expression entropy across tissues included

as a candidate feature, list of classifier attributes (selected features, selected model type,

and test performance) for 1000 train-test cycles.

(XLSX)

S7 Table. For the modeling pipeline with heavier reliance on multivariate feature selection

(less stringent univariate feature selection), list of classifier attributes (selected features,

selected model type, and test performance) for 1000 train-test cycles.

(XLSX)

S8 Table. Cases illustrating how the significance of genetic evidence (and likely other types

of evidence) as a predictor of target success depends on which targets are compared.

(XLSX)

S1 Fig. Evaluation of entropy as an alternative feature quantifying tissue specificity of target

expression. (A) Relationship between coefficient of variation (standard deviation/mean) of gene

expression across tissues and entropy of gene expression across tissues. Entropy of a target was

defined as sum[Pi log2(1/Pi)] where Pi = Ei/sum(Ei) and Ei is the target’s expression in the ith tis-

sue). Coefficient of variation and entropy were computed using un-log-transformed expression

values. The strong (nonlinear) correlation indicates that entropy captures similar information

about the distribution of a target’s expression across tissues as the pair of mean and standard devi-

ation. (B) Distribution of area under the receiver operating characteristic curve (AUROC) values

from 200 repetitions of 5-fold cross-validation. The light gray distribution corresponds to the orig-

inal analysis that included the mean and standard deviation of gene expression across tissues as

candidate target features. The dark blue distribution corresponds to the alternative analysis that

replaced the mean and standard deviation features with entropy of gene expression across tissues

as a candidate target feature. The models had nearly identical AUROC distributions. (C) Distribu-

tion of area under the precision-recall curve (AUPRC) values from 200 repetitions of 5-fold cross-

validation. The models had nearly identical AUPRC distributions.

(TIF)

S2 Fig. Evaluation of multivariate feature selection. (A) Distribution of area under the

receiver operating characteristic curve (AUROC) values from the alternative modeling
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pipeline with weak univariate feature selection (nominal p-value less than 0.05), which allowed

hundreds of features to pass through to the multivariate feature selection step (Random Forest

feature ranking with incremental feature elimination). The light gray distribution corresponds

to the inner cross-validation loop performance of the model. The dark blue distribution corre-

sponds to the outer cross-validation loop performance of the model. There is a large discrep-

ancy between the distributions, indicating failure of the inner cross-validation loop to

appropriately tune the complexity of the model. (B) Distribution of area under the precision-

recall curve (AUPRC) values from the alternative modeling pipeline with weak univariate fea-

ture selection. (C and D) Distribution of AUROC and AUPRC values from the original

modeling pipeline with strong univariate feature selection (multiple hypothesis testing cor-

rected p-value less than 0.05). There is little discrepancy between generalization performance

estimated by the inner and outer cross-validation loops, indicating appropriate tuning of the

complexity of the model. (E) Illustration of the mismatch between training and testing exam-

ples that arises from splitting our small and heterogeneous sample of targets. Each point in the

scatterplot corresponds to a feature that passed through the weak univariate feature selection

step of the alternative modeling pipeline. Plotted on the horizontal axis is the difference

between the median of the Class I training examples and the median of the Class J training

examples, where if Class I is success, then Class J is failure, and vice versa. Plotted on the verti-

cal axis is the difference between the median of the Class I TESTING examples and the median

of the Class J training examples. For features in the first quadrant, the Class I training and test-

ing examples both have medians greater than the Class J training examples, so there is no mis-

match between the training and testing distributions of Class I. In the third quadrant, the Class

I training and testing examples both have medians less than the Class J training examples, so

again there is no mismatch. In the second and fourth quadrants, however, the Class I training

and testing examples have medians in opposite directions relative to the Class J training exam-

ples, so a decision boundary separating the Class I and Class J training examples will fail to

generalize to the Class I testing examples. Without looking at the testing examples, there is no

way to distinguish with certainty generalizable features from non-generalizable (mismatched)

features. Note, however, that the probability of mismatch decreases as the magnitude of the

difference between Class I and Class J in the training set increases. Consequently, stringent

univariate feature selection is one way to guard against non-generalizable features being

selected for the classifier. (F) Distribution of the fraction of features with mismatched distribu-

tions that pass through to the multivariate feature selection step when univariate feature selec-

tion is weak.

(TIF)

S1 Text. Description of analysis of gene expression entropy across tissues as a feature

quantifying tissue specificity of target expression.

(DOCX)

S2 Text. Description of analysis of multivariate feature selection (modeling pipeline with

less stringent univariate feature selection).

(DOCX)
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