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Abstract: Air pollution has caused adverse effects on the climate, the ecological environment and
human health, and it has become a major challenge facing the world today. The Yangtze River Delta
(YRD) is the region with the most developed economy and the most concentrated population in
China. Identifying and quantifying the spatiotemporal characteristics and impact mechanism of air
quality in this region would help in formulating effective mitigation policies. Using annual data on
the air quality index (AQI) of 39 cities in the YRD from 2015 to 2018, the spatiotemporal regularity
of the AQI is meticulously uncovered. Furthermore, a geographically weighted regression (GWR)
model is used to qualify the geographical heterogeneity of the effect of different socioeconomic
variables on the AQI level. The empirical results show that (1) the urban agglomeration in the YRD
presents an air pollution pattern of being low in the northwest and high in the southeast. The spatial
correlation of the distribution of the AQI level is verified. The spatiotemporal regularity of the
“high clustering club” and the “low clustering club” is obvious. (2) Different socioeconomic factors
show obvious geographically heterogeneous effects on the AQI level. Among them, the impact
intensity of transportation infrastructure is the largest, and the impact intensity of the openness
level is the smallest. (3) The upgrading of the industrial structure improves the air quality status
in the northwest more than it does in the southeast. The impact of transportation infrastructure
on the air pollution of cities in Zhejiang Province is significantly higher than the impact on the air
pollution of other cities. The air quality improvement brought by technological innovation decreases
from north to south. With the expansion of urban size, there is a law according to which air quality
first deteriorates and then improves. Finally, the government should promote the upgrading of key
industries, reasonably control the scale of new construction land, and increase the cultivation of local
green innovative enterprises.

Keywords: AQI; spatiotemporal regularity; Yangtze River Delta; geographically weighted regression;
heterogeneity

1. Introduction

Air pollution has attracted worldwide attention as both an environmental and public
health issue [1]. As the history of the developed countries shows, with the improvement
of the economy and industrialization, there have been a lot of air pollution incidents in
different countries and regions, causing great economic and health losses. China’s rugged
development model in the past few decades has not only promoted great economic and
industrial progress but also increased the consumption of various energy resources. The
annual emissions of pollutants such as soot and industrial dust can be as high as tens
of millions of tons, resulting in a continuous decline in the quality of the atmospheric
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environment [2]. Frequent smog incidents have aroused people’s concern over air pollution
and have caused many social problems in areas such as transportation, production, and
health. As an example, direct economic losses from the nationwide heavy haze event in
January 2013 reached CNY 23 billion, with 98% of the total loss coming from emergency
and outpatient services in health terminals [3]. In addition, smog and sand storms are
expanding in an increasing number of areas. There are more deaths each year due to air
pollution-related diseases than well-known diseases such as AIDS and breast cancer, and
the annual death toll from household and ambient air pollution in China is about 1.2 million
to 1.6 million [4]. China has long been concerned with air pollution, enacting numerous
regulatory and control measures as a means of fighting it. To improve air quality, China’s
Ministry of Ecology and Environment promulgated the new China Air Quality Standard,
which is consistent with World Health Organization standards. Furthermore, the State
Council of China places great emphasis on the effective mitigation of air pollution and has
successively issued policies and regulations such as the Action Plan on the Prevention and
Control of Air Pollution and the three-year action plan for cleaner air (the Blue Sky War) [5].
China’s air quality has significantly improved thanks to these air pollution control policies
and regulations, but how to balance regional socioeconomic development and air quality is
still a complex subject that warrants exploration.

A large number of studies have investigated the regularity of temporal variations
and the spatial distribution of different air pollutants. Examples include sulfur dioxide
(SO2) [6–8], particulate matter with a median diameter less than 2.5 µm (PM2.5) [9–11], and
particulate matter with a median diameter less than 10 µm (PM10) [12,13]. Research on
the spatiotemporal regularity of air pollutants has been carried out extensively in single
cities [12,14], urban agglomerations [15], hot regions [16–18], and even nationwide [19].
Another kind of research identifies the socioeconomic influencing factors of air pollutants
through econometric models. For example, a spatial lag model was used to test the rela-
tionship between urbanization and the PM2.5 concentration [20]. The spatial autoregressive
conditional heteroscedasticity (ARCH) model was adopted to analyze the socioeconomic
variation in PM2.5 pollution in Chinese cities, and it was found that economic development,
the secondary industry, foreign direct investment (FDI), population density, and urbaniza-
tion affect PM2.5 pollution and produce a heterogeneous effect [21]. Similar studies also
include Liu et al. (2020b) [22], Qiang et al. (2021) [23], and Halim et al. (2020) [24]. It has
also been proven that regional natural conditions affect air pollutant levels [25].

With regional compound air pollution intensifying, China has shifted its focus from
mitigating a single pollutant to improving overall air quality [26]. The cause of air pollution
is the comprehensive action of multiple pollutants, and a single pollutant cannot properly
reflect the broader air quality situation. The air quality index (AQI) is a quantitative
measure of air pollution that is dimensionless (Fang et al., 2019). It includes six pollutants:
PM2.5, PM10, SO2, nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO).

According to the Technical Regulation on the Ambient Air Quality Index (HJ633-2012)
issued in 2012, the AQI value ranges from 0 to 500. As the AQI value increases, the air
quality becomes worse. The classification standards for the AQI are shown in Table 1. When
the AQI value is 0–50, the air quality is considered “excellent”, which means that there
is basically no air pollution. When the AQI value is 51–100, the air quality is considered
“good”, which indicates some pollutants may be weakly harmful to the health of very few
highly sensitive individuals. When the AQI value is 101–150, the air quality is considered
“light pollution”, which means that susceptible people exposed to the air will have mild
symptoms and that healthy people will have irritation symptoms. When the AQI value is
151–200, the air quality is considered “moderate pollution”, which indicates that the heart
and respiratory systems of healthy people will be affected. When the AQI value is 201–300,
the air quality is considered “heavy pollution”, which means that healthy people will begin
to have common symptoms. When the AQI value exceeds 300, the air quality is considered
“serious pollution”, which means that people’s exercise tolerance will decrease and certain
diseases will appear ahead of time.
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Table 1. Classification standards for the AQI.

AQI Value Classification Air Quality Level

0~50 Level 1 Excellent
51~100 Level 2 Good
101~150 Level 3 Light pollution
151~200 Level 4 Moderate pollution
201~300 Level 5 Heavy pollution

>300 Level 6 Serious pollution

The majority of severe air pollution in China takes place in urban areas with more
developed industries, including Beijing–Tianjin–Hebei and the Yangtze River Delta urban
agglomeration. According to the Outline of the Integrated Regional Development of
the Yangtze River Delta issued by the State Council of China, the Yangtze River Delta
(YRD) urban agglomeration is within the scope of Shanghai, Jiangsu, Zhejiang, and Anhui
Provinces and has a total of 41 metropolitan areas. In terms of the country’s comprehensive
opening-up pattern, the YRD urban agglomeration plays a pivotal strategic position at
the intersection of “the Belt and Road” strategy and the Yangtze River Economic Belt.
The YRD is one of the most important engines of economic growth, as well as one of
the most important areas for air pollution control, as energy consumption and emissions
are on the rise. When compared with a single city, urban agglomerations exhibit a more
pronounced contradiction of socioeconomic development and environmental protection,
and collaborative government approaches are needed to address air pollution [27]. Studies
in the past have focused more on the source analysis, spatial analysis, simulation, and
prediction of air pollutants, and few studies have conducted a detailed analysis of the AQI
of the YRD. To promote the collaborative efficiency of air pollution governance in various
cities of the YRD, there is an urgent need to uncover the spatiotemporal regularity and
influencing factors of the AQI in this region to provide a scientific basis for formulating a
collaborative governance mechanism for environmental governance.

Based on the issues above, this research makes the following noteworthy contributions:
(1) the overall spatiotemporal regularity of the AQI distribution in the YRD is systemati-
cally uncovered based on 2015–2018 data covering 39 cities. (2) From the perspective of
socioeconomic factors, a more comprehensive, localized, and in-depth understanding of
the influence mechanisms of air pollution in the YRD is gained. (3) Additionally, a geo-
graphically weighted regression (GWR) model is employed to investigate the substantial
spatially heterogeneous effects of socioeconomic factors on varying cities. The remainder of
the paper is arranged as follows. The second part introduces the models and data used in
this study. Section 3 shows the distribution characteristics of the AQI of the YRD through
visualization. In Section 4, the empirical results are presented and discussed. Finally,
Section 5 summarizes the main conclusions of this study and provides the corresponding
policy implications.

2. Methodology and Data
2.1. Spatial Autocorrelation Analysis

(1) Global spatial autocorrelation
The first law of geography holds that everything is related to other things, but things

that are close to each other will be more closely related [28]. Spatial autocorrelation is
a statistical technique for determining the spatial structure of variables, specifically, the
spatial correlation between the attribute values of different geographic things distributed
in different spatial locations. There is generally a greater correlation between values that
are closer together. A positive correlation means that a variable has the same change trend
as its adjacent spatial units; that is, there is a phenomenon of spatial agglomeration. A
negative correlation means the opposite.

Global spatial autocorrelation analysis can identify the general pattern of spatial
dependence, and global Moran’s I is the most commonly used statistic that can reflect the
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spatial correlation of an environmental indicator [29]. In this study, this statistic is used
to explore the global spatial correlation of the AQI in YRD. The calculation formula is
as follows:

I =
n
S0
×

∑n
i=1 ∑n

j=1 wij(yi − y)
(
yj − y

)
∑n

i=1
(
yj − y

)2 (1)

where S0 = ∑n
i=1 ∑n

j=1 wij, n is the total number of spatial elements, yi and yj represent
the attribute values of the i-th and j-th spatial units, respectively, y is the mean value of
all spatial unit attribute values, and w is the spatial weight matrix. A larger global Moran
index represents a higher degree of spatial correlation. The Z score and p value are used for
statistical tests.

(2) Local spatial autocorrelation
Through a global test of spatial autocorrelation, we can measure whether variables

have spatial accumulation globally, but we cannot accurately point out where they form
a clustering phenomenon. Local spatial autocorrelation can describe the local association
and variations between adjacent units, and explain how the spatial dependence changes
with location. The most commonly used indicator is the local Moran’s I. The calculation
formula is as follows:

Ii =
xi − X

Si
2 ∑n

j=1,j 6=i wij
(

xi − X
)

(2)

where Si
2 =

∑n
j=1,j 6=i(xj−X)

2

n−1 , xi is the attribute of element i, X is the average value of the
corresponding attribute, wij and n have the same meaning as above.

2.2. Geographically Weighted Regression

In spatial data, the relationship between variables changes due to the change in
geographical location. This phenomenon is called spatial nonstationarity or spatial het-
erogeneity [30]. As the natural resource endowment and socioeconomic development are
distributed in an unbalanced manner in the cities of the YRD, there exists interregional
spatial correlation or spatial heterogeneity among urban units. Conventional global models
(such as linear regression or nonlinear regression) assume that the relationship between
variables has spatial homogeneity and only uses one equation to express the relationship
between independent variables and dependent variables [31]. The results obtained can
explain only the average effect of a variable and cannot properly explain an individual
situation [32]. As a result, a model with local variable coefficients can detect spatial nonsta-
tionarity, namely, the GWR model, is further proposed based on Foster’s spatially varying
parameter regression [33]. The GWR model introduces the geographical location of data
into the ordinary linear regression and determines the spatial heterogeneity using the local
smoothing processing method to quantitatively provide the spatially varying relationship
between dependent variables and multiple independent variables [34,35]. Due to its ability
to account for the local effects of spatial objects, it has a more accurate measurement.

The specific expression of the GWR model is as follows:

yi = β0(ui, vi) + ∑k βk(ui, vi)xk,i + εi (3)

where (ui, vi) is the longitude and latitude of sample i, βk(ui, vi) is the k-th regression
coefficient of sample i, yi is the dependent variable, and xk,i is the k-th independent variable
of sample i. εi is the random error term. The parameter expression of the i-th sample is
as follows:

β̂k(ui, vi) =
[

XTW(ui, vi)X
]−1

XTW(ui, vi)y (4)

where W is the spatial weight matrix, and its selection and setting are the core of the GWR
model. Based on the distribution characteristics of the value range, kernel functions can be
divided into continuous functions (such as the Gaussian function and exponential function)
and truncated functions (such as the box-car function, bi-square function, and tri-cube
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function). In practical applications, the most commonly used are the Gaussian function
and bi-square function. After repeated comparison and calculation, the Gaussian function
is selected as the most appropriate kernel function of this model.

wij = exp
(
−d2

ij/θ2
)

(5)

where wij is the distance weight from samples i and j, dij is the Euclidean distance between
samples i and j, and θ is the bandwidth, which determines the degree of attenuation of the
spatial weight with an increase in distance. The greater the bandwidth is, the faster the
weight attenuation. Selecting the appropriate bandwidth is an important step in the GWR
model [36]. In this study, the Akaike information criterion method is adopted to determine
the optimal bandwidth. The smaller AICc is, the more reasonable the bandwidth is [37].

2.3. Data Source

The original value of the AQI level came from the Ministry of Ecology and Environ-
ment, and the daily air quality detection and monitoring data were published by each
province. We averaged the original data to obtain the average annual value of each city.
For individual cities, missing data were supplemented through interpolation. Due to the
lack of AQI data for Xuancheng and Zhoushan, data on 39 cities in the YRD from 2015 to
2018 were finally taken as the research sample. Moreover, based on previous studies and
data availability, five socioeconomic independent variables that may cause urban industrial
pollutants were selected: the industrial structure (Ind), transportation (Tran), the openness
level (FDI), the scientific and technological innovation level (Inno), and city size (City). The
definitions of these factors are shown in Table 2. The socioeconomic data were mainly from
the China City Statistical Yearbook.

Table 2. Definitions of the socioeconomic variables.

Abbreviation Variables

Ind The ratio of the output value of the tertiary industry to that of the
secondary industry

Tran Road area
Inno The number of patents authorized
City Population
FDI The actual use of foreign capital as a percentage of GDP

3. Spatiotemporal Regularity of the AQI in the YRD
3.1. Spatiotemporal Change in the AQI

Based on the monthly value of the AQI in the YRD (see Figure 1), the total trend is
a U-shaped curve that is high at both ends and low in the middle. More specifically, the
AQI value usually shows a downward trend from January to July, shifts upward in August,
and continues to fluctuate until December. The significant seasonal variation may result
from the fact that cities consume more energy in winter and have less precipitation and
convection than in other seasons. In addition, this research further analyzes the changes in
the AQI in different years with variance indicators. The study found that the variance in
the AQI in the YRD region was 123.52 in 2015, and the variance expanded to 163.65 in 2017,
indicating that the AQI difference between cities in the YRD has an expanding trend. By
2018, the variance in the AQI had dropped to 123.14, and the difference in the AQI between
cities had narrowed. We also find that the U-shaped curve has a flattening trend year by
year. In terms of the annual trend, the mean AQI value in the YRD decreased by 10.06%,
from 84.65 in 2015 to 76.13 in 2018. In terms of interprovincial comparison, the annual
mean AQI values from high to low were as follows: Jiangsu Province (93.58), Shanghai
(88.5), Anhui Province (79.82), and Zhejiang Province (79.88) in 2015. In 2018, the rankings
shifted to Anhui Province (80.08), Jiangsu Province (79.96), Shanghai (70.17), and Zhejiang
Province (65.83). The differences among regions slightly expanded.
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In addition, we also compare the AQI of the Yangtze River Delta region with the Pearl
River Delta region and the Beijing–Tianjin–Tangshan region. The study found that the
AQI of the Yangtze River Delta region is higher than that of the Pearl River Delta region,
but lower than that of the Beijing–Tianjin–Tangshan region. The average AQI level in the
delta region is 58.08, while the average AQI level in the Beijing–Tianjin–Tangshan region
is 93.04. Therefore, in terms of environmental quality, the Pearl River Delta region is the
best, followed by the Yangtze River Delta region, and the Beijing–Tianjin–Hebei region is
the worst. Judging from the changing trend of the AQI, from 2015 to 2018, the AQI of the
Pearl River Delta region dropped by 1.63%, while the AQI of the Beijing–Tianjin–Tangshan
region dropped by 16.47%, indicating that among these three regions, the Beijing–Tianjin–
Tangshan region has the most significant environmental changes.

In this study, the ArcGIS tool is used to visually display the spatial distribution of the
AQI level of the YRD from 2015 to 2018. The results are shown in Figure 2. Different colors
represent different AQI levels. The darker the color is, the greater the AQI value, indicating
more serious air pollution in a city. Figure 2 shows that most cities in the YRD had AQIs
ranging from 50 to 100. Xuzhou (111.67), Huainan (102.92), Fuyang (102.33), Suzhou
(108.83), and Bozhou (108.08) showed an excessive AQI in 2017, these cities are facing
serious air pollution challenges and tremendous pressure currently, while Huangshan
in 2016 (49.92) and in 2018 (42.75) had an AQI less than 50. Overall, the AQI level in
Shanghai, Jiangsu Province, and Zhejiang Province showed a downward trend, while
the AQI of seven cities in Anhui Province showed an upward trend. The AQI level in
the YRD roughly presents a pollution pattern of being high in the northeast and low in
the southwest. In 2015, the air pollution in the YRD was mainly concentrated in Jiangsu
Province, while there was less air pollution in western Anhui and southern Zhejiang. In
2018, the air pollution in the YRD had shrunk to small areas, such as Huaibei city in
northern Anhui Province and Suzhou city and Xuzhou city in Jiangsu Province. This is
partly because northern Anhui is an agglomeration area that undertakes industrial transfer
from Shanghai, Jiangsu Province, and Zhejiang Province and the production activities
are relatively concentrated; thus, the pollution emissions are high. However, through
industrial upgrading and optimization, Shanghai, Jiangsu Province, and Zhejiang Province
have removed industries with high energy consumption and high emissions from their
internal regions; thus, pollutant emissions have been greatly reduced. Meanwhile, the
surrounding traffic network will be under greater stress during construction, resulting in
greater congestion and traffic inefficiency.
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Figure 2. Spatial distribution of the AQI level in the YRD from 2015 to 2018.

3.2. Spatial Trend Distribution of the AQI Level

To further investigate the spatiotemporal regularity of the AQI level in the YRD, this
study accurately fitted the spatial trend distribution of the AQI value in the east–west and
north–south directions of each city in 2015 and 2018 based on the longitude and latitude
of each city in the YRD (see Figure 3). In Figure 3, each dot represents a city. Overall,
the annual mean AQI values showed a distribution of being high in the north, low in the
south, high in the west, and low in the east. Additionally, the fitting curves to longitude
and latitude showed varying degrees of uplift in the middle. More details can be found
based on the shape and relative position of the fitting curve. In 2015, the annual mean AQI
value in the YRD was low in the east and west and high in the midlands, and there was
no large gap between the east and west. However, the region’s AQI dropped the most in
the east, widening the previous gap between the east and the west in 2018 and showing a
distribution of being high in the west and low in the east. In regard to the comparison of
longitude, both 2015 and 2018 saw a gradual trend of increasing AQI values from south to
north. Furthermore, the slope of the fitting curve in 2018 was greater than that in 2015. This
result indicates that the gap between the north and the south was also widening, which, in
general, was greater than the gap between the east and the west.
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3.3. Spatial Autocorrelation Analysis of the AQI

To analyze whether there is spatial correlation of the AQI level in the YRD, Moran’s
I of the AQI from 2015 to 2018 is calculated through the spatial weight matrix based on
geographical adjacency. In Table 3, the calculation results are shown. Moran’s I shows an
increasing trend in general, and the index value increased from 0.5023 in 2015 to 0.5634
in 2018, with both values being significant at the 1% level. Moreover, from 2015–2018,
the variance of Moran’s I was only 0.0012, indicating that the deviation of Moran’s I was
relatively small. Those results suggest there is not a random distribution of AQI values
in the YRD. Instead, the AQI of a city is affected by that of the surrounding areas, and it
shows a significantly positive spatial correlation. As a result, the spatial autocorrelation
of the AQI in the YRD becomes increasingly significant, presenting a trend of continuous
spatial agglomeration.

Table 3. Moran’s I of the AQI in the YRD, 2015–2018.

Year Moran’s I Expectation Index Z Score p Value

2015 0.5061 −0.0263 5.5495 0.00
2016 0.4913 −0.0263 5.4248 0.00
2017 0.5496 −0.0263 5.9235 0.00
2018 0.5634 −0.0263 6.1176 0.00

The results of the global Moran’s I index indicates that the AQI in the YRD presents sig-
nificant spatial correlation overall but fails to reflect where the agglomeration phenomenon
occurs. Further analysis of the spatial characteristics of the AQI is carried out by using
the local Moran’s I to determine whether there was local spatial agglomeration. Figure 4
illustrates that the spatial models of the AQI in the YRD can be divided into four types
of clustering. High-high (H-H) clustering means that cities with high AQI values are
surrounded by cities with high AQI values. The overall AQI values in this region are high,
and the degree of spatial variability is small. This is largely due to cities with high AQI
and their surrounding areas having similar socioeconomic structures and environmental
standards, so these areas more easily form spatially contiguous distribution characteristics.
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High-low (H-L) clustering means that cities with high AQI values are surrounded by cities
with low AQI values. There are high-value outliers and a large degree of spatial variation.
The possible reason for this is that areas with a high AQI are more seriously polluted,
while the surrounding areas are adjusted by socioeconomic structure to reduce pollution
emissions, resulting in a relatively low AQI. Low-low (L-L) clustering means that cities
with low AQI values are surrounded by cities with low AQI values. The overall AQI
values in this region are low, and the degree of spatial variability is small. This can be
explained that, through the transformation and upgrading of the industrial structure, the
energy utilization efficiency in the region has been improved, thereby reducing pollution
emissions, and through the demonstration effect, the surrounding areas have been driven
to reduce pollution emissions, so that there is a spatial interaction effect between low-AQI
regions. Low-high (L-H) clustering means that cities with low AQI values are surrounded
by cities with high AQI values. There are low-value outliers and a large degree of spatial
variation. This can be explained as the transformation of the socioeconomic structure in
the region reducing pollution emissions, while the surrounding areas are still developing
high-polluting industries, resulting in a higher AQI.
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Figure 4. Types of clustering of the AQI level in the YRD from 2015 to 2018.

In Figure 4, gray represents the nonsignificant area, red represents H-H clustering,
light red represents H-L clustering, light blue represents L-H clustering, and blue represents
L-L clustering. The results show that there were 18 cities in 2015 with significant local
spatial autocorrelation, including 11 cities showing H-H clustering (61.11%) and seven
cities showing L-L clustering (38.89%). In 2018, the number of cities with significant local
spatial autocorrelation reached 16, including nine cities showing H-H clustering (56.25%),
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six cities showing L-L clustering (37.5%), and one city showing H-L clustering (6.25%). In
general, the AQI in the YRD illustrates the distribution features of a “high clustering club”
and a “low clustering club”.

In 2015, H-H clustering was found in most cities in Jiangsu Province and Suzhou,
Anhui Province, whereas L-L clustering was found mostly in Zhejiang Province’s southern
cities and Huangshan and Chizhou, Anhui Province. Generalized, the northeast had higher
levels of pollution and the southwest had lower levels. However, in 2018, the areas showing
H-H clustering shifted from Jiangsu Province to the northern part of Anhui Province, and
the areas showing L-L clustering gradually moved from Huangshan and Chizhou in Anhui
Province to Zhejiang Province. As a result, the overall pollution pattern in the YRD became
high in the northwest and low in the southeast. This change can be explained by the fact
that northern Anhui is the main region undertaking the transfer of traditional industries
from Shanghai, Jiangsu, and Zhejiang. Furthermore, these industries are relatively pol-
luting and geographically form an industrial agglomeration effect, which makes the AQI
distribution in northern Anhui show H-H clustering. However, the Zhejiang government
has accelerated industrial transformation and upgrading, especially the deep integration of
the digital economy and manufacturing, which has greatly reduced pollutant emissions.
Therefore, the air quality has improved not only in Zhejiang but also in surrounding areas.

3.4. Hot and Cold Spot Analysis of the AQI

Hot spot analysis can further detect the key locations of spatial agglomeration and the
degree of regional correlation. Additionally, it can determine the contribution of specific
regions to global autocorrelation, thus revealing the extent to which Moran’s I masks local
instability. The Getis–Ord Gi* statistic can be used to identify significant hot spots (high
values) or cold spots (low values). The spatial distribution of hot spots or cold spots is
shown in Figure 5.
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The results show that from 2015 to 2018, the spatiotemporal evolution of hot spots and
cold spots had significant regional characteristics. One characteristic is that hot spots moved
westward and northward. In 2015, hot spots were mainly concentrated in southern Jiangsu
Province, such as Changzhou, Yangzhou, Zhenjiang, and Taizhou. Later, in 2016, the hot
spots shifted to Suqian in Jiangsu Province and Huaibei and Suzhou in Anhui Province.
The hot spots further spread to cities in northern Anhui Province, such as Bozhou and
Bengbu, in 2017, and by 2018, the hot spots had narrowed to Suzhou, Huaibei and Bengbu.

Another characteristic is that cold spots move eastward and southward. In 2015, cold
spots were mainly located in Huangshan, Chizhou in Anhui Province and Quzhou and
Lishui in Zhejiang Province. Since then, the cold spots have gradually shifted to southern
Zhejiang. By 2018, cold spots were mainly concentrated in southern Zhejiang, such as
Quzhou, Lishui, Wenzhou, and Taizhou. This spatiotemporal evolution shows that the
AQI is mostly higher in northern Anhui and lower in southern Zhejiang. This fact further
demonstrates that the former has relatively serious air pollution, while the latter’s air
quality is relatively good. In addition, the difference in air quality between the north and
the south is obvious.

4. Heterogeneity of Socioeconomic Factors
4.1. Model Testing

The above research shows that the AQI in the YRD region has significant spatial
heterogeneity. The traditional ordinary least squares (OLS) model ignores the influence
of spatial geographical location on the AQI distribution. Therefore, a GWR model is used
in this research to empirically identify the regional heterogeneity of influencing factors of
AQI in the YRD. Local variations in dependent and independent variables due to location
can be effectively dealt with by the GWR model. This research takes the AQI level of
39 cities in the YRD in 2018 as the explained variable, and the relevant indicators from the
five dimensions, i.e., the industrial structure (Ind), transportation infrastructure (Tran), the
openness level (FDI), the technological innovation level (Inno), and city size (City), are taken
as the explanatory variables. ArcGIS 10.7 software is used to carry out regression analysis
to explore the factors that might be influencing the differences in the spatial distribution
of the AQI. In order to avoid estimation deviations resulting from mutual influence of the
indexes, a collinearity test is conducted on the above indexes. The results are shown in
Table 4. The variance inflation factor (VIF) of each indicator is less than 10. Therefore, there
is no multicollinearity relationship between the indicators selected.

Table 4. Descriptive statistics of the explanatory variables.

Variable Mean Std. Dev Minimum Maximum VIF

Ind 1.1027 0.3278 0.6465 2.3472 1.76
Tran 3661.615 3357.416 652 15,904 3.05
Inno 19,453.79 20,976.73 1097 92,460 3.12
FDI 0.0244 0.0173 0.0033 0.0855 1.03
City 537 274.38 149 1459 1.65

Furthermore, all indicators are standardized. The results show that the GWR model
has a higher goodness of fit than the OLS model. Additionally, the significant difference
in AICC values between the two models is greater than 3 (see Table 5), indicating that the
GWR model is superior to the OLS model.
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Table 5. Parameter estimation and test results of the GWR model.

Parameter Value

Bandwidth 2.462822
Residual Squares 8.343186
Effective Number 15.666475

Sigma 0.597965
AICc 93.114997

R2 0.786072
Adjusted R2 0.651606

4.2. Empirical Results

As shown in Table 6, the GWR model calculation results are presented. From high
to low, the AQI is influenced by Tran, Ind, Inno, City, and FDI according to the mean of
the regression coefficient. Transportation infrastructure has the highest impact on the AQI
level, while the openness level has the lowest. In terms of the regression coefficients, there
are both positive and negative values, which indicates that the direction and degree of
each factor’s influence differ greatly in different cities. Using the traditional regression
method, it is possible to obtain the regression coefficient representing only the overall level,
while masking some local coefficient characteristics. However, the relationship between
the AQI and the influencing factors is not a stable coefficient. As a result of the actual
development of different regions, the influencing factors show strong spatial instability;
that is, their regression coefficients change significantly with the location. On this basis,
ArcGIS software is used to visually analyze the regression coefficients of various factors to
create a map of the factors’ spatial distribution.

Table 6. Calculation results of the GWR model.

Variable Minimum Maximum Mean Median Std. Dev

Ind −0.7164 −0.0943 −0.3899 −0.3699 0.1805
Tran 0.136 0.701 0.4042 0.3699 0.1561
Inno −1.0685 −0.021 −0.3548 −0.3065 0.2233
FDI 0.0576 0.4642 0.2129 0.1754 0.1241
City −0.15 0.5202 0.2245 0.2321 0.1814

(1) Industrial Structure
As indicated in Figure 6, a negative correlation exists between upgrading the industrial

structure and the AQI level. That is, the higher the proportion of the tertiary industry is, the
lower the AQI level, and the better the air quality status. The explanation for this finding
lies in the fact that with the increase in the percentage of tertiary industries, the amount of
emissions produced by economic activity has decreased and the air quality has improved.
Furthermore, east and west of the YRD differ significantly. The negative impact is mainly
distributed in the western region, which indicates that the improvement in air quality in
the western part of the YRD is significantly higher than that in the eastern part. Moreover,
the influence is zonal from west to east, especially in cities such as Wuhu, Tongling, Anqing,
Chizhou, Huangshan, and Quzhou. The reason is that the western part of the YRD is
mostly located in Anhui Province and the development of the tertiary industry there is
relatively insufficient, which makes the marginal promoting effect of industrial upgrading
on air quality more obvious. In contrast, the cities in the eastern part of the YRD are mainly
located in Zhejiang, Jiangsu, and Shanghai. The tertiary industry in these cities is relatively
fully developed; thus, the industrial upgrading of these cities has a comparatively limited
effect on the improvement in air quality status. This finding demonstrates the traditional
pattern of development of Chinese cities, namely, that when the social development of the
city enters industrialization, environmental pollution tends to increase along with GDP.
Eventually, however, economic development will reach a point of inflection, environmental
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pollution will decline with economic development, and environmental quality can coexist
harmoniously with economic development.
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(2) Transportation Infrastructure
As indicated in Figure 7, a positive correlation exists between transportation infras-

tructure and the AQI level; that is, the larger the road area is, the worse the air quality
status. Furthermore, there is a significant difference between the south and the north in the
YRD. The regression coefficient of cities in Zhejiang Province is generally higher than that
of other cities in the YRD, and the impact of transportation infrastructure on the AQI in
northern Jiangsu and northern Anhui is relatively weak. This finding can be attributed to
the strong investment in transportation infrastructure made by the Zhejiang government in
recent years. For example, the investment in Zhejiang’s transportation amounted to CNY
373.1 billion in 2018, which was far higher than that of other areas in the YRD. As a result,
a large amount of construction dust enters the urban air and aggravates the air pollution.
This can also be explained by the phenomena in Jiangsu Province and Anhui Province.
The impact of transportation infrastructure on the AQI in southern Jiangsu and southern
Anhui is greater than that on their northern counterparts owing to more investment in
transportation in southern Jiangsu and southern Anhui.

(3) Openness Level
The openness level has a positive correlation effect on the AQI, and the higher the

openness level in the YRD is, the worse the air quality. This finding shows that the FDI
brought in by economic openness does not bring more advanced technology; rather, it
brings more air pollution. This is reasonable for two reasons. First, the governments
in the YRD often relax their environmental regulation standards to attract more FDI,
thus making the region a “pollution refuge”. In addition, the introduction of FDI has
expanded the production scale of the region, increased the emissions of atmospheric
particulates to a certain extent, and worsened the air quality. Figure 8 shows that Zhejiang
Province is the region with the most serious effect on air pollution due to FDI when
considering the spatial distribution of regression coefficients. This result can be explained
by the fact that most foreign capital introduced in Zhejiang Province is concentrated in
relatively high-pollution industries, such as the textile industry, chemical raw material and
chemical product manufacturing industry, and construction industry. Second, compared
with southern Jiangsu and western Anhui, the pollution stemming from the introduction of
foreign capital in northern Jiangsu and most parts of Anhui is lower. A possible explanation
for this finding is the concentration of FDI in Jiangsu’s south, which makes air pollution
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from foreign investment in these areas more severe than in northern Jiangsu. However,
although Anhui does not attract a large amount of foreign capital because of its locational
disadvantage, the fragile ecological environment in western Anhui makes the air pollution
stemming from foreign investment stronger than that in other parts of Anhui.
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(4) Technological Innovation Level
A negative correlation exists between the technological innovation level and the AQI

in the YRD (see Figure 9). Higher levels of scientific and technological innovation lead to
better air quality. This result shows that a stronger research capacity allows cities to conduct
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high-tech research that supports industrial upgrading and productivity increases. Scientific
and technological innovation has strengthened the application of emerging technologies in
the production process and the clean production mode has been gradually promoted [38].
As a result, the emission of air pollutants in the production process has been reduced, thus
improving the air quality. The spatial distribution of the regression coefficient indicates that
scientific and technological innovation has a decreasing effect on air quality from north to
south, especially in northern Anhui and northern Jiangsu, and technological innovation’s
effect on air quality is the most obvious. It is because these areas have relatively low
levels of original scientific and technological innovation and air quality is more sensitive to
changes in scientific and technological innovation. In contrast, the high level of scientific
and technological innovation in southern Jiangsu, Shanghai, and northern Zhejiang makes
the improvement effect relatively limited.
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(5) City Size
There are two different effects of city size on the AQI in the YRD. Thirty-four cities

have a positive correlation effect, while the remaining five cities have a negative correlation
effect. This result can be explained by the environmental Kuznets curve. Typically, smaller
cities tend to have low levels of economic development, and the degree of environmen-
tal pollution is also lower; however, as the city size expands, the development of urban
construction is rapid, and a large amount of construction dust enters the urban air, aggra-
vating urban air pollution. From the spatial distribution of the regression coefficient (see
Figure 10), the expansion of cities in western Anhui has the most significant effect on air
quality deterioration, mainly due to the good ecological environment of these cities; addi-
tionally, these cities have some room for improvement when it comes to industrial structure
and infrastructure development, the boom in urban construction easily causes air pollution.
Moreover, the effect of city size on the spatial distribution of pollution decreases from west
to east, especially in Shanghai, Nantong, Ningbo, Taizhou, and Wenzhou in the east, and
the expansion of the size of cities has improved the air quality there. That is because these
cities have more environmentally friendly production lifestyles and infrastructure, and can
allocate and utilize resources more effectively.
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5. Conclusions

Since the reform and opening up, the YRD has become the center undertaking global
industrial transfer, indirectly changing the pattern of pollution emissions of the region. By
using the spatial autocorrelation test and GWR model, this study explores the evolution of
the spatiotemporal regularity and impact mechanism of the AQI level in 39 cities of the
YRD from 2015 to 2018. Doing so holds great significance for jointly controlling high-energy
consumption and high-emission industries, realizing coordinated governance among cities,
and building a world-class green development urban agglomeration with global influence.
The main conclusions of this study are as follows. From the perspective of the monthly
variation, the average monthly AQI level of the urban agglomeration in the YRD roughly
presents a U-shaped curve in the twelve months of the year. From the perspective of
geographical distribution, the urban agglomeration in the YRD presents an air pollution
pattern of being low in the northwest and high in the southeast. The most polluted areas
are concentrated in Huaibei, Suzhou, and Xuzhou. Furthermore, the spatial autocorrelation
of the AQI level is verified, and the distribution regularity of the “high clustering club” and
the “low clustering club” is obvious.

More importantly, the socioeconomic development of this urban agglomeration has a
heterogeneous impact on its air quality. The impact intensity of transportation infrastructure
is the largest, and the impact intensity of the openness level is the smallest. The upgrading
of the industrial structure improves the air quality status in the northwest more than in
the southeast. The impact of transportation infrastructure on the air pollution of cities in
Zhejiang Province is significantly higher than that of other cities. The air pollution caused
by the introduction of foreign capital is more obvious in Zhejiang Province, and the air
quality improvement brought by technological innovation decreases from north to south.
At the same time, with the expansion of the size of cities, there is a law according to which
air quality first deteriorates and then improves.

The coordinated development of the YRD needs to take the urban agglomeration as the
main body to realize overall green development. According to the above empirical results,
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and the corresponding discussion, the following policy implications for the improvement
of air quality status in the YRD are drawn.

First, the government should raise the elimination standard for the backward produc-
tion capacity in the YRD and promote the upgrading of key industries. Specifically, it can
be promoted in the following ways: strictly implementing unified special emission limits
on air pollutants; promoting the transformation of the ultralow emissions of coal-fired
power units; and carrying out rectification within a time limit for key industries such as
steel, cement, and flat glass. In addition, volatile organic compound (VOC) pollution in key
industries, such as the petrochemical, coating, packaging, and printing industries, should
be treated. Through relevant measures, the rationalization, advancement, and efficiency of
the industrial structure can be gradually realized.

Second, the grid spatial pattern suitable for the resource and environmental carrying
capacity should be reasonably constructed. The areas with phased saturation of the resource
and environmental carrying capacity are mainly distributed in Shanghai and southern
Jiangsu and around Hangzhou Bay. The scale and opening intensity of new construction
land in these cities should be strictly controlled. Areas with great potential for the resource
and environmental carrying capacity are mainly distributed in central Jiangsu, central
Zhejiang, central Anhui, and some coastal areas, and the industrial space of these areas
can be appropriately expanded. At the same time, the government can also learn from
the public management experience of the world’s advanced urban agglomerations and
actively promote the application of new energy and related infrastructure construction,
thus improving the urban carrying capacity.

Finally, the government should strengthen the cultivation of local green innovative
enterprises, guide foreign capital to be invested more in the service industry, and improve
the quality and level of foreign capital utilization to avoid becoming a place to which
global high-pollution industries are transferred. Green transformation is inseparable
from scientific and technological innovation. The government should pay attention to
increasing the investment in green innovation, give full play to the radiation and driving
role of Shanghai as a core city, and drive the overall local technological and ecological
construction [39,40]. Notably, it should also give full play to the comparative advantages of
various cities and coordinate the relationship between coastal cities and hinterland cities,
regional central cities, and small or medium-sized cities.
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