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ABSTRACT The kingdom Fungi is highly diverse in morphology and ecosystem
function. Yet fungi are challenging to characterize as they can be difficult to culture and
morphologically indistinct. Overall, their description and analysis lag far behind other
microbes such as bacteria. Classification of species via high-throughput sequencing is
increasingly becoming the norm for pathogen detection, microbiome studies, and envi-
ronmental monitoring. With the rapid development of sequencing technologies, however,
standardized procedures for taxonomic assignment of long sequence reads have not yet
been well established. Focusing on nanopore sequencing technology, we compared clas-
sification and community composition analysis pipelines using shotgun and amplicon
sequencing data generated from mock communities comprising 43 fungal species. We
show that regardless of the sequencing methodology used, the highest accuracy of spe-
cies identification was achieved by sequence alignment against a fungal-specific data-
base. During the assessment of classification algorithms, we found that applying cutoffs
to the query coverage of each read or contig significantly improved the classification ac-
curacy and community composition analysis without major data loss. We also generated
draft genome assemblies for three fungal species from nanopore data which were absent
from genome databases. Our study improves sequence-based classification and estima-
tion of relative sequence abundance using real fungal community data and provides a
practical guide for the design of metagenomics analyses focusing on fungi.

IMPORTANCE Our study is unique in that it provides an in-depth comparative study
of a real-life complex fungal community analyzed with multiple long- and short-read
sequencing approaches. These technologies and their application are currently of
great interest to diverse biologists as they seek to characterize the community com-
positions of microbiomes. Although great progress has been made on bacterial com-
munity compositions, microbial eukaryotes such as fungi clearly lag behind. Our
study provides a detailed breakdown of strategies to improve species identification
with immediate relevance to real-world studies. We find that real-life data sets do
not always behave as expected, distinct from reports based on simulated data sets.

KEYWORDS bioinformatics, fungi, metagenomics, pathogens

Fungi are ubiquitous yet their presence and impact are often overlooked. It has been
estimated that 2.2–3.8 million fungal species inhabit planet earth (1) but only about

4% of these are catalogued (2). Fungi play diverse and fundamental roles throughout
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evolution. For example, saprotrophs break down dead organic matter to release nutrients,
whereas mycorrhizae facilitate nutrient uptake by plants in soil. Fungi constitute a major
disease load to humans, causing millions of deaths per year, and wreak devastating crop
losses via a constant toll of disease and are an existential threat to many plant species (3,
4). On the other hand, fungi are or are used to manufacture delicious foods and beverages
and have saved countless lives via antibiotic production (5, 6). Therefore, a call was made
recently to expand fungal research and improve our awareness of this special kingdom (7).

To progress our understanding of fungal biology we need to improve our ability to cor-
rectly identify species from complex mycological samples. Historically, taxonomic assign-
ment was based on morphological and reproductive traits, but this has been largely sur-
passed by DNA-based classification which revolutionized mycology, not only refining the
conventional taxonomic tree (8, 9) but also standardizing the identification of species. In
the absence of whole-genome data, DNA-based classification primarily exploits the inter-
nal transcribed spacer (ITS) within the rRNA genes as a highly polymorphic marker to dis-
tinguish species, being designated the primary fungal barcode (10). It is easily amplified
and sequenced due to highly conserved flanking sequences and contains a high degree
of variation between even closely related species. Although a mature pipeline compris-
ing ITS amplification, IIlumina sequencing and data analysis has been established (11),
several studies reported biases from the sequencing technology used and from unevenly
amplified fungal marker regions (12–14). Recently, novel strategies exploiting long-range
amplification and long-read sequencing have been developed to improve these classifi-
cations (15, 16). In addition, whole-genome shotgun sequencing and rapidly expanding
genome databases allow mapping of newly generated DNA sequences directly to the
database. This so-called shotgun metagenomics strategy has now been applied widely
to dissect the structure and composition of complex microbial communities. Shotgun
metagenomics also allows exploitation of genetic variation throughout the genome and
abandonment of the marker gene amplification step, which increases classification accu-
racy and reduces the biases in estimation of relative abundance (17).

Although advanced sequencing methods allow novel strategies for fungal identifi-
cation particularly from mixed samples, new demands are placed on data analysis
pipelines to improve the accuracy of sequence classification. Various algorithms have
been developed to classify DNA sequences at distinct taxonomic ranks based on
sequence databases containing taxonomic information (18–22). For example, align-
ment algorithms such as Basic Local Alignment Search Tool (BLAST) (19) detect
matches of each sequence to subjects of the target database along with the taxonomic
information assigned to each entry. Alternatively, sequence features represented by
short unique subsequences named k-mers can be derived from sequence data and
mapped to databases to identify taxa with the highest number of cross-mapping
k-mers (20). Several studies have critically assessed algorithms for species classification
on simulated data sets or bacterial community data sets (23–25), but benchmarking of
long read sequencing strategies for taxonomic classification of fungal communities
using real data are extremely rare. As such, the bioinformatic tools to process fungal
sequencing data, particularly long reads, are not as well developed as those for bacte-
ria. In addition to bioinformatic tools, the choice of database also influences classifica-
tion dramatically, but only a few studies have researched their impact (26–28).
Compared to bacterial genomes, fungi contain complex genetic features such as multi-
ple chromosomes, expanded repeat regions and larger genome sizes, all of which
introduce inaccuracies during sequence classification. Therefore, comprehensive
benchmarking of both classification algorithms and databases is needed to optimize
identification pipelines for the kingdom fungi.

Here, we assessed different combinations of algorithms and databases during proc-
essing of both short- and long-read sequencing data for the identification of taxa from
mock fungal communities. We constructed a low diversity community consisting of
ascomycetous and basidiomycetous fungal species, which were designed to mimic
fungal identification scenarios from clinical or other host-associated environmental
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samples. We identified key factors that influence the accuracy of classifications, both
for mock community data sets and public data sets. Optimization of these methods
lead to more accurate community compositions. Our results provide guidelines for the
design of sequence-based community analysis for fungal species.

RESULTS
Construction of mock fungal community data sets. We constructed two mock

communities from the same set of 43 fungal species (Table 1), consisting of yeasts and fila-
mentous human-associated pathogens. We aimed to mimic a real-world situation with a
reasonable level of species diversity in order to adjust different technical search parameters
while aiming to recover all species. One community comprised pooled DNA individually
extracted from each species and the second was composed of DNA extracted from equal
quantities of fungal biomass (pooled biomass) of each species mixed together prior to the
extraction. We generated four sequence data sets for each community using Illumina and
nanopore technologies, sequencing both shotgun metagenomes and targeted amplicons,
respectively. The data derived from each strategy are summarized in Table 2.

Alignment algorithm against a fungal-specific database resulted in the most
accurate fungal classification. We compared different analysis strategies for each
metagenomics shotgun data set. For nanopore data sets, we directly used the quality-
controlled reads for classification. For Illumina data, we quality filtered all reads and
assembled them into contigs before classification to maximize the classification accu-
racy. We performed both alignment and k-mer based classifications on these data
using BLAST and Kraken2 (19, 21) using a “winner takes all” strategy in which the top
hit was taken to assign the taxonomic classification of the query sequence. For each
algorithm, we compared the use of two reference databases: the nonredundant NCBI
nucleotide database (29) and the RefSeq fungi database (30) which only contains cura-
ted fungal genomes. We first assessed the performance of each alignment tool on
both databases for each data input. We compared the concordance in the results of
each pipeline at the genus level. We define concordance as the percentage of fungal
genera identified by both analyses in a pairwise comparison (Fig. 1A). The concordance
between analyses on each data set varied between 69% and 86% and generally,
Illumina data resulted in a higher concordance than the nanopore data.

We then aimed to identify the combination of algorithm and database that yielded the
most accurate species identification. We used classification proportion and precision to evalu-

ate each classification, where Classification Proportion ¼ # total basepairs classified:
# total basepairs of input reads

,

and Precision ¼ # total basepairs classified correctly
# total basepairs classified

.

The number of total base pairs is calculated as total read length for nanopore reads
and total coverage of Illumina reads to each contig (24, 25). We plotted the precision
and classification proportion for each pipeline and found three regular patterns
(Fig. 1B and C): First, for each data set, BLAST resulted in higher precision but lower
classification proportion by comparison to Kraken2. Second, Illumina contigs returned
a higher classification proportion and precision than nanopore reads. Third, classifica-
tion against the Refseq fungal database yielded higher precision than those against
the NCBI nucleotide database. In summary, BLAST alignments against the Refseq fun-
gal database yielded the best classification strategy for shotgun metagenomics data
sets. Interestingly, this result contrasts to the method of choice for amplicon data sets,
in which the use of a restricted database generates higher false positives (27, 31).

Applying cutoffs to query coverage improves classification accuracy on shotgun
metagenomics data sets.We next aimed to improve our classification scheme by filter-
ing the BLAST search output. We reasoned that restricting alignment metrics would
reduce the number of false classifications. To investigate changes in classification accu-
racy after restricting BLAST output parameters, we first BLASTed shotgun metagenomics
reads against the RefSeq fungi database without applying any filter, then applied pro-
gressive cutoffs on different parameters of the BLAST results. We evaluated changes in
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the results based on the three metrics: precision, remaining rate, and completeness.
Precision is described above and estimates the accuracy of the classification; remaining
rate captures the percentage of the input data remaining after the application of each
cutoff; and completeness is the number of taxa captured relative to the total number of
taxa within the mock community. We initially applied cutoffs on query length; E value -
the number of expected hits of similar quality that could be found by chance alone; and
pident——the percentage of identical matches within the region of alignment between
query and subject. As shown in Fig. 2A, applying progressive cutoffs to query length did
not improve the precision, while both completeness and remaining rate diminished dra-
matically from very small cutoff values. Cutoffs applied to alignment E values removed
,20% of the BLAST results, whereas precision showed minor improvement, especially
on nanopore data sets (Fig. 2B). For Illumina data, applying cutoffs to the E value
increased the precision by around 2% but at the cost of diminished completeness. E
value cutoffs performed better on nanopore data sets, improving precision by 3%
(pooled DNA) or 4% (pooled biomass) with non-identification of only a single genus
from the mock community, at 102250 or almost 102400, respectively. Progressive cutoffs
on pident yielded the best results of all three filters. For Illumina data, precision was
improved by up to 8% for data from pooled biomass sample, and completeness
remained at 100% in almost all cases (Fig. 2C). For nanopore data sets, pident cutoffs
improved the precision by up to;3% before sharp decreases with a concurrent filtering
of ;60% BLAST result as shown by the remaining rate. We think that these sharp
decreases of precision are correlated with the nanopore error rate of 10% at the time.
Given the characteristically high error rate of nanopore reads, we also applied cutoffs on
quality scores to these data. Cutoffs applied to Phred scores did not alter the precision,
while a significant proportion of the data set was lost through filtering (Fig. S1). Overall,
our results suggest that applying E value and pident filters to BLAST results perform well

FIG 1 Analysis of shotgun metagenomics data. (A) Swarmplot showing the concordance in genus identification after varying either the alignment algorithm
or querying different databases on different data inputs. nt = NCBI nucleotide database (29); RFD = RefSeq Fungi database (30); data inputs are indicated
below the line (PD = pooled DNA; PB = pooled biomass); (B) Identification of fungal genera from PD samples. The classification proportion and precision were
derived from different combinations of search algorithms and databases as indicated (box); (C) Identification of fungal genera from pooled biomass samples.
The classification proportion and precision were derived from the different combinations of search algorithms and databases as indicated.

TABLE 2 Characteristics of each sequence data set

Sample
Sequencing
tech

Sequencing
strategy Number base pairs Number reads

Number assembled
contigs

Number mapped
base pairs (Gb)

Pooled DNA Illumina Shotgun 3.91 Gb 14,525,058 338,823 3.69
Amplicon 66.9/95.8/106.4 Mba 39,374/9,614/10,236b NA N/A

Nanopore Shotgun 1.96 Gb 1,273,484 NA N/A
Amplicon 71.5/72.5/86.5 Mb 26,212/ 26,680/ 31,826b NA N/A

Pooled biomass Illumina Shotgun 3.67 Gb 13,623,120 345,009 3.44
Amplicon 55.7/38.1/71.9 Mba 23,613/13,828/27,093b NA N/A

Nanopore Shotgun 3.78 Gb 1,043,343 NA N/A
Amplicon 54.5/49.4/42.0 Mb 20,163/ 18,273/ 15,502b NA N/A

aThe total number of basepairs of each technical replicate was calculated before import into QIIME2 pipeline.
bNumber of nanopore reads or paired-end Illumina reads for technical replicate 1/replicate 2/replicate 3 after quality control.
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on either Illumina or nanopore data but not both, and that cutoffs based on query
length or quality scores did not affect the precision significantly.

Given the results above, we investigated how the alignment parameters were calcu-
lated and explored other variables to improve the classifications. The BLAST E value is cal-
culated as E = mn2-S in which S is the bits score derived from the number of gaps and mis-
matches in the alignment, and m and n are the query length and database total length,
respectively (32). Therefore, the E value is influenced exponentially by the alignment qual-
ity. We next investigated query coverage, a metric based on how much of the query
sequence aligned to the subject. We calculated the query coverage as the number of iden-
tical matches divided by the read or contig length and applied progressive cutoffs on this
parameter for each data set/algorithm analysis. As shown in Fig. 2D, applying cutoffs on
query coverage improved the precision of all four analyses significantly, and did not cause
losses of completeness at smaller cutoff values. For example, at a 10% cutoff on query cov-
erage, the precision of all four analyses was 98–99% while the completeness remained at
100% and the remaining rate dropped by 10–25%. This result not only supported our hy-
pothesis that the total length of the alignment matters as much as the alignment quality,
but also suggested a novel approach to improve the accuracy of fungal classification.

Improving taxa identification from published metagenomics data sets using
query coverage as a filtering parameter. After improving classifications by applying
cutoffs to the query coverage on the mock community data sets, we extended this
strategy to try to improve the classification of published shotgun metagenomics data
sets. We reanalyzed 10 nanopore and six Illumina shotgun metagenomics data sets
(33–36). These included host-associated fungal samples (nanopore) and host-depleted
microbiome data (Illumina). For unified comparison, we used the BLAST algorithm for
all samples, and the choice of database was primarily based on the specific aim of each
study. For example, for all Illumina data sets, we downloaded the quality-controlled

FIG 2 Dynamics in precision, completeness, and remaining rate after applying progressive cutoffs on BLAST alignment metrics. PD = pooled DNA; PB =
pooled biomass. (A) Cutoffs applied to query length. (B) cutoffs applied to alignment E values. (C) cutoffs applied to the percentage of identical matches.
(D) cutoffs applied to query coverage.
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sequences and reanalyzed them using the assembly and BLAST pipeline described
above against the NCBI nucleotide database since they investigated the total micro-
biome diversity of all species. For the nanopore human data sets (35), we used the
BLAST results taken directly from the original articles for analysis focusing on the NCBI
nucleotide database. For the infected wheat data sets (34), we downloaded the
sequences and reanalyzed them against the RefSeq fungal database as the aim of this
study is to identify a limited number of fungal pathogen.

Since the environmental data sets contain unknown species, we followed the concept of
precision to evaluate the classification of each sample. We calculated the percentage of the
data set that was classified into taxa known to be included in the sample. For example, in
reanalyzing human clinical samples (35), we included the pathogen (Pneumocystis jirovecii)
and the human host (Homo sapiens) as the known taxa and calculated the total proportion
of query sequences classified to these taxa before and after applying cutoffs on query cover-
age. Table 3 shows the improvement in taxonomic classification from the published data
sets after applying query coverage cutoffs. We initially applied a 20% cut-off on the query
coverage for all analyses, but the data loss in most cases was too high. Therefore, we applied
query cutoffs that filtered around 20% of the BLAST results (20% drop of remaining rate)
based on our analysis of the mock fungal community data sets (Fig. 2D). The percentage of
confirmed genera increased for nearly all data sets after applying query coverage cutoffs
(Table 3). For the Illumina microbiome data sets, we first assessed the change of proportions
in fungal taxa after applying cutoffs on query coverages using the species lists identified by
Donovan et al. (37) as confirmed taxa. We observed only marginal increase in percentages
for the confirmed fungal communities, due to their low total proportions in the original sam-
ples. We then calculated the improvement in precision for the bacterial communities. The
Illumina data sets were generated from swine and mouse gut microbiome samples, so we
assessed the change in proportions of their core bacterial genera (a group of bacteria com-
monly present in swine and mouse guts [38, 39]). The percentages of confirmed core bacte-
rial genera improved by up to 5.7% after applying cutoffs on query coverage (Table 3). In
addition, in the nanopore human data sets, the total percentage of reads classified as Homo
sp. in the three healthy individual samples were improved by applying cutoffs to query cov-
erage. These results indicated that this strategy may be broadly applicable not only to fungal
species, but also to the classification of other eukaryotes and bacteria. One Illumina data set
(d1) and one nanopore data set (a5) showed decreased percentages of confirmed taxa after
applying query coverage cutoffs, which might be because the core microbiome species are
not representing the species identified in the Illumina sample, or due to the low coverage
and high error rate of nanopore data.

TABLE 3 Assignment of published sequence data to genera after application of cutoffs to query coverage

Sample ID Sample description
Sequencing
tech

Cutoffs on query
coverage (%)

Filtered
results (%)

Percentage of confirmed
genera before applying
cutoffs (%)

Percentage of confirmed
genera after applying
cutoffs (%)

a1 Human sputum samples35 Nanopore 59 20.2 85.9 86.5
a2 53.2 20.1 97.9 98.5
a3 54 20.5 96.5 97.4
a4 45.5 20.1 16.2 19.8
a5 58.5 20 71.1 66.9
a6 50.4 20.1 93.6 94.7
b1 Field infected wheat samples34 5 20 60.4 75.1
b2 0.77 19.9 34.8 43
b3 12 19.7 67 82
b4 0.61 20 5.8 6.2
c1 Swine gut microbiome samples38 Illumina 2.4 20.1 32 35.4
c2 3.3 20.2 34.2 36.6
c3 2.6 20.2 35.2 38.3
d1 Mouse gut microbiome samples39 3.4 19.8 29.1 24.3
d2 14 20.1 63.7 69.4
d3 4.5 20.2 38.6 42.3
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Benchmarking classification pipelines for amplicon data sets identified advantages
of each strategy. We next assessed different strategies for the classification of ITS
amplicon data sets. We amplified the ITS region from both mock communities using
two different primer pairs and three technical replicates for each sample. Taking
advantage of nanopore technology, we performed long-amplicon sequencing of a
roughly 3 kb rRNA gene region covering part of the 28S subunit, ITS1, 5.8S subunit,
ITS2 and part of the 18S subunit (11). For Illumina sequencing we used the well-estab-
lished ITS1F-ITS2 amplicon of about 300 bp in length (40). Similar to the analysis of the
shotgun data sets, we applied both k-mer and alignment-based approaches to the
classification of nanopore amplicon data. We used the pairwise alignment algorithm
minimap2 as the alignment algorithm instead of BLAST due to its speed and efficiency.
We tested four different databases for classification of long amplicons; the NCBI 18S
and 28S databases, and two ITS databases from NCBI and UNITE (30, 41). Overall, we
found that the k-mer algorithm returned much higher classification proportion than
alignment for each nanopore data set, but the highest precision (;97%) values were
achieved by combining the minimap2 alignment algorithm with the NCBI ITS database
(Fig. 3A). For Illumina amplicon data sets, we applied the QIIME2 pipeline which is one
of the most widely used strategies for ITS classification and community composition

FIG 3 Benchmarking of amplicon data sets. PD = pooled DNA; PB = pooled biomass. (A) Scatterplot representing genus level classification proportion and
precision for nanopore amplicon data. (B) Genus level precision of Illumina amplicon data. Classification proportion values for Illumina data were 100% due
to the nature of the QIIME2 pipeline (based on the UNITE ITS database). (C) Genus level completeness of both nanopore and Illumina amplicon data sets.
The nanopore results are from minimap2 algorithm against the UNITE ITS database.
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analysis (42). The QIIME2 pipeline groups similar Illumina amplicons into sequence fea-
tures before classification to reduce the demand on computational resources (43).
Since all individual Illumina reads are grouped into sequence features and all the
sequence features are classified, the classification proportion of the Illumina amplicon
data sets are 100%. We plotted precision rates from the QIIME2 analysis of both the
pooled DNA and pooled biomass samples with their means (Fig. 3B). The mean preci-
sion values from either Illumina data set were lower than that from k-mer analysis of
the respective nanopore data sets.

Although the precision values from amplicon data sets were higher than those
from shotgun data sets, the ITS classifications did not identify all genera within the
mock community, as shown by our completeness analysis (Fig. 3C). The nanopore
amplicons identified 68% (pooled DNA) and 63% (pooled biomass) of the total genera
in the mock community, whereas the Illumina amplicon data sets covered only 25%
and 41% of the genera, respectively. We suspect that the low completeness from ITS
classifications was due in part to the low quality of this particular data set (Table 2) and
partially due to biases arising from non-uniform amplification by used primer pairs and
different amplicon lengths. However, there were fewer nanopore amplicon reads than
in the Illumina amplicon data sets and the completeness from the nanopore data were
higher (Fig. 3C). This supports the argument that long amplicons identify a wider range
of species and are more accurate in species classification than short amplicons (44, 45).

Cutoffs on query coverage also improve community composition analysis. We
next calculated community compositions using the results from BLAST search against
Refseq fungal database for all shotgun metagenomics data sets. Community composi-
tion refers to the identity and relative abundances of all taxa in a community. Given
the observation that use of a restricted database resulted in higher classification preci-
sion, we constructed a database containing only the genomes from species within the
mock community and aligned all data to the mock community database using BLAST.
This forces the precision to 100% as any classification will belong to a species from the
mock community. We then BLASTed each data set against this database and calculated
the relative abundance of each genus. We defined this as the ‘gold standard’ for com-
munity composition analysis of the mock fungal community (Fig. 4A). We then com-
pared the community composition determined from each combination of algorithms
and databases with the gold standard for each data set, and measured their differences
using three statistical distance tests: Bhattacharyya distance, relative Euclidean dis-
tance and relative entropy (46–48). Consistently, BLASTing sequences against the
Refseq fungal database produced community compositions with the highest similarity
to the gold standard analysis (Fig. 4B).

To assess whether query coverage cutoffs also improved the community composi-
tion analysis of shotgun metagenomics data, we plotted the changes in statistical dis-
tance after progressive application of query coverage cutoffs (Fig. 4). After applying
cutoffs on the query coverage, the community composition improved in all cases espe-
cially for lower cut-off values. The community compositions from pooled DNA Illumina
data sets improved and turned out to be the most similar result to the gold standard
at query-coverage cutoffs greater than 3–4%, which is consistent with the changes in
precision rate shown in Fig. 2D. Overall, our results illustrated that applying cutoffs on
query coverage did not only improve the classification accuracy, but also the commu-
nity composition analysis.

DISCUSSION

Here, we investigated the taxonomic classification of DNA sequences, one of the
key steps in all metagenomic workflows, with a particular focus on fungi. After assess-
ing various combinations of algorithms and databases following different sequencing
strategies, we found that combining BLAST with the fungal specific Refseq fungal data-
base always resulted in the most precise classifications for all mock fungal community
data sets. These classifications were further improved when applying cutoffs on query
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coverage, including positive flow on effects on downstream community composition
analysis from shotgun metagenomics data sets.

Although sampling strategies and DNA extraction substantially influence the out-
come of species classifications (49–51), choosing an appropriate sequencing strategy is a
major step toward accurately profiling a sample. Overall, our results suggested that both
short- and long-read shotgun metagenomics data sets have comparable accuracy, and
both achieved higher accuracy than amplicon data sets. However, Illumina shotgun data
sets require additional steps to assemble reads into contigs before querying them
against a database, and to map all reads back to the assembly to quantify the coverage.
These processes are necessary to achieve accurate classification from longer contigs (52),
but take longer than analysis of long-read shotgun data. For amplicon data, long range
amplicons performed better than short ITS data in classification accuracy and complete-
ness (Fig. 3), consistent with other studies (44, 45). The overall completeness from analyz-
ing amplicon data sets is much lower than from shotgun data sets (Fig. 3C). This may be
because we used far less amplicon data for benchmarking classification pipelines, and
an incomplete database which does not contain all taxa present in our mock community.
On the other hand, amplification biases are another major source of poor community re-
covery. These biases come mainly from inconsistent amplification of the barcoding
regions of different species, caused by copy number variations and different primer
binding specificities (53, 54). Also, particularly for fungi, variations in barcode (amplicon)
length are the major source of bias in recording fungal community compositions, with
longer barcodes being underrepresented (55). Overall, analysis of the long-read shotgun
data sets returned the most accurate fungal classification.

FIG 4 Improving community composition analysis by applying query coverage cutoffs. PD = pooled DNA; PB = pooled biomass; nt = NCBI nucleotide
database (29); RFD = RefSeq Fungi database (30) (A) Experimental flowchart for analyzing community compositions. (B) Statistical similarity measures
between gold standard community composition and each combination of algorithms and databases. Lower values correspond to greater similarity
between the samples and the gold standard. (C) Change in Bhattacharyya distance after applying cutoffs to query coverage for each data set as indicated.
The query coverage gap between each dot point is 0.5%. (D) Change in relative Euclidean distance after applying cutoffs to query coverage for each data
set. The gap between each dot point is 0.5%. (E) Change in relative entropy after applying cutoffs on query coverage for each data set. The gap between
each dot point is 0.5%.
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Next, we found that the alignment algorithm (BLAST) outperformed the k-mer based
approach (kraken2) in classification accuracy (24, 56). We also compared the effects of
progressive cutoffs to major alignment parameters for classification of shotgun metage-
nomics data. We found that applying read length or read quality cutoffs did not improve
the precision of the classification for all shotgun data sets (Fig. 2A, Fig. S1). This observa-
tion contrasts with a previous study based on simulated data which claimed that the use
of long reads improves the accuracy of classification (57). Cutoffs on pident slightly
improved the classification accuracy for Illumina data sets, but the error-prone nature of
the nanopore data (;10% error rate with Guppy 4 basecalling) affected the results evi-
dent as a breakdown of precision when pident cutoffs reached 90% (Fig. 2C).

We found that query coverage cutoffs that filtered out ;20% of BLAST results
worked most effectively for improving the classification (Fig. 2D, Table 3). Unlike E
value which weights gaps and mismatches as the major factors affecting alignment
quality, query coverage weights the query length as well as the number of identical
matches in assessing alignment quality. In this case, we can eliminate spurious align-
ments that are due to a small proportion of reads with high fidelity to the reference
which are commonly present in metagenomics data sets. Interestingly, higher cutoffs
on query coverage (10–20%) are observed from mock community data sets than real
environmental data sets given the same 20% filtering threshold on BLAST results,
including few extremely low thresholds of query coverage in the contigs from Illumina
shotgun data sets. Other studies that used simulated data to generate metagenomics
contigs for classification employed 90% query coverage cutoffs (58–60). This clearly
indicates an important difference between real mock community data sets and simu-
lated data based on reference databases, because contigs from simulated reads are
artificially more similar to the reference genomes than the real data. Therefore, the use
of simulated data may overestimate the specificity of the alignment, which leads to
overoptimistic estimation of the classification. Together with the different results from
read length and read quality cutoffs, these observations highlight the differences
between the use of real environmental data and simulated data in benchmarking stud-
ies, especially for the classification of complex microbial communities.

There were some differences in results after analyzing pooled DNA and pooled bio-
mass samples after comparing statistical distance with the gold standard. pooled DNA
samples pooled DNA of individual species together while pooled biomass samples
pooled equal amount of fungal tissue before the DNA extraction. After applying cutoffs
on query coverage, both Bhattacharyya distance and Euclidean distance between the
best practice (BLAST 1 Refseq fungal database) and the gold standard classification
only showed marginal decrease in pooled DNA samples, and slowly reversed as the
cutoffs increase (Fig. 4). In contrast, these distances from pooled biomass samples
decreased more significantly and never reversed, indicating a clear improvement of
the community composition analysis (Fig. 4). This may be because about 1/3 of reads
were classified as Candida in the pooled DNA sample while only 10% reads were classi-
fied as Candida in pooled biomass sample. The difference in the relative abundance of
this single genus between the community compositions of the gold standard and the
best practice is much higher than that of other low abundance genera, and is thus
more influential in calculation of the overall statistical distance of each data set.

Following the effectiveness of the query coverage, the next question is how to
bring low quality but high coverage alignments into consideration? The winner-takes-
all selection strategy could itself be redesigned, as highly conserved genome regions
from closely related species often resulted in very similar alignment scores between
the best alignment and other top alignments of each query. In this case, a weighting
statistic and the relative probabilities of multiple top taxonomic assignments can be
explored to replace the best-hit-takes-all strategy. This will be particularly useful in
conjunction with the rapid expansion of fungal genome databases.

Next to the use of the best classification tool, choosing the most appropriate data-
base significantly influences analysis outcomes (25, 26). Based on our observations, we
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suggest that ‘prior knowledge’ of the data set should guide the choice of database as
this will improve the accuracy of taxonomic classifications. For example, our results
suggested that the restricted database resulted in more accurate fungal classifications
for shotgun metagenomics data sets. This strategy might be appropriate if queries are
initially binned into kingdoms before a more in-depth analysis using kingdom specific
databases. Also, Kaehler et al. (61) incorporated environment-specific taxonomic abun-
dance information into the analysis of amplicon data sets and showed that these
improve classification accuracy. Similar approaches can be applied to metagenomic
data sets. In addition, machine learning strategies are becoming increasingly popular
for analyzing genomic data. Here, taxonomic classifiers could be trained on classified
sequence data sets before being applied to communities with similar compositions to
the training data sets, or to identify target species from complex communities (56, 62).

MATERIALS ANDMETHODS
Code availability. All detailed commands and scripts used in each step are summarized in https://

github.com/Yiheng323/Inferring-species-compositions-of-complex-fungal-communities-from-long–and-
short-read-sequence-data.

Fungal harvesting, DNA extraction and construction of mock communities. Selected fungal
strains were grown for 48 h at 27°C on Sabouraud dextrose agar. For the species in the pooled DNA
community, an inoculation loop of fungal cells was scraped into a 1.5 mL microcentrifuge tube and
ground with a pestle in liquid nitrogen. Genomic DNA was extracted using the Zymo Research Quick-
DNA Fungal/Bacterial Miniprep kit (cat. no. D6005 Zymo Research, Irvine, CA, USA). First, BashingBead
Buffer was added to the ground fungal cells and vortexed. The mixture was filtered through a Zymo-
SpinTM III-F Column and the filtrate was combined with Genomic Lysis Buffer. The mixture was filtered
through a Zymo-Spin IICR Column and washed with DNA Pre-Wash buffer and g-DNA Wash Buffer. The
DNA was eluted in nuclease-free water. DNA concentrations were measured using the DeNovix dsDNA
Broad Range kit (DeNovix, Wilmington, DE, USA) and 250 ng of DNA from each strain was then pooled
to create the final community.

For the pooled biomass community, two inoculation loops of fungal cells of each species in the
mock community were scraped into a ceramic mortar. Liquid nitrogen was poured into the mortar and
the fungal mixture was ground into a fine powder. DNA was extracted using the Qiagen DNeasy
PowerMax Soil kit (cat. no. 12988-10 Qiagen, Hilden, Germany). PowerBead Solution and Solution C1
were added to the ground fungal material, vortexed and centrifuged. The supernatant was then added
to Solution C2, mixed and centrifuged, which was then repeated with Solution C3. The resulting super-
natant was combined with Solution C4 and centrifuged through a column. The column was then
washed twice with Solution C5. Final DNAs were eluted in nuclease free water and the concentration
measured using the DeNovix dsDNA Broad Range kit.

Library preparation and sequencing. The ITS1 regions of the rRNA gene were amplified with the
universal fungal primers, ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS2 (GCTGCGTTCTTCATCGATGC)
(40). Sequencing of PCR amplicons was conducted on the MiSeq System (Illumina, San Diego, CA, USA)
at the Australian Genome Research Facility. The Illumina bcl2fastq 2.18.0.12 pipeline was used to gener-
ate the sequence data. Paired-end reads 2 � 300 bp were generated up to 0.15 GB per sample for ampli-
con data. The Illumina amplicon data were then imported directly into QIIME2 for analysis. For shotgun
Illumina data sets, we employed the same sequencing pipeline as the amplicon data, with MiSeq and
the bcl2fastq 2.18.0.12 pipeline for the 2 � 300 bp paired-end reads. Raw shotgun Illumina reads were
trimmed of adapters with Trimomatic (63). Quality controlled, paired-end reads were merged and
assembled into metagenomics contigs using IDBA_UD (64), which is suitable for data sets with uneven
sequencing depths of each species. After assembly, raw reads were mapped back to the contigs using
bwa-mem (65), and the bam files were generated and sorted from sam files using samtools (66).
Bedtools (67) was used for generating coverage for each contig, and we used python numpy and pan-
das module to calculate the average coverage for each contig.

For Nanopore sequencing (both shotgun and amplicon sequencing), we used Ligation Sequencing
1D SQK-LSK108 and Native Barcoding Expansion (PCR-free) EXP-NBD103 kits from ONT (UK), as adapted
by Hu and Schwessinger (68), which was modified from the manufacturer's instructions with the omis-
sion of the DNA fragmentation and DNA repair steps. DNA was first cleaned up using 1� volume of
Agencourt AMPure XP beads (cat. no. A63881, Beckman Coulter, Indianapolis, IN, USA) following the
manufacturer’s instructions. We then eluted the DNA from the beads in 51 mL nuclease free water and
quantified it using NanoDrop and Quibit Fluorometers (Thermo Fisher Scientific, Waltham, MA, USA).
DNA was end-repaired (NEBNext Ultra II End-Repair/dA-tailing Module, cat. No. E7546), cleaned up
with1x volume beads (AMPure XP beads), and eluted in 31 mL nuclease free water. The barcoding reac-
tion was performed by adding 2 mL of each native barcode and 20 mL NEB Blunt/TA Master Mix (cat. No.
M0367) to 18 mL DNA, mixing gently and incubating at room temperature for 10 min. A 1� volume
(40 mL) Agencourt AMPure XP beads cleanup was then performed, and the DNA was eluted in 15 mL nu-
clease free water. Ligation was performed by adding 20 mL Barcode Adapter Mix (EXP-NBD103 Native
Barcoding Expansion kit, ONT, UK), 20 mL NEBNext Quick Ligation Reaction Buffer, and Quick T4 DNA
Ligase (cat. No. E6056) to the 50 mL pooled equimolar barcoded DNA, mixing gently and incubating at
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room temperature for 10 min. The adapter-ligated DNA was cleaned-up by adding 0.4� volume (40 mL)
of Agencourt AMPure XP beads, incubating for 5 min at room temperature and resuspending the pellet
twice in 140 mL ABB provided in the SQK-LSK108 kit. The purified-ligated DNA was resuspended by add-
ing 15 mL ELB provided in the SQK-LSK108 kit and resuspending the beads. The beads were pelleted
again, and the supernatant sequencing library was transferred to a new 0.5 mL DNA LoBind tube
(Eppendorf, Germany). Nanopore sequencing was carried out on a MinION MK1b device using R9.4.1
Flowcells. Raw fast5 files were barcode demultiplexed by deepbiner (ONT), then basecalled by Guppy
(v3.6.0, ONT, UK). Quality passed reads in fastq files were trimmed of adapters and barcodes using qcat
(ONT, UK). For the long amplicon data, we filtered out reads less than 2000 bp. All sequencing data were
submitted to the NCBI Sequence Read Archive (SRA) under the Bioproject PRJNA725368 including eight
accessions: SRX10705648, SRX10705649, SRX10705650, SRX10705651, SRX10705695, SRX10705696,
SRX10705697 and SRX10705698.

Genome assembly. While generating the reference genome database we found that there were no
reference genomes for Diutina rugosa (former Candida rugosa), Diutina mesorugosa (former Candida
mesorugosa), and Filobasidium magnus (former Cryptococcus magnus), so we performed nanopore
sequencing on pure DNA from each species and assembled their draft genomes. These assemblies were
of sufficient contiguity and quality (Table S1), so we added the new draft genomes into the reference
database.

The nanopore data for Diutina rugosa, Diutina mesorugosa, and Filobasidium magnus were generated
individually using the Ligation Sequencing 1D SQK-LSK108 kit alone, and from independent flowcells.
Data from each flowcell was basecalled and quality filtered using the same pipeline as described above.
We got roughly 40� genome coverage for Diutina rugosa and Diutina mesorugosa, and 20� coverage
for Filobasidium magnus. Draft genomes were assembled with Flye (69) using default parameters and an
estimated genome size of 20 Mb. After assembly, the contigs were polished 10 times with Racon (70)
using nanopore reads, followed by a single polishing step with Medaka (ONT). The polished assemblies
were assessed for completeness using BUSCO (71). The assembly statistics were reported from Flye.

Database constructions. For shotgun metagenomics analysis, we used three BLAST database and
three kraken databases. Two databases (NCBI nucleotide database and Refseq fungal database) are from
the same NCBI source, downloaded in May 2019. BLAST and kraken2 nt databases were downloaded
using the updateblastdb.pl script from BLAST1 package (72) and the kraken2-build command (21),
respectively. The fasta files of the RefSeq fungal database were downloaded from NCBI and converted to
a BLAST database using the makblastdb command from the BLAST1 package (72), and were added to
the kraken2 database library using the kraken2-build command.

To generate the mock community database containing only those species in the mock community
for BLAST, we downloaded the genomes of all mock community species from NCBI according to their
accessions (Table 1) and concatenated them with the three newly assembled genomes of Diutina rugosa,
Diutina mesorugosa, and Filobasidium magnus. Following the previous pipeline (73), we then performed
a kraken2 search to identify the potential contaminated regions in the concatenated fasta and masked
those regions using bedtools (67). This kraken2 search used the standard kraken2 database which was
build using the kraken2-build command. We also masked the low complexity regions using dustmasker
from the BLAST1 package (72). To enable new genomes to be indexed by blastn, we updated the taxo-
nomic map file by adding the fasta headers of the three new genomes and manually assigned their tax-
onomic IDs in the file. Lastly, we used the makeblastdb program to construct the mock community
database.

For amplicon data analysis, we used two versions of the fungal ITS database from NCBI and UNITE,
plus the fungal 18S, 28S database from NCBI. All of these were downloaded in fasta format in February
2020 and added to the kraken2 database library using the kraken2-build command.

Data analysis. For shotgun metagenomics data sets, we first used blastn (version 2.10.1) and
kraken2 (version 2.0.8) to assign the NCBI taxonomic ID for each Illumina contig or Nanopore read.
During classification, we found that a potential contaminant species Purpureocillium lilacinum was pres-
ent in all samples in significant abundance (10–20%). Therefore, we added this species to the species
list. The best hit from BLAST, or the species with the highest k-mer counts for each read and/or contig,
was retained for further analysis. After classification, we used the python pandas module to merge infor-
mation from different output files, and used the ete3 module (74) to assign taxonomic information to
each read or contig. The relative abundances of each classification were calculated based on the total
length of nanopore reads or total coverage of Illumina contigs. We used the python numpy and math
modules for all statistical analysis.

For amplicon data sets, we sequenced each sample with three technical replicates. The classification
workflow was different for data sets with different sequencing technologies. We used only the QIME2
workflow plus the UNITE database for the Illumina amplicon data, since it is the widely used method for
classification. The paired-end reads were denoised using the DADA2 (75) plugin and assigned taxonomic
information using the q2-feature-classifier (76) plugin. The QIME2 classifier was trained by the database
sequence before classification. The classification output .qzv files were visualized by the QIME2 view
website (https://view.qiime2.org/) and the feature-frequency csv file was extracted from the website. We
then used the python numpy and math modules for the mathematical analysis and used the seaborn
module to generate figures.

For nanopore amplicon data sets, we used kraken2 as the k-mer based algorithm and minimap2 as
the alignment-based algorithm. The kraken2 command is the same as the kraken2 analysis for the shot-
gun metagenomics data sets but uses different databases. For the minimap2 analysis, we extracted the
accessions of the best hits from the output files, and searched their corresponding taxonomic IDs from
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the NCBI taxonomic map (downloaded from https://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/
nucl_wgs.accession2taxid.gz, in June 2020) using the python pandas module. We then merged informa-
tion from different output files and used the ete3 module to assign taxonomic information to each read.

Availability of data and material. All sequencing data were submitted to NCBI Short Read Archive
(SRA) under the BioProject PRJNA725368 including eight accessions: SRX10705648, SRX10705649,
SRX10705650, SRX10705651, SRX10705695, SRX10705696, SRX10705697 and SRX10705698.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, JPG file, 0.6 MB.
TABLE S1, PPTX file, 0.04 MB.
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