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Abstract

Infections with the protozoan parasite Toxoplasma gondii are frequent, but one of its main

consequences, ocular toxoplasmosis (OT), remains poorly understood. While its clinical

description has recently attracted more attention and publications, the underlying patho-

physiological mechanisms are only sparsely elucidated, which is partly due to the inherent

difficulties to establish relevant animal models. Furthermore, the particularities of the ocular

environment explain why the abundant knowledge on systemic toxoplasmosis cannot be

just transferred to the ocular situation. However, studies undertaken in mouse models have

revealed a central role of interferon gamma (IFNγ) and, more surprisingly, interleukin 17

(IL17), in ocular pathology and parasite control. These studies also show the importance of

the genetic background of the infective Toxoplasma strain. Indeed, infections due to exotic

strains show a completely different pathophysiology, which translates in a different clinical

outcome. These elements should lead to more individualized therapy. Furthermore, the

recent advance in understanding the immune response during OT paved the way to new

research leads, involving immune pathways poorly studied in this particular setting, such as

type I and type III interferons. In any case, deeper knowledge of the mechanisms of this

pathology is needed to establish new, more targeted treatment schemes.

Introduction

Toxoplasma gondii is classically described as one of the most successful parasites in the world,

as more than one-third of the global population are estimated to harbor T. gondii, albeit with

great regional disparities, prevalence ranging from 10% to 80% [1]. The ocular presentation of

this infection, ocular toxoplasmosis (OT), has long been exclusively attributed to congenital

infection and neglected as a common health problem. Recent studies show that most of OT

cases are indeed due to infection after birth [2] and that it can be considered as the first infec-

tious cause of posterior uveitis worldwide, being responsible for 30% to 50% of all posterior

uveitis in immunocompetent subjects [3].

OT typically presents as retinochoroiditis, sometimes associated with anterior uveitis or

vasculitis [4]. It is often asymptomatic, especially when lesions are located at the outer edge of
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the retina, but can cause blurred vision and floaters [5]. In case of extensive lesions or particu-

lar location, such as macular or papillary involvement, the visual prognosis of the infected eye

can be severe. A major problem is that even ancient lesions can reactivate at any time, consid-

erably increasing the threat to the patient’s vision, for lifetime. The diagnosis of this infection

is sometimes complicated, especially in a tropical setting, requiring clinical and biological

assessments to identify the toxoplasmic origin of retinochoroiditis [6]. As to treatment, the few

protocols available control parasite proliferation at the acute stage of the infection or during

recurrences, but cannot eliminate the latent parasite stage, nor diminish the incidence of

recurrences, especially when the infection is discovered at a late stage [7,8]. Furthermore, sev-

eral of these treatments are not devoid of potentially severe side effects, such as the widely used

association of pyrimethamin and sulfadiazine.

Despite this tremendous epidemiological and clinical importance, the pathophysiology of

this infection remains poorly studied. Indeed, the complexity of the infectious process makes

experimental studies specific to OT difficult. However, a few research groups have established

models of specific aspects and have thus succeeded in exploring the pathophysiology of this

infection. The present article aims at reviewing current knowledge regarding eye immunology

and OT pathophysiology, but also to point out the numerous open questions, to better appre-

hend the specific complexity of this infection, as well as to stimulate new experimental

approaches to understand its underlying mechanisms.

Methodology

Reference was made to previous work obtained from meeting contributions and PubMed

search on the subjects of eye immunology and physiopathology of ocular OT. Key features of

OT pathophysiology, or of importance for apprehending it, were considered and are treated in

the following order: (1) eye invasion and infection by T. gondii; (2) local immune response to

T. gondii infection; and (3) specificities of South American OT. Figures were made using

Inkscape and TheGimp softwares.

The journey of a parasite

Toxoplasma gondii infection and dissemination

OT is one of the consequences of systemic infection by T. gondii, both in utero, and, more

often, after birth [2]. When the infection is acquired through the ingestion of food or water

contaminated with T. gondii, sporozoites or bradyzoites are freed from oocysts or tissue cysts,

respectively, following the combined action of bile acids, trypsins, pH, and other components

present in the digestive tract [9]. Once freed, parasites invade enterothelial cells, forming a

parasitophorous vacuole via the mobile junction mechanism [10]. They then transform into

rapidly proliferating tachyzoites, lysing their host cells and reaching the blood stream. This

phenomenon is responsible for an inflammatory response and the recruitment of polymor-

phonuclear cells, monocytes, and dendritic cells [11]. Parasites are also able to cross the intesti-

nal barrier via a paracellular path [12]. When the infection occurs in utero, subsequently to a

primo-infection of the mother, tachyzoites directly infect fetus-derived tissues, beginning with

the syncytiotrophoblast [13]. However, there are few studies about this particular route of

infection in humans.

The most commonly accepted hypothesis regarding parasite dissemination within its host

is the one of the “Trojan horse.” It states that parasites take advantage of immune cell mobility,

particularly dendritic cells (DCs), by invading them. Even more surprisingly, infected cells

exhibit a modified phenotype, being more mobile under the influence of parasite-derived pro-

teins, such as GRA5 [14]. This mechanism would allow parasites to be disseminated along
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lymphatic vessels. Moreover, parasites can disseminate along the blood stream, mostly inside

cells, primarily monocytes [15,16]. As with DCs, T. gondii seems to have the ability of modify-

ing the phenotype of infected monocytes and macrophages, enhancing their mobility, margin-

alization and extravasation [17–19]. Following dissemination, T. gondii is capable of invading

tissues, including brain, heart, eyes and, muscles [20].

The invasion of the eye

The eye presents a peculiar structure, composed of 3 layers (Fig 1). The outer one is known as

the “fibrous tunic,” composed of the cornea and sclera, consisting mainly of collagen, protect-

ing the eye from mechanic aggression and maintaining its shape. The middle layer is the

“uvea,” which is mainly composed of vascular structures, such as the choroid and the ciliary

body, but also the iris. Finally, the innermost layer is classically described as the nervous layer

which is, in fact, formed by the “retina,” the sensory tissue of the eye. The eye is filled with

transparent tissues and liquids, allowing the light to be properly focused onto the retina in

order to form a clear image, such as the lens, the aqueous humor, located between the cornea

and the lens, and the vitreous body filling the globe behind the lens [21].

Fig 1. The eye and the BRBs. (A) The internal BRB isolates ocular tissues from the blood stream via tightly sealed endothelial cells,

surrounded by pericytes, and Müller cell and astrocyte extensions. (B) The retina displays a stratified organization reflecting the localization

of the different cell types fulfilling specific roles. The choroidal vascular system is separated from photoreceptor cells by tightly connected RPE

cells, which adhere with their vascular pole to the basal Bruch membrane, forming the external BRB. BRB, blood-retinal barrier; RPE, retinal

pigmented epithelial.

https://doi.org/10.1371/journal.pntd.0008905.g001
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Ocular tissues are supplied through 2 vascular systems, both deriving from the ophthalmic

artery, the first branch of the internal carotid artery. The retinal vascular system enters the eye

along the optic nerve and is made up of small blood vessels directly supplying the inner layers

of the retina. The blood stream is isolated from ocular tissues via tightly sealed endothelial

cells, surrounded by pericytes, and Müller cell and astrocyte extensions, forming the internal

blood-retinal barrier (iBRB) (Fig 1) [22]. In primates, this barrier is only fully competent about

10 days after birth [23]. On the other hand, the choroidal vascular system enters without pass-

ing along the optic nerve. In the choroid, it forms a plexus composed of fenestrated capillaries,

in charge of supplying the external layers of the retina, notably photoreceptor cells. These

capillaries are separated from photoreceptor cells by tightly connected, polarized retinal pig-

mented epithelial (RPE) cells, which adhere with their vascular pole to the basal Bruch mem-

brane, forming the external BRB (eBRB) (Fig 1). These RPE cells fulfill several functions, such

as vitamin A metabolism, intraretinal homeostasis control, and immunoregulation. They are

also responsible for transporting nutrients and metabolites across the eBRB [24]. Therefore,

while this barrier also isolates the retina from the peripheral blood circulation, it is more per-

missive than the iBRB [22]. The principal mechanism used for the invasion of eye tissues by T.

gondii has not been evaluated. In vitro studies show the ability of the parasite to cross RPE cells

both in its free form, by using intercellular adhesion molecule-1 (ICAM-1)-mediated adher-

ence [25], and within DCs, using ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and

the activated leukocyte cell adhesion molecule (ALCAM) [26]. However, a recent study

showed that parasites were more present in the inner layers of the retina, suggesting that the

iBRB might be the preferred route for invasion over the eBRB [27], but could also be the conse-

quence of parasite mobility inside the retina.

Indeed, the retina is a complex tissue, with a remarkable stratified organization, which

reflects the localization of the different cell types fulfilling specific roles (Fig 1). Roughly, there

are 5 types of neuronal cells in the retina, working together to transform light into a neurologi-

cal signal for the brain: photoreceptor cells, horizontal cells, bipolar cells, amacrine cells, and

ganglion cells. Axons of these latter cells form the optical nerve. In addition to neuronal cells, 2

types of glial cells are present within the retina. Müller cells are the main glial cells of this tis-

sue, spreading across all the layers, acting mechanically to support the architecture of the ret-

ina. Additionally, these cells are also important in maintaining retinal homeostasis and are a

component of the iBRB by sending extensions of their body around intraretinal blood vessels

[28] (Fig 1). Astrocytes are also a component of this barrier and exert multiple functions rang-

ing from homeostasis control to immune responses. In particular, astrocytes are responsible

for controlling extracellular glutamate level, nitric oxide (NO) production, and cytokine

expression [29]. Finally, retinal microglial cells are not glial cells but immune cells, deriving

from the yolk sac, like cerebral microglial cells [30]. Retinal microglial cells derive from 2 dif-

ferent types of cells, the first ones expressing specific markers of macrophages (CD45+, Mac-

1+, CD11b+, F4/80+, CD68+), the second ones with a CD11blow/CD45low phenotype [31].

These cells seem to be homogeneously distributed in the retina [28]. They play an important

role in the immune response against infections, immune regulation, and repair of damaged tis-

sues. Their functions seem to be close to those of classical macrophages. However, they appear

not to be able of expressing the class II major histocompatibility complex and to have limited

abilities for antigen presentation [32].

Once in the retina, the parasite invades resident cells, but studies to identify a privileged cell

type for infection gave divergent results [27,33]. While, in an in vitro model, T. gondii seems

capable of crossing several layers of the retina before preferentially invade a glial cell, murine

models have shown that the parasite infects both glial and neuronal cells, without preference
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[27,33]. Thus, the identification of cell types as privileged hosts of T. gondii could explain the

discovery of parasites located far from their point of entry into the retina.

Persistence and recurrences

Following a phase of active proliferation within the retina, clinically marked by a developing

lesion, the increased pressure from the host immune system finally controls the proliferation

but does not eliminate the parasite. T. gondii has the ability to persist in the invaded tissues by

conversion of tachyzoites into slowly proliferating forms called bradyzoites, which are orga-

nized in tissue cysts [20]. Some parasite-derived proteins have been identified as playing a role

in this transformation, such as ROP17, ROP35, and ROP38 [34]. No study has yet described

invasion and cyst formation specifically in the eye, but it is probable that the mechanisms are

similar as in other tissues. This phenomenon consists in the transformation of a parasitophor-

ous vacuole into a cyst by an extensive modification of the vacuole membrane, involving the

addition of several parasite proteins and glycosylation [35–38]. Furthermore, cyst-containing

cells exhibit strongly modified microtubules and intermediate filaments networks [39].

Recurrences are an important feature of OT. This term refers to the fact that new foci of

active retinochoroiditis develop, usually at the immediate vicinity of scars of ancient lesions.

Thus, with every recurrence, the probability of visual impairment consecutive to toxoplasmosis

increases [3]. It is remarkable that recurrences also readily occur in immunocompetent sub-

jects. The pathophysiological basis of this phenomenon is poorly understood. It may be the

consequence of the active liberation of tachyzoites from resident cysts [5]. Other studies sug-

gested the rupture of senescent cysts, traumas, hormonal fluctuations, decrease in humoral or

cellular immunity, pregnancy, or even eye surgery [40–42]. Clinical features of these recur-

rences might give us clues about the mechanisms underlying their development. Indeed,

severe, highly progressive and extended lesions has been predominantly observed in elderly,

pregnant, or immunodeficient patients [42–45]. Higher intraocular anti-T. gondii titers have

also been correlated with limited risk for developing recurrences [46]. Together, these ele-

ments indicate that the quality of the immune response against T. gondii is critical for the

development and the progression of OT recurrences. However, the mechanisms, which actu-

ally trigger the recurrence, remain unknown, and the difficulties in developing a model for

studying such a sporadic phenomenon restrict the possibility for improving our understanding

on the matter.

The immune response to OT

Immune privilege and immune response to Toxoplasma gondii
Like other sensitive, nonregenerative organs, such as brain and placenta, the eye is classically

described as an “immune privileged organ.” This condition is defined by the limitation of local

inflammation and immune cell activation, preventing irreversible tissue damage. Several

underlying mechanisms are involved in this phenomenon and are responsible for a complete

modification of the immune response to T. gondii infection.

As described earlier, the retina is well isolated from blood circulation via BRBs. These BRBs

mechanically forbid circulatory immune cells, antibodies, and antigens to pass from one com-

partment to the other. Furthermore, even though choroid may function as a part of the lym-

phatic drainage of the eye [47,48], there is no proper lymphatic vasculature, liquids being

directly drained into the venous circulation through the trabecular meshwork [49]. This fea-

ture greatly diminishes the capacity to present eye-derived antigens to T cells.

In nonimmune privileged organs, T. gondii proliferation control primarily relies on the

expression of interferon gamma (IFNγ), which induces indoleamine 2,3- dioxygenase (IDO),
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inducible nitric oxide synthase (iNOS), effector proteins immunity-related GTPases (IRGs),

and guanylate-binding proteins (GBPs), leading to inhibition of parasite growth, NO-mediated

cytotoxicity, and destruction of the parasitophorous vacuole (Fig 2) [50]. Many cells are

involved in the expression of IFNγ in response to T. gondii infection, such as DCs, macro-

phages, CD8+ and CD4+ lympocytes, granulocytes, and NK cells. In particular, CD4+ Th1 cells,

activated through interleukin 12 (IL12) stimulation from antigen-presenting cells (APCs),

induce a robust CD8+ T cell effector immunity, these cells being an important source of IFNγ
and also exhibiting cytotoxic activity against infected targets [51,52]. These principles of sys-

temic immunity to T. gondii infection have been extensively detailed in previous reviews

[53,54]. In contrast, when looking at ocular infection, the posterior eye pole presents an immu-

nosuppressive microenvironment, characterized by the expression of suppressive cytokines

(Fig 2). A prominent example for such molecules is Transforming Growth Factor-β2 (TGFβ2),

which regulates the differentiation, proliferation, and survival of lymphocytes [55]. In the local

environment, TGFβ2 is activated and stabilized by thrombospondin-1 (TSP-1), which is con-

stitutionally expressed in RPE cells [56]. The α-melanocyte-stimulating hormone (α-MSH) is

also found in this environment and exerts its immunoregulatory functions not only by induc-

ing the expression of TGFβ2, but also by inhibiting the expression of IFNγ and toll-like recep-

tor 4 (TLR4), which is involved in detecting T. gondii glycosylphosphatidylinositol (GPI)

during infection [53]. The vasoactive intestinal peptide (VIP) acts as a potent

Fig 2. The ocular immunosuppressive microenvironment widely impairs the normal immune response to T.

gondii infection. In the general situation, the lysis of the parasitophorous vacuole and, ultimately, the parasite, relies

on the expression of IFNγ by multiple cell types stimulated with various Th1 cytokines. In the eye, this mechanism is

impaired by the presence of inhibitory molecules locally expressed by retinal cells, including RPE cells. Green arrows

with pointy heads mean “activates/stimulates.” Red arrows with flat heads mean “inhibits.” αMSH, α-melanocyte-

stimulating hormone; CRE, cAMP response element; GBP, interferon-induced guanylate-binding protein; IDO,

indoleamine 2,3-dioxygenase; IL, interleukin; IFNγ, interferon γ; iNOS, nitric oxide synthases; IRF1, interferon

regulatory factor 1; IRG, immunity-related guanosine triphosphatases; LT4, CD4+ T cells; LT8, CD8+ T cells; MF,

macrophage; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-kappa B; NKC, natural killer cells; PNL,

polymorphonuclear leukocyte; TGFβ: transforming growth factor β; TNFα, tumor necrosis factor α; Treg, regulatory T

cells.

https://doi.org/10.1371/journal.pntd.0008905.g002
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immunosuppressive molecule by inducing several transcription factors, such as nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-κΒ), interferon regulatory factor-1 (IRF-

1), mitogen-activated protein kinase (MAPK), and cAMP response element (CRE). By these

activations, VIP down-regulates the expression of several inflammatory molecules such as

tumor necrosis factor-α (TNFα), IL1, IL6, IL12, and IFNγ, while up-regulating the expression

of immunomodulatory molecules such as IL10, IL1R, and TGFβ [57]. Retinoic acid (vitamin

A), detected not only in RPE cells but also in all retina layers, has been shown to have immuno-

modulatory functions, similar to those of TGFβ [58]. Finally, the calcitonin gene-related pep-

tide (CGRP), which is expressed by retinal neuronal cells, has an inhibitory effect on

macrophages, limiting the NO production by these cells [59].

Cellular immune mechanisms are also involved in this immunosuppressive microenviron-

ment. α-Melanocyte-stimulating hormone (α-MSH) is able to induce the differentiation of T

cells into regulatory T cells (Fig 2) [60]. Macrophages present in the eye are able to process

antigens of ocular origin and to present it to T cells in the spleen marginal zone, also inducing

their differentiation into regulatory T (Treg) cells [61]. Other mechanisms involve microglial

cells expressing both ligands and receptors of the CD200/CD200R pathway, preventing activa-

tion of blood-borne myeloid cells [62,63]. RPE cells are equally able to induce the differentia-

tion of T cells into regulatory T cells, along with expressing TGFβ, through the expression of

prostaglandin E2 and cytotoxic T-lymphocyte-associated protein 2 (CTLA-2) [64]. Further-

more, they express ligands for programmed cell death pathways, such as FAS ligand (FasL)

and PD-L1, thus effectively eliminating activated invading immune cells, especially activated T

cells [64,65]. PD-L1 is also expressed by retinal neurons in naive mice, suggesting a role of

these cells and the PD-1/PD-L1 pathway in maintaining the retinal immunosuppressive

microenvironment [66]. Finally, the TNF-related apoptosis-inducing ligand (TRAIL), which is

also expressed in the retina, particularly at the eBRB, is equally able to induce cell death.

Thus, multiple systems ensure the particular immunosuppressive microenvironment in the

eye posterior pole and provide a suitable niche for T. gondii persistence and development,

which makes it difficult to generalize results of studies on other, nonocular models, to OT

pathophysiology.

Innate and adaptive responses to the ocular toxoplasmosis

In vitro studies indicated that Müller cells, when infected with T. gondii, are able to express a

large panel of immune mediators, such as IL4, IL6, CCL2, CXCL2, and CXCL-8 [67]. How-

ever, classical inflammatory cytokines, known to control Toxoplasma proliferation, such as

IL12 or IFNγ, are not expressed by these cells [67].

Murine models partially confirmed these results, showing the expression of not only IL6

but also TGFβ and β2-microglobulin, in the eye of experimentally infected animals [68]. In the

same study, IL6 knock-out mice exhibited a highly susceptible phenotype, with severe retinal

inflammation and high parasite burden, suggesting an important role for this particular cyto-

kine in protecting the retina against toxoplasmic infection [68]. Another study showed local

expression of IFNγ and TNFα by invading lymphocytes, as well as macrophages, during toxo-

plasmic uveitis [69]. Other cytokines and chemokines seem to have important roles in protect-

ing the eye against toxoplasmic infection, such as CXCL10, IFNγ, and TNFα, as demonstrated

by higher parasite burdens in the corresponding knock-out or neutralization models [70,71].

Whereas these studies looked at the response to an acute primo-infection, few groups specifi-

cally studied the immune response in case of recurrences. In a work using a murine model

mimicking OT recurrences conducted in our laboratory, the important retinal inflammation

and high parasite burden in susceptible C57BL/6 mice correlated with strongly expressed
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inflammatory and Th1 cytokines, such as IL6 and IFNγ [72]. In contrast, the resistant Swiss-

Webster mice primarily expressed Th2 cytokines, such as IL31 and a rapid, strong antibody

production. Neutralizing cytokines injected concomitantly into the eye allowed us to dissect

specifically the ocular immune response. While intraocular neutralization of IFNγ resulted

without surprise in higher local parasite loads, locally administered anti-IL6 antibodies

reversed the susceptible phenotype of C57BL/6 mice, both in terms of pathology and parasite

control [72]. This is in contrast to the abovementioned protective effect of IL6 [68] and could

therefore reflect the special immunologic environment within the immune privileged eye,

which cannot be addressed using knock-out mice. Indeed, retinal MHC class II and PD-L1

expression are involved in suppressing T-cell activation following retinal toxoplasmic infec-

tion, therefore protecting the retina from CD4 T-cell-mediated immune damage [73]. While

this study allowed us to look at the control of parasites during artificial rechallenge, no model

has yet been established to actually observe and quantify natural recurrences.

Finally, numerous data from human samples provide clues about the immune response

during OT in humans. Retrospective surveys analyzed aqueous humors of OT patients and

retrieved high levels of Th1 and inflammatory cytokines such as IL2, IFNγ, IL6, IL17, and

Monocyte Chemotactic Protein-1 (MCP-1), as well as of the Th1 negative control cytokine

IL10 [3,74,75]. Congruently, Th2 cytokines, such as IL13, were poorly expressed in these

patients.

The particular role of IL17 in ocular immunity

The detection of IL17, alongside the more canonical Th1 cytokines, drew the attention of our

group to the role of Th17 lymphocytes in the pathophysiology of OT. The differentiation of

Th17 lymphocytes is stimulated by TGFβ, IL1, and IL6. They exert a pro-inflammatory effect

through the secretion of cytokines and are involved in autoimmune diseases (like psoriasis,

psoriatic arthritis, and rheumatoid arthritis), chronic inflammation, and protective immunity

against extracellular bacteria and fungi [76]. However, the functions of Th17 lymphocytes are

not fully understood. IL17 is the major cytokine of the Th17 lymphocyte subpopulation. IL17

family contains 6 members, named consecutively IL17A to IL17F and 5 identified IL17 recep-

tors (IL17RA-E) [77]. IL17E is quite apart by its weak homology with the other family mem-

bers and its Th2-like action and is now termed IL25. IL17 receptors are present on many cell

types including immune cells. Their stimulation induces the expression of various cytokines

and chemokines, leading most prominently to recruitment and maturation of neutrophils.

IL17 also acts on nonimmune cells such as fibroblasts and epithelial cells, among which RPE

cells, and induces the production of Granulocyte Macrophage Colony Stimulating Factor

(GM-CSF) and prostaglandin E2, thereby increasing the maturation of granulocytes and the

inflammatory process [78].

The first indication of the central role of IL17 came from studies on human OT patients

who showed strong ocular IL17A expression, in striking contrast to viral and other uveitis

cases [75]. This might suggest the existence of autoimmune processes, resulting from tissue

damage. Immunofluorescence staining localized this IL17A expression mainly to Müller cells,

which is rather surprising, IL17A being commonly associated with T cells or natural killer

(NK) cells. In fact, whereas other studies confirmed our finding of IL17 expression in the eye

[79], no evidence of infiltrating bona fide Th17 cells (CD4+ IL17+) has yet been described.

However, such Th17 cells have been described in the peripheral blood of OT patients [80].

Murine models have allowed the identification of IL17 as a highly expressed cytokine in case

of OT, whether during acute primo-infection through intravitreal injection or using protocols

experimentally mimicking OT recurrences [72,81,82]. High expression of IL17 was correlated
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with the development of severe retinal lesions. The IL17 concentration in aqueous humor was

higher in acutely infected mice than in animals which had already been previously challenged

with the parasite, while the Treg marker FoxP3 as well as Th1 markers and cytokines were sup-

pressed [82]. Using neutralization experiments, we confirmed that T. gondii induced IL17

increase ocular pathology, probably again by inhibiting the Treg inducer FoxP3, and down-

regulates the protective, antiparasitic IFNγ response [74]. These results show that IL17 is

indeed at the center of the immune interaction in the eye during OT, influencing both pathol-

ogy and parasite control.

An interesting hypothesis to explain the pathological role of IL17 during ocular T. gondii
infection is that this cytokine might compromise the barrier function of RPE cells, allowing

activated immune cells, antigens, and antibodies to cross the BRB, resulting in enhanced

inflammation and subsequent tissue damage (Fig 3). Indeed, in vitro studies have shown that

IL17 is able to compromise RPE cells monolayers barrier function by disrupting the distribu-

tion of tight junctions proteins, like claudins and occludins [83]. Furthermore, IL17 also trig-

gers the recruitment and activation of neutrophils, monocytes, and NK cells to the infection

site through the production of IL8, MCP-1, and Granulocyte Colony-Stimulating Factor

(G-CSF), as well as stimulates IL6 and NO productions [84–88]. The result of both processes

might be a strong amplification of the local retinal inflammatory response in synergy with

other mediators, such as IFNγ, TNFα, and IL1, leading to tissue lesions.

These results allow us to outline the immune response to OT (Fig 3). The IL12/IFNγ axis

seems to play a central protective role in the eye, similarly to its pivotal and long-known role in

systemic toxoplasmosis [50], whereas IL17 has a yet to be defined role in augmenting pathol-

ogy and interfering in parasite multiplication, probably specific to the eye. There are still

Fig 3. Proposed model of the immune response to the retinal infection with Toxoplasma gondii. Evidence suggests

that the infection of retinal cells with T. gondii results in the expression of IL17 by resident cells (Müller cells, but

maybe also Th17 T cells), which might be responsible for the recruitment into the retina of activated immune cells,

facilitated by the increased permeability of the external blood-retinal barrier. These immune cells would be responsible

for subsequent retinal lesions, probably also by suppression of Treg cells (not shown). At the same time, IL17

expression negatively interferes with IFNγ production, thereby diminishing the protective antiparasitic response.

IFNγ, interferon gamma; IL17, interleukin 17; Treg, regulatory T cells.

https://doi.org/10.1371/journal.pntd.0008905.g003
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numerous gaps in our understanding of the intraocular immune network following T. gondii
infection, such as the role of IL6 and the regulatory roles of Th2 cytokines.

Enhanced virulence: Toxoplasma infection in South America

It is important to note that the previous chapters detailed our knowledge on Toxoplasma infec-

tions in Europe and a great part of North American infections. However, it has become evident

that such infections in South American patients are not only more frequent, but also more

severe, including the ocular involvement [89]. Indeed, while in Europe and North America,

about 2% of infected subjects exhibit OT, the prevalence of this infection in South America

seems to be much higher, reaching 6% in Colombia and up to 17.7% of the overall population

in Brazil [2,89–91]. A study directly comparing French and Colombian cases showed more

macular involvement, larger lesions, more inflammation, and a greatly enhanced ocular para-

site load in the Colombian patients [92]. Infections on other continents are yet less studied,

but could also reveal striking differences depending on local, more aggressive parasite strains,

as suggested by a study, which showed that British residents born in West Africa had a

100-fold higher incidence of OT than people born in Britain [93].

These clinical differences between South American and European patients can be explained

by Toxoplasma strain differences. Whereas European infections are nearly exclusively attrib-

uted to very few, homogenous, and mildly virulent strains, South American strains show a

great diversity and often enhanced pathogenicity due to more virulent variants of certain cru-

cial genes, which greatly affect the resulting immune response [94–97]. The above mentioned

study [92] compared the expression of cytokines in the aqueous humor of French and Colom-

bian OT patients and found that South American patients expressed pivotal protective factors,

such as IFNγ, but also IL17A, in a much weaker fashion, whereas Th2 cytokines, like IL13 and,

paradoxically, IL6 were up-regulated. This indicates that these highly virulent parasite strains

suppress or evade the host control mechanisms, leading to extremely high parasite burdens

and, consequently, severe retinal damage, in contrast to the “European-type” milder and prob-

ably inflammation-mediated pathology [3]. As there are only very few animal studies using

these atypical strains [98], the pathophysiology of these infections is still largely unknown.

Interestingly, human genetic disposition, mainly concerning immune response genes, also

seems to be an important factor to determine the development of severe disease [99]. The high

frequency of pathological cases in South America surely will result in more interesting human

studies regarding genetic predisposition.

Perspectives and opportunities for research

As knowledge regarding OT pathophysiology grows, many questions remain unanswered. Vari-

ous fundamental aspects of the infectious process leading from T. gondii oral infection to OT

are still unknown. For example, the preferred route for the parasite to invade the retina has not

been identified. Evidences show that T. gondii might cross the BRB either as a free tachyzoite, or

inside a “Trojan horse” cell. Furthermore, eBRB and iBRB are very different structures, and it

has not been determined which one is preferentially crossed by the parasite, even if some indi-

rect evidences show that the iBRB might be the major route [27]. Once in the retina, the para-

sites invade cells, but, here again, the main targets remain to be established. Finally, events

triggering and mechanisms underlying recurrences remain hypothetical, and further research is

critically needed in order to better comprehend this major aspect of OT pathophysiology.

The immune response to OT seems to be widely dependent on IFNγ, which has a pivotal

role in the defense against T. gondii. However, the peculiarities of the eye, its BRBs, and

immune environment suggest that other mechanisms might be at stake, as indicated by the
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peculiar role of IL17. Other possible mechanisms could involve the activation of type I (α and

β) or III (λ) IFNs pathways. Indeed, few data exist regarding the role of these IFNs during OT.

IFNβ might potentiate the protective effect of IFNγ in a murine model of systemic infection

[100]. Nagineni and colleagues also showed that IFNs-α and -β have the ability to inhibit para-

site replication in the setting of in vitro RPE cells infections with an RH strain [101]. A similar

effect was described in murine macrophages and embryonic human fibroblasts, the immu-

nity-related GTPase M1 protein (IRGM1), which is recruited at the surface of the parasito-

phorous vacuole, being described as a key effector in this phenomenon [102]. In contrast,

another study showed that infection of murine macrophages with atypical virulent strains trig-

gered the expression of IFNβ by these cells and that this production was correlated to parasite

death [103]. It might be the consequence of cell stimulation with parasitic debris rather than

with live parasites, since exposure of macrophages to heat-inactivated canonical strains caused

the same response. Finally, a very recent study showed that type I IFNs are important for the

control of parasite proliferation during experimental mouse infection, in particular by promot-

ing the expression of IFNγ by NK cells, and that the toxoplasmic effector T. gondii inhibitor of

STAT transcription (TgIST) allows the parasite to limit the reactivity of cells to type I IFNs by

inhibiting the signaling pathway dependent on the STAT1/STAT2 heterodimer [104]. It

would be interesting to study this mechanism in OT models.

Regarding type III IFNs, there are currently no data available about their role during toxo-

plasmosis, ocular or otherwise. However, this cytokine family has been described as of particular

importance at natural barriers, such as gastrointestinal epithelium, respiratory epithelium, pla-

centa, or blood–brain barrier (BBB) [105]. Type III IFNs have mainly been studied in the setting

of viral infections, but a recent study explored the role IFNλ3 during the infection of the gastro-

intestinal epithelium with the closely related parasite Cryptosporidium parvum [106]. According

to this study, these cytokines limit parasite crossing of the epithelium by tightening junctions

between cells involved in the barrier as it had already been shown in the BBB in a West Nile

virus infection model [107]. A similar phenomenon might be involved in OT pathophysiology,

as in vitro RPE cell infection with a virulent T. gondii strain rapidly increases permeability of

the cell layer [108]. Thus, research in this field is required to evaluate the role of such type III

IFNs in the regulation of BRB permeability (i.e., through the modulation of intercellular junc-

tions tightness) during toxoplasmic infection and its influence on the course of this infection.

Finally, the identification of IL17 as a potent inflammatory effector during OT, responsible

for a strong inflammation and, subsequently, to tissue damage, makes it a potential target for

new treatments of OT. Indeed, several compounds, mainly monoclonal antibodies, are already

available to inhibit the IL17 pathway (such as ixekizumab, brodalumab, or secukinumab),

which are currently under evaluation or in use for treating auto-inflammatory diseases such as

psoriasis or ankylosing spondyloarthritis [109–111]. Other therapeutic options could also

reside in molecules targeting IL6 or IL23, which are also involved in this inflammatory process.

If benefits could be expected from these medications by alleviating inflammation, their anti-

parasitic effect remains uncertain, and treatment schemes should probably still involve proper

antiparasitic drugs. However, immunity-based treatments might be interesting to induce an

adapted response to recurrences, both limiting parasite proliferation and tissue lesions. In any

case, the implementation of such medications in the treatment of OT needs a more profound

understanding of underlying pathophysiological and immunological mechanisms.

Conclusions

Despite numerous discoveries in the past decade, OT remains a poorly understood disease,

which contrasts with its tremendous epidemiological importance. Very basic mechanisms
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underlying this infection remain unknown, therefore limiting the approaches to develop inno-

vative therapeutics. Indeed, most treatments used nowadays were already used 50 years ago.

However, new insights regarding the immune response to OT might provide clues to develop

treatment targeting the cytokine pathways responsible for tissue damage subsequently to high

inflammation. Thus, further research regarding retina invasion, cyst persistence, recurrences,

and inflammatory mechanisms are critically needed in order to develop these new therapeu-

tics, to limit or prevent recurrences or even cure people from chronic infections.

Key learning points

• Ocular toxoplasmosis (OT) is an underevaluated clinical problem throughout the

world.

• The eye presents a particular immune privileged environment, which considerably

influences the local immune response to the infection.

• IL17 has been shown to inhibit parasite control, while enhancing pathology.

• In tropical regions, especially South America, more virulent Toxoplasma strains cause

more frequent and more severe forms of OT.

• New lines of research studying as yet unexplored aspects of OT pathophysiology, such

as the retinal barrier function or reactivation, are necessary to deepen our understand-

ing of this disease and to develop more targeted intervention strategies.
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80. Dutra MS, Béla SR, Peixoto-Rangel AL, Fakiola M, Cruz AG, Gazzinelli A, et al. Association of a

NOD2 gene polymorphism and T-helper 17 cells with presumed ocular toxoplasmosis. J Infect Dis.

2013; 207:152–63. https://doi.org/10.1093/infdis/jis640 PMID: 23100559

81. Kikumura A, Ishikawa T, Norose K. Kinetic analysis of cytokines, chemokines, chemokine receptors

and adhesion molecules in murine ocular toxoplasmosis. Br J Ophthalmol. 2012; 96:1259–67. https://

doi.org/10.1136/bjophthalmol-2012-301490 PMID: 22790439

82. Sauer A, Rochet E, Lahmar I, Brunet J, Sabou M, Bourcier T, et al. The local immune response to

intraocular Toxoplasma re-challenge: Less pathology and better parasite control through Treg/Th1/

Th2 induction. Int J Parasitol. 2013; 43:721–8. https://doi.org/10.1016/j.ijpara.2013.04.004 PMID:

23702129

83. Chen Y, Yang P, Li F, Kijlstra A. The Effects of Th17 Cytokines on the Inflammatory Mediator Produc-

tion and Barrier Function of ARPE-19 Cells. PLoS ONE. 2011; 6:e18139. https://doi.org/10.1371/

journal.pone.0018139 PMID: 21479174

84. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of inter-

leukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor

expression, neutrophil recruitment, and host defense. J Exp Med. 2001; 194:519–27. https://doi.org/

10.1084/jem.194.4.519 PMID: 11514607

85. Bennouna S, Bliss SK, Curiel TJ, Denkers EY. Cross-talk in the innate immune system: neutrophils

instruct recruitment and activation of dendritic cells during microbial infection. J Immunol Baltim Md

1950. 2003; 171: 6052–6058. https://doi.org/10.4049/jimmunol.171.11.6052 PMID: 14634118

86. Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, et al. Interleukin-17/

interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonu-

clear response against Toxoplasma gondii infection. Infect Immun. 2005; 73:617–21. https://doi.org/

10.1128/IAI.73.1.617-621.2005 PMID: 15618203

87. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg)

in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007; 148:32–46.

https://doi.org/10.1111/j.1365-2249.2007.03356.x PMID: 17328715

88. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol.

2010; 10:479–89. https://doi.org/10.1038/nri2800 PMID: 20559326
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