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Abstract

Pleistocene glacial cycles play a major role in diversification and speciation, although the relative importance of isolation
and expansion in driving diversification remains debated. We analysed mitochondrial DNA sequence data from 15 great
reed warbler (Acrocephalus arundinaceus) populations distributed over the vast Eurasian breeding range of the species, and
revealed unexpected postglacial expansion patterns from two glacial refugia. There were 58 different haplotypes forming
two major clades, A and B. Clade A dominated in Western Europe with declining frequencies towards Eastern Europe and
the Middle East, but showed a surprising increase in frequency in Western and Central Asia. Clade B dominated in the
Middle East, with declining frequencies towards north in Central and Eastern Europe and was absent from Western Europe
and Central Asia. A parsimonious explanation for these patterns is independent postglacial expansions from two isolated
refugia, and mismatch distribution analyses confirmed this suggestion. Gene flow analyses showed that clade A colonised
both Europe and Asia from a refugium in Europe, and that clade B expanded much later and colonised parts of Europe from
a refugium in the Middle East. Great reed warblers in the eastern parts of the range have slightly paler plumage than
western birds (sometimes treated as separate subspecies; A. a. zarudnyi and A. a. arundinaceus, respectively) and our results
suggest that the plumage diversification took place during the easterly expansion of clade A. This supports the postglacial
expansion hypothesis proposing that postglacial expansions drive diversification in comparatively short time periods.
However, there is no indication of any (strong) reproductive isolation between clades and our data show that the refugia
populations became separated during the last glaciation. This is in line with the Pleistocene speciation hypothesis invoking
that much longer periods of time in isolation are needed for speciation to occur.
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Introduction

Pleistocene glacial cycles cause repeated range expansions and

contractions with important present-day demographic conse-

quences for temporal and boreal populations and species in the

Northern Hemisphere [1–3]. When populations are separated and

isolated in glacial refugia for a sufficient period of time they may

evolve pre- or post-zygotic reproductive barriers and become

reproductively isolated sister taxa [4–6]. Following postglacial

range expansions such taxa may, depending on the degree of

diversification, form hybrid zones with at least some interbreeding

and introgression, and reinforcement processes may complete the

speciation event [7–9]. Assuming a constant mitochondrial

molecular clock whereby substitutions take place at a rate of 1%

per Myr, genetic distances between sister taxa in birds at higher

latitudes translate to divergence times of approximately 0.1–

3.0 Myr. As formulated in the ‘‘Pleistocene speciation hypothesis’’,

a common view is that these speciation events took place in

isolated refugia over one to several full glacial cycles [4–6].

An alternative hypothesis, referred to as the ‘‘postglacial

expansion hypothesis’’, is that speciation takes place during

expansion rather than during isolation [10–13]. During rapid

postglacial range expansions advancing populations encounter a

wide variety of unoccupied habitats with varying selection regimes,

which could drive diversification in comparatively short periods of

time. Since this scenario does not invoke long-term isolation in

refugia, the postglacial expansion hypothesis poses an alternative

to traditional models of Pleistocene speciation. In support of the

postglacial expansion hypothesis, recent divergence with extensive

morphological variation has, for example, been documented in

several bird species [10–13].

Here we use molecular genetic data to evaluate postglacial

colonization patterns in a bird with only slight phenotypic

variation, the great reed warbler (Acrocephalus arundinaceus). This is

a socially polygynous long-distance migratory passerine bird that

breeds in reed marsh habitats in most of the Palaearctic between

latitudes 35u and 60u N, east to North-Western Mongolia [14–16].

Great reed warblers in the eastern parts of the range have slightly
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paler plumage than western birds and sometimes two subspecies

are recognised, A. a. arundinaceus in the western parts, and A. a.

zarudnyi in the eastern parts of the range [14,17]. In a previous

study, Bensch and Hasselquist [18] looked into the phylogeo-

graphy of the species in the western part (Western and Central

Europe) of the breeding range. Interestingly, they found that great

reed warblers had two main mitochodria DNA (mtDNA)

haplotype clades (called A and B), where clade A occurred in all

populations with declining frequencies towards east, whereas clade

B was absent from Western Europe [18]. Based on these patterns it

was hypothesised that birds with clade A haplotypes expanded

from a glacial refugium in western parts and clade B from a

refugium in the eastern parts of the species’ breeding range [18].

In the present study we reveal a more complex colonization

history of the great reed warbler (i) by using mtDNA sequence

data from a total of 15 populations distributed over most of the

species’ Eurasian breeding range now including also Eastern

Europe, the Middle East and Western and Central Asia, and (ii) by

using recently developed statistical tools that make it possible to

test more sophisticated hypotheses regarding the divergence and

expansion, e.g. inferring asymmetric gene flow between popula-

tions and time since divergence [19,20]. We document indepen-

dent postglacial expansion events from two glacial refugia, where

birds from a refugium in Europe (carrying clade A haplotypes)

colonised not only Europe, but also Asia, before birds from a

refugium in the Middle East (carrying clade B haplotypes)

expanded north in Central and Eastern Europe. The consequenc-

es of repeated range expansions and contractions in general, and

their role in driving diversification and speciation, are discussed.

Results

Haplotype and nucleotide diversity
We sequenced 494 bps of the control region II in 281 great reed

warblers from 15 Eurasian populations (Table 1). This region

contained 39 variable sites which defined 58 different haplotypes

separated by up to 2.0%. Haplotype and nucleotide diversity for

all samples were 0.913 (ranged between 0.286 for Iran and 0.947

for Hungary) and 0.00735 (ranged between 0.00117 for Iran and

0.00912 for the Czech Republic), respectively (Table 1).

Haplotype relationship and population divergence
A Neighbour-Joining analysis of the 281 sequences revealed two

major clades (A and B) supported by a bootstrap value of 75%

(Figure S1), and a minimum-spanning network (MSN) was drawn

to show the relationship between haplotype within and between

clades (Figure 1).

The average number of nucleotide substitutions per site

between the clades, DXY, was 0.013 (60.004 SE) and the number

of net nucleotide substitutions per site between clades, DA, was

0.010 (60.004 SE). Assuming a mutation rate of 15% (range 10–

20%) per site Myr21 for the control region [13,21–24], a constant

molecular clock and a generation time of 2 years [18], we obtain a

divergence time for the two clades of 87 (65–141) and 65 (49–

98) kyr BP for DXY and DA, respectively.

In Figure 2, we have plotted the frequencies of the two clades in

each population. Clade A is more widely dispersed and dominates

in most parts of the breeding range except in some populations in

the Central Europe where it occurs in intermediate frequencies,

Table 1. Sampling localities, sampling period, number of sequences (n), number of haplotypes (nH), haplotype diversity (H) and
nucleotide diversity (p).

Country Site Coordinates Sampling year n nH H p

Spain Hondo Natural Park, Alicante 38u129N, 0u429W 1996 11 5 0.709 0.00202

The Netherlands Zwarte Meer,Weerribben 52u379N, 5u559E 1995 10 4 0.533 0.00205

Sweden Kvismaren, Närke 59u109N, 15u259E 1987–1990 22 7 0.649 0.00480

Latvia Engure/Kanieris, Tukums 57u079N, 23u209E 1992 20 11 0.916 0.00654

Germany Müggelsee, Berlin 52u269N, 13u399E 1992,1993 19 12 0.918 0.00652

The Czech Republic Hodonin fishponds, Moravia 48u549N, 17u029E 2006 17 11 0.934 0.00912

Hungary Apaj Channels, Kiskunlachaza 47u079N, 19u059E 2000 20 14 0.947 0.00565

Belarus Turov, Zhitkovichi 52u019N, 27u499E 2000 17 9 0.890 0.00737

Ukraine Usovka, Poltava 50u199N, 32u329E 2000 18 11 0.941 0.00799

Denisyvka, Poltava 49u539N, 32u369E

Vilkovo, Odessa 45u289N, 29u359E

Russia Steppe liman, Saratov 50u439N, 46u279E 2006 28 12 0.857 0.00524

Solyanka, Saratov 50u499N, 47u059E

Furmanovo, Saratov 51u389N, 49u079E

Kazakhstan Stone Lake, Zhambyl 42u499N, 70u569E 2001 35 9 0.793 0.00275

Lake Balkhash, Almaty 45u129N, 73u599E 2006

Greece Limni Mikri Prespa, Florina 40u509N, 21u059E 1990 20 13 0.932 0.00906

Mitrikou Lake, Rodopi 40u589N, 25u179E 2005

Bulgaria Kalimok, Tutrakan 44u019N, 26u269E 2005–2006 20 12 0.900 0.00836

Turkey Mogan Lake, Ankara 39u469N, 32u489E 2005 17 7 0.824 0.00374

Iran Zarin Kola, Mazandaran 36u449N, 53u009E 2004 7 2 0.286 0.00117

Pooled 281 58 0.913 0.00735

doi:10.1371/journal.pone.0002794.t001
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and in the Middle East where it is almost absent (Figure 2). Clade

B is more restricted geographically, and dominates in the Middle

East with declining frequencies towards north in South-Eastern

and Central Europe (Figure 2).

The differentiation between pairs of populations measured as

FST varied substantially and reached its highest value between the

Netherlands and Iran (FST = 0.871; FST-values are given in Table

S1a). To illustrate the genetic distance between populations we

generated a Neighbour-Joining (NJ) population tree from these

pair-wise distances (Figure 3a). In this tree, three main branches

could be seen: one leading to Spain and the Netherlands, another

to Kazakhstan and the last one to Turkey and Iran. Thus, the

main features of this tree correspond to the geographical

distribution of clade A and B, although the two separate branches

leading to Spain and the Netherlands, and Kazakhstan, respec-

tively, suggest that there is also detectable population divergence

within clade A.

To evaluate the latter, we performed separate analyses for

sequences belonging to clade A and B. The sample size of each

clade was low in some populations and therefore we pooled data

from some closely located populations in these analyses. We used

eight populations for clade A (Table S1b) and five populations for

clade B (Table S1c). There were several high FST-values for clade

A, with the highest FST of 0.349 for Spain and Kazakhstan (Table

S1b). The highest FST-value for the clade B was 0.238 between

Belarus/Ukraine/Russia and Turkey/Iran (Table S1c). In the

corresponding NJ population tree for clade A, there was a long

branch separating Kazakhstan from the other populations via

Russia, and an additional shorter branch leading to Spain

(Figure 3b). The NJ population tree for clade B showed overall

shorter branches (Figure 3c).

A closer inspection of the NJ sequence tree reveals that there is a

large relatively uniform cluster of 26 sequences from Kazakhstan

and Russia in the central part of the tree (indicated with a dotted

line in Figure S1; shown in grey in Figure 1), which explains the

long branch leading to Kazakhstan in the NJ population trees

(Figure 3a,b).

Mismatch distributions and clade specific analyses of
gene flow

When all haplotypes were tested simultaneously there were two

clear peaks in the mismatch distribution at 1–2 bp and 6–7 bp,

respectively (Figure 4a). This distribution did not correspond to

what would be expected in a stable population (x2 = 67.0, df = 10,

p,0.001) or an expanding population (x2 = 48.5, df = 9,

p,0.001). This supports the view that there have been expansions

from two glacial refugia populations. When the two clades were

tested separately, the mismatch distributions for both clades

differed significantly from what would be expected in a stable

population (clade A: x2 = 49.2, df = 6, p,0.001; clade B:

x2 = 23.5, df = 4, p,0.001), whereas the distributions did not

deviate from the expected in an expanding population (clade A:

x2 = 2.6, df = 5, p = 0.77; clade B: x2 = 3.5, df = 3, p = 0.31)

(Figure 4b,c). The value t was 1.734 for clade A and 1.467 for

clade B, which translate to dates of expansion of 23 (18–35) and 20

(15–30) kyr BP, respectively.

We inferred the colonisation history of each clade separately by

using isolation with migration models implemented in the program

IMA [19,20]. To increase sample size in each group, we pooled

populations as in the previous analyses. For clade A, the present-

day effective population sizes were approximately 50,000, the

ancestral population size approximately 10,000 and the time since

divergence between pairs of populations approximately 4 kyr

(Table S2). The gene flow varied substantially between popula-

tions: there was little gene flow between Spain and neighbouring

populations (M,8 migrants per generation), strong bi-directional

gene flow between almost all central European populations

(M.100 for several populations), a tendency for an asymmetric

gene flow from eastern Europe to Russia (M = 8.3 and 5.3,

respectively) and pronounced asymmetric gene flow from Russia

to Kazakhstan (M = 32.6 and 2.2, respectively; Figure 5a; Table

S2). Clade B had present-day and ancestral population sizes of

approximately 10,000 and the time since divergence between pairs

Figure 1. Minimum-spanning network (MSN) for 58 mtDNA
control region II haplotypes in great reed warblers from 15
breeding populations. Circles are proportional to sample size (281
sequences in total) and each line corresponds to one substitution; with
the exception of thicker lines, which correspond to two substitutions.
The two major haplotype clades are shown, clade A and B. Grey shading
indicates a relatively large uniform cluster of sequences within clade A
only found in Russia and Kazakhstan (see text and Figure S1 for details).
doi:10.1371/journal.pone.0002794.g001

Figure 2. The frequencies of the two clades in each of the 15
great reed warbler breeding populations (clade A is in white
and clade B in black). Breeding distribution is indicated (dotted line).
doi:10.1371/journal.pone.0002794.g002
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Figure 3. Neighbour-Joining (NJ) population trees generated from pair-wise population distances (FST-values) for (a) all
haplotypes, (b) clade A haplotypes, and (c) clade B haplotypes. Because of low samples sizes in some populations, we pooled closely located
populations in the clade specific analyses (b and c).
doi:10.1371/journal.pone.0002794.g003

Figure 4. Mismatch distributions for (a) all haplotypes, (b) clade A haplotypes and (c) clade B haplotypes. Shown are the observed
distribution (lines), the expected distribution of a population with constant size (dotted) and the expected distribution of an expanding population
(dashed).
doi:10.1371/journal.pone.0002794.g004
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of populations was approximately 1.5 kyr (Table S2). The gene

flow between populations was overall much lower for clade B

(several M<1; max M = 13.7) than for clade A (several M.100),

and, if anything, there was weak asymmetric gene flow from

southern to northern populations (Figure 5b; Table S2). In a

model where all clade A haplotypes were pooled in one population

and all B haplotypes in another population, the isolation with

migration models produced an estimate of the time since

divergence of 18 kyr BP, an ancestral effective population size of

13,000, and present-day effective population sizes of 95,000 and

25,000 for the clade A and B, respectively (Table S2).

Discussion

Evidence for two independent postglacial expansions
Our analyses point to the fact that the great reed warbler has

expanded along two independent routes from two separated

glacial refugia. There are two major clades in the mtDNA

sequence tree and a clear geographical pattern in the frequency of

these clades still exists among present-day populations. The

analyses of mismatch distributions support that two independent

expansions have occurred and reject the possibility of one or two

large panmictic populations.

The most parsimonious interpretation is that clade B was

isolated in a refugium located somewhere in the Middle East and

this view gains some support from the analyses of gene flow

suggesting low levels of asymmetric gene flow towards north. The

location of clade A’s refugium is more difficult to track down,

because the clade is presently widely dispersed and seems to

represent a relatively old expansion. However, two sources of

information indicate that the refugium was located in the western

parts of the breeding range. First, the gene flow analyses show a

slight asymmetric gene flow from Eastern Europe to Western Asia

and pronounced asymmetric gene flow from Western Asia to

Central Asia. Secondly, a closer inspection of the NJ sequence

tree, and the minimum-spanning network, reveals that there is a

large, relatively uniform cluster of 26 sequences from Western and

Central Asia in the central part of the tree, and no indication that

these haplotypes have dispersed to Europe. We conclude that

clade A’s refugium was located somewhere in South-Western

Palaearctic, with a colonisation route that went north of the Black

sea to Central Asia. There are several potential, well-known

refugia in that region including the Iberian peninsula, Italy and the

Balkans, as well as North-Western Africa [1,25].

The absence of gene flow between the Middle East and Central

Asia probably reflects geographical expansion barriers in form of

large mountain ridges located between the Black Sea and the

Caspian Sea as well as to the east of the Caspian Sea. The great

reed warbler is a long-distant migrant where all individuals

migrate to Africa south of the Sahara [14,26]. The migratory

routes and overwintering strategies of great reed warblers from

Central Asia are unknown, but if these populations descend from

European ancestors as our data suggest, their migratory habits

might be more similar to those of the European populations, than

those of populations in the Middle East [14,18].

The great reed warbler is highly philopatric in some

populations, yet has a relatively high dispersal potential [27–29],

and it is possible that it is capable of rapidly expanding its range

during favourable conditions. Rapid expansions have been

documented in a few bird species, e.g. the collared dove (Streptopelia

decaocto) has colonised much of Europe in only 150 years [30]. Our

estimates of the divergence time of the two haplotype clades in

great reed warblers range from 18 kyr BP with the IMa method to

65–87 kyr BP based the degree of sequence divergence. These

values are within the last glaciation period, which reached its

maximum approximately 20 kyr BP [31,32]. Then it took several

thousands of years before the new unoccupied habitat became

available. Probably the pristine habitat has been available only

during the last few thousand years (maybe up to 10 kyr BP), which

sets the maximum date for the expansion. Thus, the estimated

expansion dates from the mismatch distribution analyses (i.e. 24

and 20 kyr BP for clade A and clade B, respectively) are too high.

The divergence dates between present-day populations estimated

with the IMA method seem more plausible: 4 kyr BP for clade A

and 1.5 kyr BP for clade B. Still, these estimates are sensitive to

mutation rates and generation times, and assume a constant

molecular clock and migration-drift equilibrium, thus should be

interpreted cautiously. Although it may be very difficult to date the

postglacial expansion in the great reed warbler, our data strongly

suggest that the expansion of clade A preceded that of clade B.

The level of gene flow is higher between populations for clade A,

and clade A has colonised a much wider area and is now present

all the way from Western Europe to Central Asia.

Consequences of repeated range expansions and
contractions

Speciation may be the most spectacular consequence of

repeated glacial cycles, but there are also other important

consequences of glacial population bottlenecking and postglacial

expansions. For instance, geographical barriers may result in limits

Figure 5. Schematic illustration of the gene flow between
populations estimated with the IMA method for (a) clade A and
(b) clade B. Size of arrows are proportional to the gene flow (the
largest arrow gives M$100 migrants per generation; see Table S2 for
details). Labels refer to population (SPA–Spain; NET–the Netherlands;
GER–Germany; SWE–Sweden; LAT–Latvia; BEL–Belarus; UKR–Ukraine;
CZE–the Czech Republic; HUN–Hungary; BUL–Bulgaria; GRE–Greece;
RUS–Russia; KAZ–Kazakhstan; TUR–Turkey; IRA–Iran).
doi:10.1371/journal.pone.0002794.g005
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to present-day range distributions and failures to colonize

seemingly suitable habitat [1,33]. Thus, glacial range oscillation

is one of several factors that contribute to the evolution of species

ranges [1,33–35]. The presence of dispersal barriers to the north

and north-eastern of the Middle East seems to provide a plausible

explanation for the delayed expansion of clade B in great reed

warblers.

Postglacial expansions may also leave more subtle traces in form

of lower genetic variation in populations at the expanding range

limits; referred to as the ‘leading edge hypothesis’ [1,36]. In the

present study, the admixture of the two clades makes the

interpretation difficult, but it is true that several populations in

the expanding range limit have low levels of haplotype and

nucleotide diversity (e.g. the Netherlands and Kazakhstan).

However, the two supposedly older populations in the Middle

East have low diversity and consequently the leading edge

hypothesis does not provide an exclusive explanation to mtDNA

diversity in great reed warblers.

A study of the breeding ecology of the great reed warbler in

Sweden has been ongoing for more that two decades [15,37,38].

An unexpected result from our previous studies is that molecular

markers hitchhike with important fitness genes [39,40], which

suggest that there are high levels of linkage disequilibrium in the

population [41,42]. It is well-known that admixture may cause

linkage disequilibrium [43,44] and since admixture may follow

from rapid populations expansions and contractions this is yet

another important consequence of postglacial range oscillations.

Whether postglacial admixture has contributed to the high level of

linkage disequilibrium in the great reed warbler ([45,46]; B.

Hansson, K. Csilléry, unpublished) remains to be evaluated, but

the present result is suggestive.

The Pleistocene speciation hypothesis suggests that speciation

occurs in isolated refugia over one or more full glacial cycles [4–6].

The postglacial expansion hypothesis proposes an alternative

explanation namely that diversification and speciation takes place

during expansion rather than during isolation [10–13]. During

postglacial expansions the advancing populations may encounter a

variety of unoccupied habitats with varying selection regimes, which

could drive diversification. In support of this hypothesis, recent

divergence with extensive morphological variation has, for example,

been documented in several bird species; redpolls (Carduelis flammea;

[10]; but see [47]), yellow wagtails (Motacilla flava; [11]), yellow-

rumped warblers (Dendroica coronata; [12]) , willow warblers

(Phylloscopus trochilus; [48]) and dark-eyed juncos (Junco hyemalis; [13]).

As mentioned above, great reed warblers in the eastern parts of

the range (east of the Black Sea; A. a. zarudnyi) have paler plumage

than western birds (A. a. arundinaceus) [14,17] and our results

suggest that the plumage diversification took place after the last

glaciation during the easterly expansion of clade A. This gives

support to the postglacial expansion hypothesis and the role of

expansions in driving diversification in comparatively short time

periods. However, the paler A. a. zarudnyi is also recognised in

eastern parts of the Middle East [14,17], i.e. in the region where

our Iranian population with clade B haplotypes is located. This

suggests a more complicated history of the plumage diversification

in the great reed warbler. For instance, the plumage variation may

have appeared recently and differentiated independently in each

expanding clade. Alternatively, the plumage variation may be of

old origin and could have survived in both refugia, with the

plumage differentiation following during the expansion of each

clade. Both these scenarios are in line with the postglacial

expansion hypothesis.

Our data show that the refugia populations became separated

during the last glacial period and that the postglacial expansions

have resulted in substantial admixture in Central and Eastern

Europe. However, there is no indication of any (strong) pre- or

post-zygotic isolation mechanisms between the great reed warbler

clades ([45,46]; S. Bensch, B. Hansson, D. Hasselquist, unpub-

lished). This is in line with the Pleistocene speciation hypothesis

invoking that much longer periods of time in isolation are needed

for speciation to occur [4–6].

Materials and Methods

Study populations and molecular methods
Samples of great reed warblers were obtained from 15 breeding

populations throughout the species’ breeding range: from Spain in

west to Kazakhstan in east; and from Iran in south to Sweden in

north (Table 1). This means that we have covered a substantial

part of the breeding range, except from the most north-eastern

and eastern parts of the range (Southern Siberia and North-

Western Mongolia; [14,17]).

For all individuals, except for those in the Netherlands, DNA

was extracted from blood (5–50 mL stored in SET-buffer) by a

standard phenol-chloroform extraction protocol. The samples

from the Netherlands consisted of dried contour feathers plucked

from nestlings (different nests) and DNA was extracted by using

5% Chelex 100 (Biorad; for references, see [18]).

The mitochondrial control region II in great reed warblers

(GenBank: AF111791) was amplified and sequenced with the

primers BCML4 (59-TTCACAGATACAAATGCTTGGG- 39)

and FTPH3 (59-AAGGCTGGGAGAGTTGTTGA- 39) following

the procedures in Bensch and Hasselquist [18]. These two primers

give a product of 577 base-pairs (bps) and previous analyses have

confirmed that 494 bps of this fragment are from the control

region II and the 81 bps flanking the control region (39) from the

tRNAPhe gene [18]. Maternal inheritance of haplotypes in families

and absence of double base calling [18] confirm the mitochondrial

(and not NUMT) origin of this fragment.

Polymerase chain reactions (PCRs) were performed in volumes

of 25 mL and included 10–50 ng of total genomic DNA,

0.125 mM of each nucleotide, 1.5 mM MgCl2, 0.6 mM of each

primer and 0.5 U AmpliTaq polymerase. The PCRs were run

using the following conditions: 30 s at 94uC, 30 s at 50uC, 30 s at

72uC (35 cycles). Before the cyclic reactions the samples were

incubated at 94uC for 2 min, and after completion at 72uC for

10 min. The PCR product was precipitated (NH4Ac and ethanol)

and then dissolved in 20 mL of water; 2–4 mL was then used for

sequencing (BigDye sequencing kit; Applied Biosystems) in an ABI

Prism 3100 capillary sequencer (Applied Biosystems).

The data set of 93 control region sequences from six populations

gathered and analysed in Bensch and Hasselquist [18] was

increased to a total number of 281 sequences from 15 populations

(Table 1).

Statistical methods
Basic population statistics were calculated using the program

DNASP 4.10.9 [49]: haplotype diversity (H) and nucleotide

diversity (p) were calculated according to Nei [50].

Evolutionary relationships between haplotypes were assessed by

the Neighbour-Joining method with MEGA 3.1 [51]. We used

Tamura and Nei’s [52] distance measure and a gamma correction

parameter alpha of 0.04 to account for among-site variation in

evolutionary rate [53], as had been estimated previously with

PUZZLE [54] (see [18]). The phylogeny was tested with the Bootstrap

procedure (10,000 replications). We also conducted a phylogenetic

analysis using the program MRBAYES 3 [55], implementing a

GTR+I+G model of molecular evolution as first selected by the

Phylogeography in Warblers
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program MRMODELTEST2 [56]. The Bayesian phylogeny was

obtained by using four heated and one cold MCMC chain, which

was sampled every 200 generations over 20 million generations

generating 100,000 trees. The first 25% of the trees were discarded

as the burn-in period, and the remaining 75,000 trees were used to

construct a majority consensus tree. The result from the Bayesian

analysis was qualitatively similar to that of the Neighbour-Joining

method, with a strong support (100%) for the branching of the two

major clades (data not shown; cf. Figure S1).

We calculated the degree of genetic differentiation measured as

FST (following [57], equation 3) between pairs of populations in

DNASP. Neighbour-Joining population trees were calculated in

MEGA using these pair-wise FST-values. Minimum spanning

networks were drawn in NETWORK 4.2.0.1 (http://www.fluxus-

technology.com/).

The average number of nucleotide substitutions per site

between the clades, DXY, and the number of net nucleotide

substitutions per site between clades, DA, were calculated in

DNASP (following [50], equation 10.20 and 10.21, respectively).

Standard errors of DXY and DA were calculated in MEGA using

the Bootstrap procedure with 1000 replicates. These parameters

were used to estimate the time since divergence of the two clades

with the expressions t = (DXY/2m)6g, and t = (DA/2m)6g, respec-

tively, where m is the rate of substitution per site Myr21 and g is the

generation time (2 years; [18]). The rate of molecular evolution of

the avian control region is uncertain and we use a value of 15%

but also provide the results for a range of 10–20% per site per

million years (s/s/Myr) [13,21–24].

We calculated mismatch distributions in DNASP. The observed

mismatch distribution was tested against expected values in a

stable population (i.e. population with constant population size;

following [58]), and in a growing or declining population

(following [59], equation 4), with x2-tests (pooling classes to

achieve a minimum of 5 expected counts in each class). We

estimated the parameter t, i.e. the date of the expansion measured

in units of mutational time, which can be used to estimate the time

since expansion with the expression t = (t/2mk)6g, where m and g

are as above and k is the sequence length (i.e. 494 bp).

We also inferred populations sizes, asymmetric gene flow and

time since divergence between pairs of populations with demo-

graphic population genetic models implemented in the program

IMA, Isolation with Migration, analytic, version 7/13/2007 [19,20].

We did preliminary runs with different settings to determine a

suitable multi-dimensional parameter space; we started with default

values and increased them gradually to achieve output parameters

within the parameter space. In the final runs, we used a value of 100

for the scalars of h of all populations (i.e. population 1, population 2

and the ancestral population); a value of 100 as the maximum

migration rate between populations (from population 1 to

population 2, and from population 2 to population 1, respectively);

and 10 for the maximum time of population splitting. For each pair

of populations we used a ‘burn-in’ period of 16106 steps and a

sampling period of 16107 steps. The output parameters (h1, h2, hA,

m1, m2, t) were expressed in demographic units as follow: effective

population size, NE = h/4mkg; number of migrants per generation,

M = 2NE6(m62mk) = h6m/2g; divergence time in years, T = tg/2mk;

where m, k and g are as above.

Supporting Information

Table S1 FST-values between populations using data from (a)

clade A and B haplotypes; (b) clade A haplotypes; and (c) clade B

haplotypes.

Found at: doi:10.1371/journal.pone.0002794.s001 (0.08 MB

DOC)

Table S2 Estimates of demographic parameters from two-

population isolation with migration models implemented in the

program IMa [19,20].

Found at: doi:10.1371/journal.pone.0002794.s002 (0.08 MB

DOC)

Figure S1 Neighbour-Joining tree based on 281 mtDNA control

region II sequences of great reed warblers from 15 breeding

populations. Labels refer to population (SPA-Spain; NET-the

Netherlands; GER-Germany; SWE-Sweden; LAT-Latvia; BEL-

Belarus; UKR-Ukraine; CZE-the Czech Republic; HUN-Hun-

gary; BUL-Bulgaria; GRE-Greece; RUS-Russia; KAZ-Kazakh-

stan; TUR-Turkey; IRA-Iran). The two major haplotype clades

are shown, clade A and B. The dotted line indicates a relatively

large uniform cluster of sequences within clade A only found in

Russia and Kazakhstan (see text for details).

Found at: doi:10.1371/journal.pone.0002794.s003 (3.30 MB TIF)
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