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Large-scale protein analysis has been used to characterize large numbers of proteins across numerous
species. One of the applications is to use as a high-throughput screening method for pathogenicity of gen-
omes. Unlike sequence homology methods, protein comparison at a functional level provides us with a
unique opportunity to classify proteins, based on their functional structures without dealing with
sequence complexity of distantly related species. Protein functions can be abstractly described by a set
of protein functional domains, such as PfamA domains; a set of genomes can then be mapped to a matrix,
with each row representing a genome, and the columns representing the presence or absence of a given
functional domain. However, a powerful tool is needed to analyze the large sparse matrices generated by
millions of genomes that will become available in the near future. The ProdMX is a tool with user-friendly
utilities developed to facilitate high-throughput analysis of proteins with an ability to be included as an
effective module in the high-throughput pipeline. The ProdMX employs a compressed sparse matrix algo-
rithm to reduce computational resources and time used to perform the matrix manipulation during func-
tional domain analysis. The ProdMX is a free and publicly available Python package which can be
installed with popular package mangers such as PyPI and Conda, or with a standard installer from source
code available on the ProdMX GitHub repository at https://github.com/visanuwan/prodmx.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
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1. Introduction

The comparison of protein functional domains is an important
task in bioinformatics [1]. The protein functional domain concept
allows researchers to capture common function of proteins from
distantly related genomes, which is often seen as a major challenge
in traditional sequence-homology based methods [2]. A protein
functional domain represents a discrete structural unit that can
convey a particular function. The different combinations of these
functional units, known as domain architectures, which can be
used as abstract models to simplify functional complexity in a pro-
tein [3]. The conservation of residues in each protein functional
domain is determined by selective pressure. Base on the amino
acid sequence variations of proteins that have common function
enables the construction of profile hidden Markov models [4] for
different functional domains. Pfam [5] is a popular database
started more than two decades ago, that collects a broad set of pro-
tein functional domains using the HMMER tool [6]. This database
also provides a web-based tool to search for both protein func-
tional domains and domain architectures within a given sequence.

However, the analysis of protein functional domains and
domain architectures in large-scale comparisons is a challenging
task for web-based applications, especially in the analysis of func-
tional conservation involving the complexity of resource and data
management. Such tool requires a critical feature that allow users
to quickly customize sets of interesting functions or organisms
based on problem sets. Early tools for domain architecture compar-
ison, such as CDART [7] are often implemented as a web-based
application, and is limited by the number of inputs. That is, com-
paring millions of proteins will be difficult with these tools. More-
over, standalone tools, such as fungidomDB [8], often require time
and effort from non-programmer biologists for installation of
dependencies and usages.

Here, we present the ProdMX tool, a standalone Python tool
that empowers researchers to explore functional domains and
domain architectures of proteins across genomes of interest. With
the state-of-the-art matrix compression algorithm, the ProdMX
can be applied in the variety of applications including the high
throughput screening for pathogenicity of genomes. The tool aims
to reduce time and the computational resource used to calculate a
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large matrix of all-to-all comparison of functional domains or
domain architectures. The ProdMX enables researchers familiar
with the command prompt or the Python programming language
to rapidly analyze specificity or conservation of functional domains
or domain architectures. The ProdMX accelerates the protein func-
tional research by offering an intuitive tool that can handle a mas-
sive amount of proteins when the computational resource is
limited.
2. Implementation

2.1. The ProdMX tool design

The ProdMX tool was designed to handle the large-scale analy-
sis of both functional domains and domain architectures across
million genomes. Due to the nature of the high complexity in the
arrangement of protein functional domains in various genomes,
the resulting matrix is both massive (challenging to compute)
and sparse (that is, most cells are empty). The Compress Sparse
Row (CSR) algorithm [9,10] was introduced to reduce the sparse
matrix size. This algorithm can handle both binary and non-
binary matrix compression. The algorithm begins with a coordi-
nate transformation of the sparse matrix to abolish zero values
and store in row-column vectors and non-zero values. The row
compression algorithm reduces the memory used for storing a vec-
tor of row by converting it into adjacent pairs of index pointers. In
this way, the sparse matrix can be allocated in the computer’s local
RAM, eradicating performance limitations due to input/output
access boundaries of storage. The algorithms for sparse matrix con-
version and row compression are shown in Fig. 1.

The data manipulation in the tool was handled with the Pandas
package [11]. The database was implemented to store protein
accessions associated with protein functional domains or domain
architectures as an option for users with SQlite [12]. Generally,
the use of the ProdMX tool starts with constructing the com-
pressed sparse matrix in a command-line environment, using
ProdMX as a Python package to load the matrix to the memory,
and analyzing the number of conservations of either functional
domains or domain architectures across sets of genomes, and gen-
erate the report of number or associated protein accessions. A com-
plete description of all commands in the ProdMX is shown in
Table 1.

For the analysis and report generating parts, we designed the
ProdMX tool to work as a Python package. This design allows users
to flexibly use the ProdMX tool in the chain of commands with
other tools in the user’s pipelines. In addition to this package
design, users can quickly test the prototype of code or perform
analyses on Jupyter Notebook, Python web-based interactive
development environment [13]. The overview of the workflow is
shown in Fig. 2.
2.2. Benchmarking

We performed benchmarking of the ProdMX tool using a set of
6881 high-quality Escherichia coli sequences, not derived from sin-
gle cell nor metagenome project, having 0.8 or more for total and
sequence quality scores in the dBBQs database [14,15], on a single
core of MacBook Pro 2.8 Ghz Intel i7, with 16 Gb of RAM. The gen-
omes were run through Prodigal [16] for prediction of proteins; the
proteins were then searched for functional domains using HMMER
3.1b2 with Pfam version 32 [17], resulting 4950 protein functional
domains and 11,574 domain architectures. The HMMER results
used in this benchmarking is available in the data availability
statement section. To extend the number of genomes in the bench-
marking sets, all sets of genomes were sampled from the same
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6881 genomes. The compressed sparse matrices for functional
domains and domain architectures were constructed for multiple
sets of the good quality E. coli genomes (100–1000, 1000–10,000,
and 10,000–100,000 genomes). These sets of genomes were also
implemented in the database with a sparse structure in SQLite
for retrieval speed comparison. We examined the average CPU run-
time for calculating core functional domains and core domain
architectures of 100 replicates for each set of genomes using a
calCore utitity in ProdMX and SQLite queries (see supplementary
file S2). Our benchmarking results show that the runtimes from
ProdMX are approximately 63-fold faster than SQLite, and scale
linearly with input size for functional domains and domain archi-
tectures (Fig. 3). For the compression ratio, we compared the size
occupied by the compressed (ProdMX) and non-compressed with
the same datasets used for the speed comparison. The results show
that compression ratios of at least 8:1 for functional domain matri-
ces and 17:1 for domain architecture matrices are achieved (Fig. 4).
The database schemas representing protein functional domains
and domain architectures, database queries, and codes for bench-
marking can be found in the Supplementary Materials.
2.3. Installation and dependencies

The ProdMX requires an installation of Python 3.5 or newer,
which is distributed through the Python Software Foundation
[18]. Other dependencies can be detected and installed by either
the Python Package Index (PyPI) or Conda [19]. The automated
installation process from PyPI on different computer systems can
be activated by executing: pip install prodmx. Also, the latest
released version of ProdMX can be installed through conda:

conda install -c visanu prodmx.
Alternatively, the standard installation from ProdMX source

code can be initiated via the pip installer:
python -m pip install /path/to/ProdMX_source_code.
We recommend users to take advantage of the automated

installation methods from PyPI or Conda since they can precisely
handle all different versions of dependencies on different system
environments (Linux, Mac, and PC).
3. Usage and examples

3.1. Finding and analyzing of conservation of the region 2 domain of
primary sigma factor (RpoD) across Escherichia coli genomes

Sigma factors are proteins that regulate the transcription pro-
cess by promoting binding of RNA polymerase to promoter sites
of DNA sequence in prokaryotes [20]. Different groups of sigma
factors are utilized to initiate different gene sets under different
environmental conditions. Thus, analysis of diffrent groups of
sigma factors allow us to identify types of regulon contributing
to multiple functions of microbes, including virulence genes and
virulence-associated genes. Here we show how to integrate the
ProdMX to a pipeline for analyzing of the region 2 domain of pri-
mary r70 protein (RpoD) [21] across high-quality E. coli genomes
from the previous section (Fig. 5A). The following commands for
the analysis pipeline of selected functional domain will be demon-
strated in a Linux environment. The data used in the demonstra-
tion can be found in a test folder in the ProdMX repository.

First, we create a tab-delimited file as an input file for the tool.
This input file includes two columns of genome labels and the path
to their HMMER results. The output of the utility used in this step
is the folder containing the compressed sparse matrix and its index
file for the functional domain analysis. Also, a keep option (-k)
allows us to store raw results of protein ids and their domains
for further analysis. The example of command for building the



Fig. 1. Algorithms for (1) conversion from a sparse matrix to coordinate form and (2) compression of row coordinates.

Table 1
Utilities in the ProdMX tool.

Category/Utility Description Utility type Input Output

Build matrix
prodmx-

buildDomain
Build a folder containing a compressed sparse matrix of protein functional
domains and index files

Command-
line

[1] [7]

prodmx-
buildArchitecture

Build a folder containing a compressed sparse matrix of domain architectures
and index files

Command-
line

[1] [7]

Load matrix
loadMatrix Load a compressed sparse matrix into an object variable Package [2] [8]
loadBinMatrix Load a binary compressed sparse matrix into an object variable Package [2] [9]

Analysis
getRow Get a list of all row labels of the matrix Package – [10]
getColumn Get a list of all column labels of the matrix Package – [11]
getProteinId Get all protein id associated with given domain functional domains or domain

architectures
Package [3] (list_row), [4] (list_col), [5]

(output)
[12]

sumRow Summation of presence and absence values in row wise Package [3] (list_row), [4] (list_col) [13]
sumColumn Summation of presence and absence values in column wise Package [3] (list_row), [4] (list_col) [14]
calCore Calculate core protein functional domains or domain architectures Package [3] (list_row), [4] (list_col), [6]

(counservation)
[15]

[1] a tab-delimited file of unique genome ids and hmmsearch result file paths, [2] a path to folder containing matrices and database from Prodmx’s build matrix command,
[3] a list of genome ids, [4] a list of functional domains or domain architectures, [5] a result file path, [6] a conservation cut-off with a default at 95%,
[7] a folder containing compressed matrices and indexes of functional domains, [8] a ProdMX object for a count matrix, [9] a ProdMX object for a binary matrix,
[10] a list variable of all row labels (genome ids), [11] a list variable of all column labels (functional domain or domain architecture ids),
[12] a tab-delimited file of genome ids and protein ids,
[13] a Pandas dataframe of the count of domains or domain architectures for each genome,
[14] a Pandas dataframe of the count of genome for each domain or domain architecture,
[15] a pandas dataframe of the genome count for each core functinal domain or domain architecture.
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Fig. 2. Structure and workflow of the ProdMX tool.

Fig. 3. Performance benchmark of the average time of 100 replicates on analyses of core protein functional domains and core domain architectures using ProdMX and SQLite.
Core functional domains and core domain architectures were retrieved using ProdMX and SQLite on different set of genomes ranging between 100–1000, 1000–10,000, and
10,000–100,000 genomes. The average query execution time of 100 replicates for each data set were collected.
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sparse matrix folder in the command-line environment using the
test data of high-quality E. coli genomes is shown below:

prodmx-buildDomain -i input_ecoli_id_hmm.tsv -o

domain_matrix_fol -k

The ProdMX tool provides analysis utilities in the Python pack-
age for regular use and the interactive Python environment. In this
demonstration, we choose to analyze our protein functional
domain in Jupyter Notebook, the popular interactive Python envi-
ronment. The binary matrix of presence and absence of each func-
tional domain for each genome is then loaded to the memory by
following commands:
3893
import prodmx

import pandas as pd

binary_matrix = prodmx.loadBinMatrix(matrix_fol=’

domain_matrix_fol’)

Further, to check if the region 2 domain of r70 proteins
(PF04542) is present in core functional domains (95% or more in
conservation) across our set of E. coli genomes or not, we need to
supply the calCore function with the information of list of gen-
ome labels and list of available protein functional domains as
follows:



Fig. 4. Sizes of storage occupied by protein functional domain and domain architecture matrices using ProdMX and plain text.

Fig. 5. Genes and domain architectures for (A) primary sigma factor (RpoD) and (B) toxin genes in C. difficile and C. botulinum.
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df_core_domain = binary_matrix.calCore(list_row=b

inary_matrix.getRow(), list_col=binary_matrix.getCol

umn())

Using a Pandas DataFrame command, we can select rows based
on condition. The number of E. coli genome possessing the region 2
domain of r70 (PF04542) can be retrieved by following command:

df_core_domain[df_core_domain[’col_name’] ==

’PF045420]
Finally, the command below will be used to write all protein ids

associated with the region 2 domain of r70 for each genome to the
output file in the tab-delimited format (GenomeId, Domain,
ProteinId):

binary_matrix.getProteinId(list_row=binary_matri

x.getRow(), list_col=[’PF045420], output=’ecoli_domai

n_region2_RpoD_protein_id.txt’)
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3.2. Identifying and extracting of toxin genes from C. difficile and C.
botulinum genomes

3.2.1. Exotoxins from C. difficile
Clostridioides difficile or formerly known as Clostridium difficile is

a group of bacteria that cause severe damage to the colon with
diarrhea symptoms. This gram-positive species is one of the most
common bacteria found in healthcare-associated infections (HAIs)
in the United States [22]. The exotoxin gene cluster in C. difficile
organize by two toxin genes TcdA and TcdB [23]. These two exo-
toxin genes are regulated by the alternative RNA polymerase sigma
factor TcdR (Fig. 5A). To demonstrate the potential use case for
screening, the ProdMX were employed to the identify the
pathogenicity of unknown genome sequences from Clostridiales
order.
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Like the previous example, we need to go through the steps of
creating a compress sparse matrix of the HMMER results for all
genomes of interest. However, for the protein analysis, we need
to construct the matrix of domain architectures since the order
of functional domains within a protein can result in different gene
function. The code to generate the compressed sparse matrix of
domain architectures is as follows.

prodmx-buildArchitecture -i input_clostridiales_i

d_hmm.tsv -o architecture_matrix_fol -k

To count all virulence factors, the following codes were used to
load the non-binary compressed sparse matrix of domain architec-
tures to the python environment.

import prodmx

import pandas as pd

count_matrix = prodmx.loadMatrix(matrix_fol=’archi

tecture_matrix_fol’)

To check for exotoxin genes, we retrieved the domain architec-
tures from UniProt [24] for TcdA and TcdB protein. The dictionary
between protein name and domain architectures were created as
follows.

dict_tox = {’tcdB’:’PF12918_PF12919_PF11713_P

F12920_PF19127_PF191270, ’tcdA’:’PF12918_PF12919_P

F11713_PF12920_PF19127_PF19127_PF19127_PF19127_

PF191270}
Using Pandas DataFame, we can create the data table for the in

silico-screening of exotoxin in the unknown genomes by the code
following:

list_result = []

for genome_id in count_matrix.getRow():

x = count_matrix.sumColumn(list_row=[genome_id],

list_col=[dict_tox.get(’tcdB’), dict_tox.get(’tcd

A’)])[’col_sum’].tolist()

list_result.append([genome_id]+x)

header=[’genome_id’, ’tcdB’, ’tcdA’]

pd.DataFrame(list_result, columns=header)

The table of genome and protein ids associating with exotoxins
can be retrieved as follows:

count_matrix.getProteinId(list_row=count_matrix.g

etRow(), list_col=[ dict_tox.get(’tcdB’), dict_tox.get

(’tcdA’)], output=’clostridiales_exotoxin_protein_i

d.txt’)
3.2.2. Neurotoxins from C. botulinum
The botulinum neurotoxins (BoNTs) produced by the strains of

Clostridium botulinum can cause the disease botulism which is a
potentially fatal disease in human [25]. This neurotoxin gene clus-
ter in C. botulinum comprise of ntnh and bont genes with the alter-
native sigma factor botR to regulate the expression (Fig. 5B).
Referring to the steps in the previous example of exotoxins, we
can use the same domain architecture matrix to retrieve the poten-
tial genomes and protein ids that might associate with botulinum
neurotoxins by following code:

dict_tox = {’bont’: ’PF01742_PF07952_PF07953_

PF079510}
count_matrix.getProteinId(list_row=count_matrix.g

etRow(), list_col=[ dict_tox.get(’bont’), output=’clo

stridiales_neurotoxin_protein_id.txt’)

The test data and extended versions for example 3.1 and 3.2 in
Jupyter Notebook can be downloaded at the ProdMX GitHub repos-
itory (https://github.com/visanuwan/prodmx).
4. Conclusion

Here we introduce the ProdMX tool, which provides a native
Python environment for analysis of the protein functional domain.
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While the functional domain analysis can be performed with the
web-based applications, analyses of large queries are often limited
by the bandwidth required to transfer data over the internet. Anal-
yses with standalone tools are usually found to have insufficient
memory issues due to the management of enormous sparse matri-
ces and the complexity of dependencies required for tool installa-
tions. Overall results of benchmarking from ProdMX showed
remarkably better performance over SQLite with sparse matrix
schema implementation. With the provided use cases, ProdMX
can be used as an effective tool for the high-throughput screening.
We expect that the ProdMX tool will aid the scientific community
in performing large queries and accelerate comparative genomics
research that relies on accurate and clade-specific measures of pro-
tein functions.
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