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Objective: The prevention of hypertension in primary care requires an e�ective

and suitable hypertension risk assessment model. The aim of this study

was to develop and compare the performances of three machine learning

algorithms in predicting the risk of hypertension for residents in primary care

in Shanghai, China.

Methods: A dataset of 40,261 subjects over the age of 35 years was extracted

from Electronic Healthcare Records of 47 community health centers from

2017 to 2019 in the Pudong district of Shanghai. Embedded methods were

applied for feature selection. Machine learning algorithms, XGBoost, random

forest, and logistic regression analyses were adopted in the process of model

construction. The performance of models was evaluated by calculating the

area under the receiver operating characteristic curve, sensitivity, specificity,

positive predictive value, negative predictive value, accuracy and F1-score.

Results: The XGBoost model outperformed the other two models and

achieved an AUC of 0.765 in the testing set. Twenty features were selected

to construct the model, including age, diabetes status, urinary protein level,

BMI, elderly health self-assessment, creatinine level, systolic blood pressure

measured on the upper right arm, waist circumference, smoking status, low-

density lipoprotein cholesterol level, high-density lipoprotein cholesterol level,

frequency of drinking, glucose level, urea nitrogen level, total cholesterol level,

diastolic blood pressure measured on the upper right arm, exercise frequency,

time spent engaged in exercise, high salt consumption, and triglyceride level.
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Conclusions: XGBoost outperformed random forest and logistic regression in

predicting the risk of hypertension in primary care. The integration of this risk

assessment model into primary care facilities may improve the prevention and

management of hypertension in residents.

KEYWORDS

hypertension, risk assessment model, risk of hypertension, machine learning

algorithms, primary care

Introduction

Hypertension is becoming increasingly common in primary

care. It is accompanied by the occurrence and development of

a series of cardiovascular events, disability and even premature

death if not detected early and managed well (1). An estimated

245 million adults are diagnosed with hypertension in China

(2). An early warning after accurately evaluating the risk of

hypertension in primary care patients can alert individuals in

the healthy population or subhealthy population with unhealthy

lifestyles to take measures to slow or stop the progression

of hypertension. Similar practices have been implemented in

foreign countries. For instance, management of risk factors for

various chronic diseases has been implemented in primary care

in Australia (3). Risk assessment models are a cost-effective

measure for identifying high-risk individuals with chronic

diseases (4, 5). Nevertheless, few existing models can be applied

to the health management services provided in primary care.

The most intractable problem is that most of these models are

targeted at patients in a hospital setting (6); thus, the data input

into the models are all extracted from the EHRs of hospitals,

which may not be readily available in primary care settings and

suitable for general practitioners to implement.

Machine learning (ML) is a nuclear branch of artificial

intelligence that has been employed everywhere knowingly or

unknowingly, not only in industry and the military but also

in medicine and healthcare (7). As a modern data mining,

extraction, and analysis technology, ML has the extraordinary

ability to automatically train itself and improve its performance

without human instruction or elaborate programming (8, 9).

With the ability to identify a pattern or make a decision based

on the knowledge input, ML algorithms have demonstrated

their excellent performance in the area of risk evaluation

of diseases. Higher accuracy separates ML algorithms from

various other statistical methods. Highly precise risk prediction

models for future hypertension were constructed using artificial

intelligence techniques in Japan (10). Health check-up data

from 18,258 Japanese individuals were utilized to develop a

risk prediction model for new-onset hypertension by machine

learning techniques. The XGBoost and ensemble models

outperformed the logistic regression models [area under the

receiver operating characteristic curve (AUC) = 0.859], with

AUCs of 0.877 and 0.881, respectively. A study based on several

easy-to-collect risk factors to predict the risk of hypertension

also revealed that the random forest (AUC = 0.92), CatBoost

(AUC = 0.87), and MLP neural network (AUC = 0.78) models

performed better than the logistic regression analysis (AUC =

0.77) (11). Although ML is applicable in an extensive range of

contexts, the ML algorithm technique alone is insufficient to

solve real-world problems (12). Thus, health and medical data

in a primary care setting were utilized to facilitate the practical

implementation of the risk assessment model for residents in

primary care.

The objective of this study is to develop and compare the

performances of three ML algorithms on predicting the risk of

hypertension for residents over the age of 35 years in primary

care in Shanghai, China.

Materials and methods

Data source

The dataset was extracted from the electronic healthcare

records of 47 community health centers in the Pudong district

of Shanghai. Health records, health examinations and other

health-related data of community residents over 35 years old

from 2017 to 2019 were collected as the original set of data.

A total of 40,261 subjects were enrolled in the study. The

dataset included 20 variables containing information regarding

demographic characteristics, diagnosis, biochemical indicators

and lifestyles. The characteristics of the participants in primary

care are shown in Table 1.

Definition of hypertension

Hypertension was defined as (1) systolic blood pressure

(SBP) ≥140 mmHg and/or diastolic blood pressure (DBP)

≥ 90 mmHg, which was measured three times on different

days in the clinic without the use of antihypertensive drugs,

according to Chinese guidelines for the prevention and

treatment of hypertension (2018 revised edition) (13) and/or

(2) a diagnosis of hypertension by a physician and/or (3)

antihypertension treatment.
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TABLE 1 Characteristics of the participants in primary care settings.

Feature Hypertension (n = 25,038) Normal (n = 15,223) χ
2 P

Age* 72.00 (68.00–78.00) 70.00 (66.00–75.00) 683.51a <0.01

Diabetes status 2077.18b <0.01

No 16,512 (65.95) 13,177 (86.56)

Yes 8,526 (34.05) 2,046 (13.44)

Urinary protein level 32.33b <0.01

Negative 8,261 (32.99) 8,392 (55.13)

Positive 581 (2.32) 405 (2.66)

BMI* 24.98 (23.01–27.30) 24.16 (22.10–26.30) 458.44a <0.01

EHSA 563.15b <0.01

1 6,973 (27.85) 5,973 (39.24)

2 12,604 (50.34) 6,387 (41.96)

3 358 (1.43) 219 (1.44)

4 277 (1.11) 149 (0.98)

5 163 (0.65) 46 (0.30)

Cr level* 69.00 (58.00–84.00) 66.00 (56.00–77.70) 229.09a <0.01

SBP* 140.00 (130.00–153.00) 139.00 (126.00–148.00) 326.93a <0.01

WC* 87.00 (81.00–93.00) 85.00 (79.00–91.00) 157.52a <0.01

Smoking status 200.85b <0.01

1 19,171 (76.57) 10,238 (67.25)

2 1,159 (4.63) 857 (5.63)

3 2,028 (8.10) 1,700 (11.17)

LDL-C level* 2.89 (2.20–3.41) 2.99 (2.46–3.63) 402.35a <0.01

HDL-C level* 1.35 (1.11–1.54) 1.40 (1.20–1.66) 586.65a <0.01

Frequency of drinking 97.64b <0.01

1 18,096 (72.27) 9,837 (64.62)

2 2,753 (11.00) 1,771 (11.63)

3 199 (0.79) 151 (0.99)

4 918 (3.67) 764 (5.02)

Glucose level* 5.60 (5.13–6.90) 5.50 (5.00–6.33) 247.31a <0.01

Urea nitrogen level* 5.63 (4.80–6.83) 5.63 (4.80–6.37) 306.45a <0.01

TC level* 4.82 (4.01–5.52) 4.99 (4.35–5.72) 267.34a <0.01

DPB* 78.00 (72.00–84.00) 78.00 (70.00–82.00) 235.77a <0.01

Exercise frequency 17.48b <0.01

1 14,751 (58.91) 8,460 (55.57)

2 815 (3.26) 391 (2.57)

3 1,495 (5.97) 926 (6.08)

4 5,471 (21.85) 3,331 (21.88)

High salt consumption 17.24b <0.01

No 24,938 (99.60) 15,199 (99.80)

Yes 100 (0.40) 24 (0.20)

TG level* 1.39 (1.12–1.84) 1.39 (1.00–1.80) 13.22a <0.01

Time spent engaged in exercise* 30.00 (30.00–30.00) 30.00 (30.00–30.00) 0.41a 0.52

*Refers to nonnormally distributed measurement data, reported as the median (25th percentile, 75th percentile). arefers to results of the rank sum test. brefers to the results of the

chi-square test.

Inclusion and exclusion criteria

The sample data that fulfilled the following inclusion criteria

were obtained for further analysis in this study: community

residents over 35 years of age. The chapter “Health Management

Service Specifications for Hypertension Patients” in “National

Basic Public Health Service Specifications (the Third Edition)”

specified that one of the services is to “Provide free blood
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pressure measurement once a year for permanent residents aged

35 years old and over in area of responsibility” (14). Therefore,

we chose community residents aged 35 years and older as

our subjects. The exclusion criteria were: (1) individuals who

were unable to provide informed consent, (2) those have any

diagnosis of secondary or gestational hypertension, and (3) those

who could not cooperate with the investigation because of a

long-term outing or a lack of electronic healthcare records.

Data processing

Outliers were handled by interquartile range (IQR). The IQR

is evaluated as IQR = Q3–Q1. Q3 is the upper quartile, and Q1

is the lower quartile. Outliers were defined as records that fell

below Q1–(1.5∗IQR) or above Q3+ (1.5∗IQR).

Missing values, such as data with null rows and columns,

which did not have a single value or number available, were

deleted. Different methods, such as the mean values, median

values, mode values, feature combinations and null values, were

adopted for dealing with the individual missing values according

to the characteristics of different variables. In total, 5.62% of

missing values were found in the whole dataset.

Discretization was performed by splitting the range of the

continuous variables into intervals to save time needed to

build the risk assessment model and improve the assessment

results (15).

Feature selection

Feature selection, which is one of the essential parts of

building a good prediction model, was employed in this study

to improve the prediction accuracy by choosing the most

important variables. Moreover, it facilitates a reduction in the

resources (time and space) needed to construct the model

(16). The embedded method was applied in this study for

feature selection. It integrates the feature selection process with

the model training process. This method considers variable

interactions and is less computationally demanding than the

wrapper method (17).

Twenty features were selected to construct the model, from

the 127 variables (see the Supplementary Files): age, diabetes

status, urinary protein level, BMI, elderly health self-assessment

(EHSA), creatinine (Cr) level, systolic blood pressure measured

on the upper right arm (SBP), waist circumference (WC),

smoking status, low-density lipoprotein cholesterol (LDL-

C) level, high-density lipoprotein cholesterol (HDL-C) level,

frequency of drinking, glucose level, urea nitrogen level, total

cholesterol (TC) level, diastolic blood pressure of the upper right

arm (DBP), exercise frequency, time spent engaged in exercise,

high salt consumption, and triglyceride (TG) level.

Machine learning algorithms

Extreme Gradient Boosting (XGBoost) is a supervised ML

algorithm (18). It is a scalable end-to-end tree boosting system

(19). XGBoost can automatically perform parallel computations

and is generally more than 10 times faster than GBM (20). Its

input types include dense matrix, sparse matrix, data file and

xgb.dmatrix. XGBoost accepts sparse input for both tree and

linear booster and is optimized for sparse input. It supports

customized objective and evaluation functions, and performs

better on several different datasets.

Random forest is a supervised classification algorithm (21).

It works by learning simple decision rules extracted from the

data features and overcomes the limitation of overfitting of the

decision trees (22).

Logistic regression is an algorithm that classifies values

through the application of a logistic function to coefficients

calculated using a linear regression equation (23). It requires

that the dependent variable be a second-level score or a second-

level evaluation.

Model evaluation and validation

A confusion matrix was employed to evaluate the

performance of the models based on ML algorithms for

the assessment of hypertension risk. The distinguishing abilities

of the risk assessment model were evaluated with the receiver

operator characteristic (ROC) curve and the AUC (24). The

performance of the models was evaluated by calculating the

sensitivity (true positive rate, TPR), specificity (true negative

rate, TNR), positive predictive value (PPV), negative predictive

value (NPV), accuracy (ACC), and F1-score (25, 26).

Determination of the cut-o� point

The evaluations were kinds of probabilities; thus, a cut-off

point was needed to classify the prediction probabilities. The

probability of having hypertension was represented by “P” in the

model. The cut-off point was utilized to classify the evaluated

probabilities belonging to the positive results or negative results.

We adopted a cut-off point of 0.5 in this study, which meant that

participants were evaluated to be at high risk of hypertension

when P ≥ 0.5; otherwise, they were not.

Statistical analysis

Basic descriptive statistics were used to depict the

characteristics of the subjects, including demographic

characteristics and health-related factors. All normally

distributed measurement data are depicted as the mean
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± standard deviation (X ± SD), nonnormally distributed

measurement data are reported as the median (25th percentile,

75th percentile), and the counting data are expressed as

the frequency and proportion. Between groups, normally

distributed measurement data were compared by T-test,

nonnormally distributed measurement data were compared

by rank sum test, and the counting data were analyzed by chi-

square test. P < 0.05 were considered statistically significant. All

statistical analyses were performed using IBM SPSS Statistics

version 22.0 (IBM Corp., Armonk, NY, USA).

For the assessment models, ML algorithms, XGBoost,

random forest and logistic regression were utilized for the

evaluation of the risk of hypertension and the effects of the risk

factors. Python 3.7.3 was used for the construction of the risk

assessment models of hypertension.

Reporting guidelines

Results are presented in accordance with the Transparent

reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) guidelines. STROBE and

RECORD guidelines for observational studies and studies

using routinely collected health data were also considered.

The study was conducted in accordance with relevant

institutional guidelines.

Results

Characteristics of the study population

A total of 40,261 subjects were included, with a mean

age of 72.429 ± 7.643 years, and the mean age of patients

with hypertension was 73.216 ± 7.696 years. The sample

prevalence of hypertension was almost 62.19%. The differences

in age, diabetes status, urinary protein level, BMI, EHSA, Cr

level, SBP, WC, smoking status, LDL-C level, HDL-C level,

frequency of drinking, glucose level, urea nitrogen level, TC

level, DBP, exercise frequency, high salt consumption, and TG

level between participants with hypertension and normotensive

participants were statistically significant (P < 0.01). There were

no statistically significant differences (P > 0.05) in terms of

time spent engaged in exercise. The characteristics of the study

participants are summarized in Table 1.

Construction of the risk assessment
models

The training set and validation set were utilized to determine

the optimal parameters for XGBoost, random forest and logistic

regression. The parameters of each model under optimal

TABLE 2 Configuration of parameters in each ML algorithm.

ML algorithm Parameter Value range Optimal

value

XGBoost learning_rate [0, 0.3] 0.05

n_estimators [100, 500] 200

gamma [0, 20] 5

subsample [0, 0.9] 0.4

colsample_bytree [0.5, 0.9] 0.9

min_child_weight (1, 6) 5

max_depth (2, 8) 6

objective - binary:logistic

Random forest n _estimators [1, 50] 40

criterion gini gini

max_depth none none

min_samples_split [5, 200] 200

min_samples_leaf [1, 50] 1

max_features auto auto

Logistic regression C [0, 200] 100

class_weight none none

max_iter [10, 100] 10

solver - liblinear

performance are exhibited in Table 2. For other unlisted

parameters in the three ML algorithms, default values were set.

Feature importance

The significant features of the XGBoost model, random

forest model and logistic regression model are listed in

Figures 1–3, respectively. The urea nitrogen level was the highest

ranked feature for predicting hypertension in both the XGBoost

model and the random forest model. BMI, SBP, TG level, Cr

level, LDL-C level, and glucose level were ranked in the top 10

in all three models.

Model performance

Weutilized variousmethods and evaluationmetrics to assess

the performances of the XGBoost, random forest, and logistic

regression models in the training, validation, and testing sets.

Overall, the XGBoost model outperformed the other twomodels

in TPR (0.864), TNR (0.488), PPV (0.735), NPV (0.686), ACC

(0.722), F1-score (0.795), and AUC (0.765) in the testing set

(Table 3).

Figure 4 summarizes the ROC curve areas obtained from the

XGBoost model, random forest model and logistic regression

model in the testing set. The areas under the ROC curves were

different among the three models. The AUCs for the test set
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FIGURE 1

Feature importance in the XGBoost model.

FIGURE 2

Feature importance in the random forest model.
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FIGURE 3

Feature importance in the logistic regression model.

TABLE 3 The fitting results for the XGBoost, random forest, and logistic regression models for the training, validation, and testing sets.

ML algorithm Dataset TPR TNR PPV NPV ACC F1-Score AUC

XGBoost Training 0.886 0.530 0.756 0.739 0.752 0.816 0.818

Validation 0.862 0.480 0.732 0.678 0.717 0.791 0.753

Testing 0.864 0.488 0.735 0.686 0.722 0.795 0.765

Random forest Training 0.896 0.434 0.723 0.718 0.722 0.800 0.782

Validation 0.871 0.446 0.721 0.678 0.711 0.789 0.745

Testing 0.816 0.548 0.748 0.644 0.714 0.780 0.756

Logistic regression Training 0.827 0.411 0.698 0.591 0.670 0.757 0.705

Validation 0.822 0.418 0.699 0.588 0.669 0.756 0.692

Testing 0.829 0.430 0.705 0.604 0.678 0.762 0.707

were 0.765 for XGBoost, 0.756 for random forest, and 0.707 for

logistic regression (Table 4). The AUC of the XGBoost model

was higher than that of the random forest and logistic regression

models. Our results demonstrated that the XGBoost model

had better predictive performance than the random forest and

logistic regression models.

Discussion

Among the 20 selected features in this study, BMI, SBP,

TG level, Cr level, LDL-C level, and glucose level had a strong

effect on hypertension prediction and were included among the

top 10 in the ranking of the feature importance for all three

models. Similar to the results of previous studies, features such

as age (27–29), BMI (28, 30), diabetes status (28), Cr level (26),

blood pressure (29), WC (31), smoking status (28), LDL-C level

(26, 28), HDL-C level (26), drinking (28), glucose level (32),

TC level (26, 27), exercise (33), salt intake (34), and TG level

(27) were identified as predictors of hypertension in the risk

assessment model of hypertension.

However, to the best of our knowledge, urinary protein

level, urea nitrogen level, and EHSA entered the models as

new components that have not been included in risk evaluation

models of hypertension in previous studies.

A study collected data from three exams in the Strong

Heart Study, explored the risk factors for hypertension

by means of generalized linear models and demonstrated
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FIGURE 4

The ROC curves obtained from the XGBoost model, random

forest model and logistic regression model. X axis: 1-specificity,

Y axis: sensitivity. The reference line is shown as a dashed line

(the black line).

TABLE 4 AUCs for the XGBoost, random forest, and logistic regression

models for the training, validation, and testing sets.

ML algorithm Dataset AUC

XGBoost Training 0.818

Validation 0.753

Testing 0.765

Random forest Training 0.782

Validation 0.745

Testing 0.756

Logistic regression Training 0.705

Validation 0.692

Testing 0.707

that systolic blood pressure was significantly and positively

associated with albuminuria, age, and obesity and negatively

associated with smoking. Moreover, participants with more

severe albuminuria status or older age developed higher SBP,

while DBP was not significantly affected by the albuminuria

status (35). This study in American Indians revealed that

having macro/microalbuminuria is a significant risk factor

for hypertension, which can explain why urinary protein

level was selected as one of the features in our model

to some extent. Urinary protein level may also affect the

development of hypertension in Chinese individuals or facilitate

the risk assessment of hypertension in Chinese individuals.

Furthermore, Kim et al. reported that subjects with high

normal BP had an independently significant association with

microalbuminuria by performing a multiple logistic regression

analysis, with an odds ratio of 1.692 and a 95% confidence

interval of 1.097 to 2.611 (36). These results from a Korean

population indicated that compared to individuals with normal

BP, those with high normal BP have more risk factors

for hypertension and cardiovascular diseases, for instance,

albuminuria. Since the incidence of urinary protein was

significantly higher in the prehypertensive population than in

the normal population, urinary protein level should receive

attention in future predictive studies and intervention measures.

Although we rarely found urea nitrogen level to be included

as a predictive factor in the risk prediction models, it was found

to be a significant risk factors for hypertension. A case-control

study conducted among university staff found that staff with

high serum urea levels had a higher risk of hypertension than

those with normal urea levels (OR = 1.452), which implies that

the level of urea is also very important as one of the risk factors

for hypertension (37). Not coincidentally, this phenomenon has

been found among middle-aged and elderly people. SBP was

positively correlated with the blood urea nitrogen concentration

(r = 0.16424, P = 0.0105) and the blood uric acid concentration

(r = 0.16023, P = 0.0126) among middle-aged and older-aged

populations in Guangzhou, China, as well as DBP (blood urea

nitrogen concentration: r = 0.13506, P = 0.0358; blood uric

acid concentration: r = 0.16562, P = 0.0099) (38). The results

of stepwise regression analysis also indicated that there was

still a significant positive correlation between SBP, DBP and

concentrations of blood urea nitrogen and blood uric acid. The

role of urea nitrogen level, one of the features entered into our

risk assessment model, in the occurrence and development of

hypertension still needs to be further investigated.

EHSA was also one of the predictors entered into our model.

Kaplan and Camacho have already reported that the association

between level of perceived health and mortality persisted in

multiple logistic analyses controlling for age, sex, physical

health status, health practices, social network participation,

income, education, health relative to peers of the same age,

anomy, morale, depression, and happiness (39). The results

reminded us that self-assessment of health might serve as a

comprehensive reflection of unmeasurable factors and as an

indication of some underlying diseases or an early stage of

the diseases. Evidence has shown that psychosocial factors

exert strong effects on health status measures (40). Zhang

et al. revealed that the proportion of elderly individuals with

poor or normal health self-assessments who were suffering

from common chronic diseases was significantly increased (41).

The health self-assessment epitomizes the health concept and

self-perception of health status of elderly individuals to some

extent, which might have an underlying predictive value on the

prediction of the risk of hypertension and should thus be given

more attention in future research, as well as the practice in

primary care.

Unlike traditional risk assessment methods, our study

employed ML algorithms for model construction. XGBoost

exhibited the best performance compared to random forest

and logistic regression. Logistic regression assumes that every

variable should be independent, and the model possesses only

a linear partition surface. However, the associations between
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exposure factors and diseases are often affected by various

confounding factors, which leads to the large deviation and

low accuracy when fitting the model through logistic inference.

In contrast, XGBoost and random forest are nonparametric

algorithms (42) that do not assume that a functional relationship

between the features and outcomes exists, as required by logistic

regression models. A greedy algorithm is executed to determine

the optimal splits in the data that reduce the entropy of the

outcome to the utmost extent during every split. As a result, once

a feature is selected, the significance of any highly related feature

will decrease greatly due to the completion of the effective

split done by the original feature previously. Consequently, the

entropy of the outcome will no longer be reduced effectively

by related features. Therefore, XGBoost and random forest are

robust to related features. The reason why XGBoost outperforms

the other methods may be that it introduces the regularized

loss function (43) and combines gradient lifting algorithms and

decision trees, which preserves the correlation between features

during the modeling process (44).

In terms of performance, the XGBoost-based hypertension

prediction model proposed by the Japanese group showed an

AUC of 0.877 (10), while the hypertension risk assessment

model proposed in this study exhibited an AUC of 0.765. The

explanation for this discrepancy may be the difference in ethnic

populations. According to previous studies, different ethnic

populations have different characteristics of hypertension, which

may affect the discrepancies in the AUCs for different models

(45, 46). Meanwhile, the difference between age range of the

subjects may also contribute to the discrepancy in the model

performance. For instance, in a study regarding assessing the

relationship between nerves and cancer using machine learning

methods, the authors found that the performance of the model

trained on the young dataset was much better than that trained

on the elderly dataset and the whole age dataset, and the

performance of the model trained on the whole age dataset was

slightly better or similar to that trained on the elderly dataset

(47). The findings from these studies suggested that we should

further investigate the effect of the difference in subjects’ age

range on the performance of hypertension models in the future.

Compared with other models used to predict hypertension (11),

the results from the proposed XGBoost prediction model in the

present study did not show a higher AUC. The variable selection

may partially explain the discrepancy.

After the risk assessment of hypertension, subsequent

interventions and management to prevent or postpone the

occurrence and development of hypertension are crucially

important in high-risk populations. Continuous monitoring

and management are imperative for high-risk patients. On the

one hand, realtimeness and continuity monitoring can detect

any problem without delay. On the other hand, early signs of

detected symptoms can alert both general practitioners (GPs)

and individuals in a timely manner. For high-risk populations,

corresponding individual intervention strategies targeting the

main risk factors should be prescribed by GPs in primary care.

For instance, lifestyle factors such as exercise, eating habits, and

drinking habits can be improved under the guidance of GPs after

risk assessment. Evidence has revealed that a high concentration

of parks or playgrounds in residential areas may reduce the risk

of hypertension, which is mainly attributable to the cultivation

and formation of exercise habits and implies the importance of

interventions in communities (48).

However, there were several limitations in our study. One

of the limitations of the study was that it had a cross-

sectional design, and the results could not indicate causality

in this situation. A prospective cohort study is needed to

further identify the cause-and-effect relationships. Second, the

risk assessment model was designed considering only variables

available in the setting of primary care, and variables regarding

mental health and hereditary factors were not included. Third,

we measured several variables, such as age, urinary protein level,

BMI, and Cr level, on only a single occasion and did not take

changes in these variables into consideration.

In conclusion, XGBoost outperformed random forest

and logistic regression models in predicting the risk of

hypertension in primary care settings. Early identification and

the corresponding preventive strategies in primary care remain

insufficient in China. Integration of such a risk assessment

model into primary care may help general practitioners

target populations at high-risk for hypertension, tailor the

corresponding preventive measures and treatment strategies to

those at high risk, improve the awareness of residents regarding

health risks and their adherence toward targeted intervention,

and eventually facilitate individuals’ health and quality of life

while decreasing healthcare costs.
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