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Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics
such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in
the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase
II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known
as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is
activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2)
in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on
the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly
identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings
identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
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Introduction

In the mammalian heart, calcium (Ca2+) is an essential regu-
lator of electrical signals, contractile function, and excitation–
contraction coupling (ECC) during each heartbeat and also
plays an important role in the cellular signal transduction path-
ways that control myocyte survival and growth [17, 42, 116].
Under physiological conditions, the heart beats more than two
billion times during an average human lifespan to supply
blood to the body. With increasing age and abnormal condi-
tions such as heart failure (HF) and excessive alcohol intake,
impaired Ca2+ homeostasis causes myocardial molecular re-
modeling including aberrant gene expression, myocyte death,

contractile dysfunction, and arrhythmias [2, 111, 150]. Ca2+/
calmodulin-dependent protein kinase II (CaMKII) is a multi-
functional signaling molecule that plays a central role in this
impaired Ca2+ homeostasis promoting maladaptive cardiac
remodeling and arrhythmias [2, 6, 91, 155–157].

Under pathological conditions, intrinsic cellular stress-
es caused by a number of stimuli including oxidative
stress, ischemia, and inflammation are markedly en-
hanced. These stressors are also well-established risk fac-
tors for the development of cardiovascular diseases [12,
14, 62, 64, 103]. The c-jun N-terminal kinase (JNK), a
member of the mitogen-activated protein kinase (MAPK)
family, is activated in response to various stress chal-
lenges [29, 66, 112, 115]. In fact, JNK activation has been
observed with aging, excessive binge alcohol intake-
triggered “Holiday Heart Syndrome,” and with cardiovas-
cular diseases such as ischemic myocardial infarction
(MI) and HF [29, 63, 66, 80, 108, 112, 115, 136, 144].
Our lab recently discovered a novel sub-cellular mecha-
nism describing a pathogenic kinase-to-kinase crosstalk
between JNK2 kinase and the “pro-arrhythmic kinase”
CaMKIIδ in the governance of intercellular Ca2+ signal-
ing and consequently Ca2+-mediated arrhythmias.
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A JNK kinase was first discovered in the early 1990s by
Kyriakis and Avruch and reported as a novel protein called
pp54 MAP-2 kinase, which is activated by duel phosphoryla-
tion of the amino acid residues of serine-183 and threonine-
185 [74, 75]. Later, two isoforms were identified with molec-
ular weights of 46 and 56 kDa and were named JNK1 and
JNK2, respectively [58]. It was then revealed that these JNK
kinases could be activated by various extracellular stimuli.
Because JNK contains the threonine–tyrosine phosphoryla-
tion motif (TPY), it was thus characterized as a member of
the MAPK family. Next, JNK3 was discovered in 1995 as the
third member of this MAPK subfamily and is mainly
expressed in neurons [67, 95, 99, 115]. In the heart, JNK1
and JNK2 are the major isoforms, while JNK3 is expressed
at a much lower level [73]. In this review, we will discuss the
new findings identifying dual roles of JNK2 in CaMKIIδ ex-
pression and activation and the current understanding of the
crucial role of the stress kinase JNK2 isoform in CaMKIIδ-
dependent aberrant sarcoplasmic reticulum (SR) Ca2+ han-
dling in stressed hearts.

Physiological calcium dynamics in the heart

Ca2+ is an important cation in the conversion of an electrical
signal to mechanical function in the heart from beat to beat [1,
88, 93, 118, 126]. The voltage-gated L-type Ca2+ channels
(LTCCs) located in the plasma membrane are activated by
depolarization of the myocyte membrane, which leads to a
small amount of inward Ca2+ flux (ICa) [44, 50, 81, 117,
123, 130]. This Ca2+ entry through LTCCs triggers large
quantities of Ca2+ to be released from the SR via cardiac
ryanodine receptor type-2 (RyR2; also called Ca2+-triggered
SR Ca2+ release channels) [9, 84, 93]. The plasma membrane
and SR are coupled to allow this Ca2+-induced Ca2+ release
(CICR), which occurs locally within the clusters of RyR2
channels on the SR membrane that are in close proximity to
LTCCs [59, 77]. CICR is further facilitated by dyads, which
are the structures consisting of terminal cisternae of SR, com-
posed of RyR2 channels, paired with transverse tubules (T-
tubules), and LTCCs [139]. When an action potential arrives
at the T-tubule, Ca2+ influx via LTCCs activates RyR2 chan-
nels on the cytosolic side of the SR allowing the occurrence of
CICR, which activates neighboring RyR2 channels within the
same dyad, resulting in a rapid increase in cytosolic Ca2+ [45,
76]. CICR is also the trigger for Ca2+-troponin C binding,
leading to myofilament activation and cardiac muscle contrac-
tion [86, 89].

During cardiac muscle relaxation, LTCCs close and termi-
nate the influx of Ca2+ and cytosolic Ca2+ is removed through
the sodium–calcium exchanger (NCX) to the extracellular
space and pumped back to the SR through the cardiac sarco-
plasmic reticulum Ca2+-ATPase (SERCA2), while another

small portion of Ca2+ is taken up by mitochondria via mito-
chondrial Ca2+ uniporters as well as a small Ca2+ efflux via the
plasma membrane Ca2+-ATPase (PMCA) [10, 17, 34, 50,
107]. Normal contraction of the heart requires high Ca2+

levels in systole and low levels in diastole [35, 69].
Therefore, SR Ca2+ release via RyR2 channels and reuptake
via the predominant Ca2+ pump SERCA2a isoform
(SERCA2a), and to a much lesser extent SERCA2b isoform,
critically mediate the cytoplasmic Ca2+ concentration, which
is essential in cardiac contraction and relaxation of each heart-
beat [1, 118].

Functional impacts of pathological SR Ca2+

mishandling

Given the tightly regulated role of Ca2+ in ECC, even a small
amount of aberrant Ca2+ release resulting from slowly devel-
oping pathological changes in the intracellular Ca2+ homeo-
stasis can potentially have escalating negative consequences
for the myocyte and ultimately the whole heart. Under patho-
logical conditions including HF, ischemia–reperfusion (IR)
injury, post-MI, atrial fibrillation (AF), and ventricular ar-
rhythmias, abnormal SR Ca2+ dynamics result in electrical
and mechanical dysfunctions and myocardial maladaptive
function (Fig. 1) [2, 18, 21, 22, 30, 68, 82, 145, 147].

For instance, HF is a common disorder in which the cardiac
output does not meet the needs of the body resulting from dys-
functional contractility, impaired electrical conduction, and ab-
normal energymetabolism [22, 30]. During the SRCa2+ cycling,
decreased SR Ca2+ refill via reduced Ca2+ uptake by SERCA2a
leads to a reduced Ca2+ transient amplitude and consequently
decreased cardiac contractility as seen in the failing heart [57,
83, 125, 142]. In the diastolic phase, SR Ca2+ release normally
shuts off almost completely (∼99%). However, increased diastol-
ic RyR2 channel activity could be responsible for increased dia-
stolic SR Ca2+ leak and reduced systolic fractional Ca2+ release
for a given L-type voltage-gated Ca2+ current (Ica) as the release
trigger [11, 19, 121]. The increased diastolic SR Ca2+ leakage
along with an impaired SR Ca2+ uptake in HF slows down the
intracellular Ca2+ decline and then elevates the amount of dia-
stolic intracellular Ca2+ concentration, which leads to increased
sodium (Na+) influx via NCX for removing the elevated intra-
cellular Ca2+ outside of the cell membrane. As a result, increased
diastolic SR Ca2+ leak promotes aberrant Ca2+ events (Ca2+

sparks and waves) and the inward NCX current produces abnor-
mal triggered activities such as delayed after-depolarizations
(DADs) and initiates atrial arrhythmias such as atrial fibrillation
(AF, the most common cardiac arrhythmia) and ventricular ar-
rhythmias including ventricular tachycardia and ventricular fibril-
lation (a fatal type of cardiac arrhythmia) [9, 17, 19, 31, 81]. This
abnormal SR Ca2+ handling also occurs in AF pathogenesis as
discussed in detail below.
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Ca2+/calmodulin-dependent protein kinase II
in the pathological SR Ca2+ mishandling

One of the hallmarks of a diseased heart is that altered protein
phosphorylation critically contributes to ion transporter and
channel dysfunctions, which leads to the disruption of SR
Ca2+ dynamics. CaMKII is a well-recognized pro-
arrhythmic kinase, promoting abnormal SR Ca2+

dynamics via phosphorylation of Ca2+ handling proteins in
the heart. There are four highly conserved isoforms of
CaMKII (α, β, γ, and δ) widely expressing in the body, while
the δ isoform is predominantly expressed in the heart.
Extensive studies demonstrate that activated CaMKIIδ is crit-
ically involved in phosphorylation of RyR2 at the site of
Ser2815, resulting in sensitized RyR2 channels and profound-
ly increased diastolic SR Ca2+ leak that in turn promotes trig-
gered activities and arrhythmia initiation in pathologically al-
tered ventricles in HF [2, 6, 51, 56, 87, 91, 111, 127, 150, 155,
156, 158]. Although protein kinase A (PKA) has also been
shown to phosphorylate RyR2 channels, inconsistent findings
regarding the arrhythmic effect of PKA hyperphosphorylation
of RyR2 at Ser2809 in HFwere reported [3, 7, 16, 85, 90, 110,
120, 135, 138, 140, 154], further suggesting the key role of
CaMKIIδ in HF-evoked arrhythmias. In recent years, accu-
mulating evidence suggests that CaMKIIδ-dependent RyR2

channel dysfunction also leads to SR Ca2+ mishandling and
triggered activities (delayed afterdepolarizations (DADs)) in
the atria of chronic AF patients and post-operative AF patients
[55, 131]. For instance, activated CaMKII was found to in-
crease both arrhythmic Ca2+ activities and profibrotic activity-
caused structural remodeling in chronic AF patients associated
with HF [28, 96]. In post-operative AF patients (with no his-
tory of AF prior to the open-chest surgery), activation of the
inflammasome signaling protein, NACHT, LRR, and PYD
domain containing protein 3 (NLRP3), was found to augment
the CaMKIIδ-dependent RyR2-hyperphosphorylation and ar-
rhythmic Ca2+ activities [25, 26, 100]. Further, this CaMKIIδ-
dependent SR Ca2+ mishandling was recently found to under-
lie AF pathogenesis in rabbit and mouse models of aging and
holiday heart syndrome, in a tachy-pacing canine AF model,
and in a spontaneous AF CREM mouse model [33, 79, 134,
145]. Similar to the regulatory actions of CaMKIIδ in the
RyR2 activity, CaMKIIδ is known to enhance the Ca2+

binding affinity of SERCA2a by phosphorylating phos-
pholamban (PLB) at the threonine-17 site (PLB17) to re-
lease the inhibitory PLB from SERCA2a, which enhances
SERCA2a Ca2+ affinity and stimulates SR Ca2+ uptake
[124]. The inhibitory effect of PLB on the SERCA2a ac-
tivity contributes to, at least in part, reduced SR Ca2+ up-
take in failing hearts [27]. In addition to the critical role of
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Fig. 1 A representation of normal Ca2+ cycling in cardiomyocytes and
stress kinase JNK2-mediated CaMKIIδ-dependent SR Ca2+ mishandling
and maladaptive cardiac dysfunction. Physiological and pathological reg-
ulation of Ca2+ cycling in cardiomyocytes and activated CaMKIIδ-
dependent dysregulation of RyR2 as well as other ion channels (i.e.,
NaV1.5 andKV), which lead to enhanced diastolic SRCa2+ leak, triggered
arrhythmic Ca2+ activates (sparks and waves), DADs, and cardiac dys-
function. A JNK2-driven CaMKIIδ-dependent diastolic leak–uptake

relationship also enhances triggered arrhythmic activities. JNK2 c-jun
N-terminal kinase, CaMKIIδ Ca2+/calmodulin-kinase type-II delta iso-
form, NaV1.5a voltage-gated sodium channel isoform 1.5-alpha, LTCC
L-type Ca2+ channels, OX oxidation, SR sarcoplasmic reticulum, PLB
phospholamban, SERCA2 SR Ca2+-ATPase, DADs delayed
afterdepolarizations, P phosphorylation, RyR2 ryanodine receptor type-
2, NCX sodium-calcium exchanger
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activated CaMKIIδ in SR Ca2+ handling, CaMKIIδ is also
known to regulate other ion channels such as Ca2+ [114,
137], Na+ [53, 132, 151], and K+ [98, 102] channels and
NCX [143, 149]. For instance, CaMKIIδ-dependent phos-
phorylation of cardiac voltage-gated sodium channel iso-
form 1.5 (NaV1.5) enhances a late depolarizing current
(INa. Late), which leads to prolonged action potentials
(APs) and disrupted Ca2+ handling and promotes arrhyth-
mogenic DADs [48, 71]. In addition to Na+ channels, it
has been suggested that CaMKIIδ activation regulates po-
tassium Kv channels and reduces Ito and IK1 currents,
which prolong APs and increase Ca2+-triggered repolari-
zation, and ultimately enhance arrhythmogenicity [78,
133, 141]. Thus, CaMKIIδ is an important arrhythmic ki-
nase playing a crucial role in the cardiac Ca2+ homeostasis
and ECC in pathologically remodeled hearts (Fig. 1).
Because CaMKIIδ is the predominant pro-arrhythmic iso-
form in the heart, CaMKIIδ inhibition has been considered
a potential therapeutic approach to treat heart diseases [4,
5, 43, 72, 113]. Thus, understanding the underlying mech-
anisms of CaMKIIδ activation is of vital importance.

A novel finding of stress kinase
JNK2-regulated CaMKIIδ activation

In the past decades, significant progress has been made re-
garding the underlying mechanisms of CaMKIIδ activation
under pathological conditions [39–41, 52, 155]. CaMKIIδ is
a serine/threonine kinase with an increased activity when the
site of threonine-287 is phosphorylated that leads to increased
binding of its regulatory region to Ca2+/calmodulin, exposing
CaMKIIδ to the kinase substrate and ATP binding sites and
allowing phosphorylation of the target proteins by CaMKIIδ.
Several elegant studies [39–41, 52] revealed different under-
lying mechanisms of post-translational modification including
oxidization at the Met281/Met282 sites, S-nitrosylation on
Cys290, and O-GlcNAcylation on Ser279, which all can lead
to sustained activation of CaMKIIδ under various pathologi-
cal conditions (Fig. 2). On the other hand, protein phospha-
tases such as PP1 are also important in maintaining the acti-
vation status of CaMKIIδ in HF and AF [23, 36, 60, 101, 152].
In patients with myocardial infarction and angina, increased
protein phosphatase 1 (PP1) and reduced endogenous PP1
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Fig. 2 A schematic outline of underlying mechanisms of CaMKIIδ
activation and its functional consequences. Stressors (i.e., aging,
alcohol, HF, and MI) lead to the activation of signal transduction
pathways and the JNK kinase family (JNKs), which enhance CaMKIIδ
activity through post-translational modifications including S-
nitrosylation, O-GlcNacylation, oxidation, or direct phosphorylation on
the regulatory domain of CaMKIIδ. Activated CaMKIIδ phosphorylates
its downstream protein targets (i.e., RyR2, LTCC, and PLB) that are
central to calcium homeostasis in the cardiomyocyte and in abnormal

calcium dynamics in the development of maladaptive cardiac remodeling
under pathological conditions (i.e., arrhythmia and HF). Auto-P auto-
phosphorylation, Ca2+/CaM calmodulin, CVDs cardiovascular diseases,
HF heart failure, LTCC L-type Ca2+ channels,MI myocardial infarction,
NO nitric oxide, O-GlcNA O-linked-N-acetylglucosaminylation (O-
GlcNAcylation), PLB phospholamban, RNS reactive nitrogen species,
ROS reactive oxygen species, RyR2 ryanodine receptor type-2, S-Nitro
s-nitrosylation.
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inhibitory protein inhibitor-1 (I-1) were associated with re-
duced CaMKII activity via dephosphorylation of the auto-
phosphorylation site Thr287 of CaMKIIδ, while I-1 KO mice
also showed reduced CaMKIIδ activity in the heart [101,
152]. In chronic AF, hyperphosphorylated I-1 suppresses the
PP1 activity to consequently sustain the activation of
CaMKIIδ [36, 54, 92]. However, reduced I-1 was also found
in the failing heart, but it was associated with increased
CaMKII activity due to the exchange protein activated by
cAMP (EPAC)-augmented CaMKII activation [101].
Moreover, activation of CaMKIIδ could be sustained by reac-
tive oxygen species (ROS) via inactivating phosphatases to
reduce the protein phosphatase-regulated dephosphorylation
of CaMKIIδ [5, 101]. Clearly, this kinase–phosphatase rela-
tionship is complex in the diseased heart and further investi-
gation is needed. Nevertheless, all of the current findings em-
phasize the clinical significance of exploring effective ap-
proaches to inhibit CaMKIIδ activity as potential therapeutic
strategies to prevent and/or treat cardiac diseases and
arrhythmias.

Recently, our lab reported for the first time that the stress–
response kinase JNK2 drives a kinase-to-kinase crosstalk as a
previously unrecognized molecular mechanism of CaMKIIδ
activation in both aging and binge alcohol-exposed holiday
heart syndrome human and animal models [145, 147].
Notably, elevated cellular stress is a common feature of the
heart under extrinsic stimuli or during pathological remodel-
ing. JNK is a well-characterized kinase that is activated in
response to intrinsic and extrinsic stress stimuli, and thenmod-
ulates cellular functions including Ca2+ mishandling, cell
death, and survival [29, 67]. JNK1 activation has been ob-
served in various cardiovascular diseases including IR injury,
MI, and HF, which frequently occur together in the aging
population [15, 49, 66, 112, 115, 144]. However, the function
of JNK2 in the heart has received less attention. Although not
all hearts will experience a particular stress, all hearts will
inevitably age. The aged heart is also known to be more sus-
ceptible to the stresses it may encounter [64]. We found that
JNK2, but not JNK1, is significantly activated in both aged
human and animal atria, while the levels of total JNK1 and
JNK2 proteins were unchanged [144, 145]. Moreover, we
found that activated atrial JNK2 is a consistent feature of aged
atrium among different species (humans, rabbits, and mice)
[144–147]. Furthermore, our recent unpublished data indicates
that JNK2 also exhibits elevated activity in aged ventricles.
Functionally, we revealed that this age-induced JNK2 activa-
tion directly phosphorylates CaMKIIδ to enhance its kinase
activity and drive pathology [25, 113]. Intriguingly, we also
discovered that JNK2 and CaMKIIδ proteins are tethered with
each other and JNK2 increases phosphorylation of CaMKIIδ
at the autophosphorylation site Thr287. Since protein phos-
phatase PP1 is also known to target this Thr287 site to dephos-
phorylate CaMKII [101, 129, 152], it could be a counterpoint

to JNK2 in sustaining the phosphorylation status of CaMKII
under stressed conditions. It is clear that this is worthy of
further investigation. Accumulating evidence suggests that ac-
tivation of the stress–response kinase JNK2 represents a com-
mon feature in many organs with either acute or chronic alco-
hol exposure, which contributes to alcohol-caused cell death
and tissue injury [8, 37, 38, 104, 148]. Our lab further detailed
a previously unknown link between binge alcohol exposure,
JNK2 activation, enhancement of CaMKIIδ activity, and atrial
arrhythmogenicity in humans and animal models of “holiday
heart syndrome” [145]. Note that alcohol can increase ROS
production [105] and elevated ROS does promote CaMKIIδ
activation by oxidizing CaMKIIδ’s Met280 and Met281 sites,
creating a dynamic methionine oxidation pathway for
calcium-independent activation of CaMKIIδ [39]. However,
our studies demonstrate that the JNK2-specific regulation of
CaMKIIδ activation is independent of either intracellular Ca2+

concentration or oxidative stress [145, 147]. Therefore, JNK2
has a specific action in the CaMKIIδ activation in the stressed
heart (Fig. 2).

Next, we found that JNK2-specific CaMKIIδ activation
results in CaMKIIδ-dependent phosphorylation of RyR2815
and PLB17 in both aged and binge alcohol-exposed hearts and
the functional consequence of this JNK2-specific regulation is
enhanced arrhythmogenic diastolic SR Ca2+ activities and AF
pathogenesis. Specifically, JNK2 increases diastolic SR Ca2+

leak via CaMKIIδ-dependent phosphorylation of RyR2,
which sensitizes RyR2 channels, triggers aberrant Ca2+

waves, prolongs the intracellular Ca2+ decay time constant,
enhances spatiotemporal heterogeneity of Ca2+ and electrical
impulses, and augments AF susceptibility. Studies have also
shown that an altered cellular redox balance towards a more
oxidized state can also lead to oxidative modifications of
RyR2, which promotes diastolic Ca2+ leak, arrhythmogenesis,
and contractile dysfunction [13, 19, 20, 122, 160]. While we
found JNK2-activated CaMKIIδ is independent of ROS, inhi-
bition of either JNK2 or CaMKIIδ eliminates arrhythmogenic
activities including enhanced diastolic leak, aberrant Ca2+

waves in myocytes, and enhanced arrhythmic susceptibility
in intact heart and live animals. Therefore, our findings dem-
onstrate that JNK2 acts as a key pathological node that trans-
duces different stress stimuli and directly activates CaMKIIδ,
which promotes SR Ca2+ mishandling in the heart and en-
hances arrhythmic susceptibility. The inter-relationship be-
tween ROS and JNK2 in CaMKIIδ activation remains to be
determined. Overall, hyperactivation of CaMKIIδ under a
stressed and/or diseased state leads to maladaptive cardiac
remodeling including channel dysfunction, impaired Ca2+ ho-
meostasis, and contractile dysfunction resulting in deteriorat-
ed cardiac function and increased risk of arrhythmias as sum-
marized in Fig. 1. Our recent findings are significant be-
cause these JNK2-specific actions on CaMKIIδ activity
and SR Ca2+ mishandling shed new light on modulating
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JNK2 as a new strategy to target CaMKIIδ activity for
preventing and treating arrhythmias. It is clear that further
investigation is needed to understand the potential func-
tional roles of JNK2 on other ion channels and the inter-
relationship between JNK2 and other kinases or protein
phosphatases.

Transcriptional regulation of JNK2 in CaMKIIδ
expression

Although CaMKIIδ is essential in regulating a large number
of cellular substrates including ion channels, pumps, trans-
porters, and transcription factors [113], how the CaMKIIδ
gene and protein expression is controlled remains surprisingly
understudied. We recently revealed for the first time that
JNK2 plays an essential role in CaMKIIδ expression at the
transcriptional level under both physiological and pathologi-
cal conditions [46] (Fig. 3).

An extensive number of studies demonstrate that JNK1
activation is critically involved in the preservation of cardiac
function and in promoting apoptosis after myocardial IR, MI,
and HF via the regulation of signaling pathways that modulate
gene expression [24, 29, 32, 70, 94, 106, 109, 115, 119, 159].
However, the function of cardiac JNK2, one of the two major
cardiac isoforms, has surprisingly received less attention. It is
known that JNKs directly regulate these cellular processes via
direct phosphorylation of downstream targets and/or indirect-
ly regulate gene expression via downstream transcription fac-
tors including c-jun and activating transcription factor 2
(ATF2), forming the activator protein-1 (AP-1) complex [46,
65, 97, 128, 146, 153]. The AP-1 complex is composed of
homodimers of c-jun or heterodimers of c-jun/ATF2 or other
combinations of transcription factors, which induce target
gene expression by binding the AP-1 consensus site(s) in the
promoter region of the gene or dissociating from the promoter
region to upregulate or suppress the specific gene expression

[47]. In our recent studies [46], we discovered that the JNK2
downstream transcription factor c-jun and ATF2 both bind to
the CaMKIIδ gene promoter and upregulate CaMKIIδ expres-
sion. We further discovered that c-jun is surprisingly a key
transcription factor for the basal level expression of
CaMKIIδ mRNAs and proteins. This was evidenced by the
suppression of CaMKIIδ promoter baseline activity when the
c-jun binding consensus sequence was mutated. Moreover,
robustly activated JNK2, mimicking a stressed condition, sig-
nificantly increases the binding of c-jun, but not ATF2, to the
CaMKIIδ promoter, while JNK2 inhibition alleviated this en-
hanced c-jun binding. In addition, the JNK2-specifiic action in
c-jun-regulated CaMKIIδ promoter activity was supported by
the suppressed CaMKIIδ promoter activity from either JNK2
or c-jun siRNA knockdown. Until very recently, the underly-
ing mechanism of transcriptional regulation of CaMKIIδ gene
expression remained completely unknown. Our discovery of
the isoform-specific action of JNK2 in CaMKIIδ expression (
3) provided the first evidence suggesting that JNK2 is not only
an essential regulator in CaMKIIδ expression under physio-
logical conditions but also is a crucial transcriptional enhancer
in response to certain stress stimuli.

Conclusions and future directions

Over the years, our understanding of the underlying mecha-
nisms of physiological Ca2+ homeostasis in cardiomyocytes
and disrupted Ca2+ dynamics under pathological conditions
has been significantly advanced. However, it is still not
completely understood how stress stimuli and stress–
response kinase JNKs are involved in aging, alcohol, obesity,
and diseased states associated with cardiac Ca2+ mishandling
and what mechanisms prompt cardiac maladaptive molecular
and electrophysiological remodeling and cardiac dysfunction.
While numerous studies have significantly advanced our un-
derstanding of the key role of hyperactivation of CaMKIIδ in

CaMKII Promoter5

Expression

CaMKII Gene 3

JNK2

CaMKII

CaMKII

Fig. 3 JNK2 kinase is schematically shown as an essential transcriptional
regulator of CaMKIIδ expression. The JNK2 downstream transcription
factors c-jun and ATF2 both bind to the CaMKIIδ gene promoter, but c-

jun is a key transcription factor regulating the basal level expression of
CaMKIIδ and a crucial transcriptional enhancer of CaMKIIδ expression
in response to certain stress stimuli. ATF2 activating transcription factor 2
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pathological cardiac remodeling and arrhythmia, many ques-
tions remain. Examples are the relationship between patholog-
ically hyperactivated CaMKIIδ and stress-activated JNKs, the
interaction between JNK2/ CaMKIIδ and their downstream
targets (i.e., RyR2, LTCCs, and PLB), and how stress JNK2
signaling and/or CaMKIIδ interact with other pathological
signaling pathways during the process of disease develop-
ment. All of these questions merit further investigation.

Accumulating evidence suggests that suppression of
CaMKIIδ function can mitigate arrhythmias and various heart
diseases in animal models provoking a great deal of interest in
the development of CaMKIIδ inhibitors as possible anti-
arrhythmic therapeutic agents [2, 46, 61, 155, 158].
Although a variety of CaMKIIδ inhibitors are currently avail-
able for research, their off-target effects hinder their clinical
applications [61]. Thus, additional upstream or downstream
components of the CaMKIIδ signaling cascades are being
considered for new therapeutic approaches. As demonstrated
by our recent studies, JNK2 as a key regulator of the pro-
arrhythmic CaMKIIδ sheds new light on the possibility of
modulating JNK2 activity as an alternative approach to
targeting CaMKIIδ activity. This may offer broader clinical
applications for treatment of AF, HF, holiday heart syndrome,
and potentially other cardiovascular diseases.
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