
1SCIentIfIC REPOrTs | 7: 9781  | DOI:10.1038/s41598-017-10554-0

www.nature.com/scientificreports

An approximate analytical solution 
of the Bethe equation for charged 
particles in the radiotherapeutic 
energy range
David Robert Grimes   , Daniel R. Warren    & Mike Partridge

Charged particles such as protons and carbon ions are an increasingly important tool in radiotherapy. 
There are however unresolved physics issues impeding optimal implementation, including estimation 
of dose deposition in non-homogeneous tissue, an essential aspect of treatment optimization. Monte 
Carlo (MC) methods can be employed to estimate radiation profile, and whilst powerful, these are 
computationally expensive, limiting practicality. In this work, we start from fundamental physics in the 
form of the Bethe equation to yield a novel approximate analytical solution for particle range, energy 
and linear energy transfer (LET). The solution is given in terms of the exponential integral function with 
relativistic co-ordinate transform, allowing application at radiotherapeutic energy levels (50–350 MeV 
protons, 100–600 Mev/a.m.u carbon ions). Model results agreed closely for protons and carbon-ions 
(mean error within ≈1%) of literature values. Agreement was high along particle track, with some 
discrepancy manifesting at track-end. The model presented has applications within a charged particle 
radiotherapy optimization framework as a rapid method for dose and LET estimation, capable of 
accounting for heterogeneity in electron density and ionization potential.

The interaction of charged particles has long fascinated physicists; as early as 1903, William H Bragg demon-
strated that a charged particle experiences maximal energy loss per unit path length just before it comes to rest1. 
The resulting relation for energy deposition as a function of depth, eponymously termed the Bragg curve, stands 
in stark contrast to the equivalent relation for photons, which exhibit quasi-exponential decay in energy transfer 
with depth. In the context of medical physics, the unique behaviour of charged particles offers the alluring possi-
bility of radiotherapy dose deposition primarily at the location of a tumour within the body whilst sparing down-
stream tissue. There has consequently been significant clinical interest in modalities such as proton therapy2–6. In 
recent years, there has been interest in exploiting heavier charged particles such as carbon ions7 for clinical bene-
fit, although there are significant engineering and cost challenges to overcome before this is widely implemented.

While proton therapy has distinct advantages relative to conventional photon treatment, uptake is still rela-
tively limited. Despite many decades of interest, there is still a paucity of reliable clinical evidence and a need for 
more trials8, 9. In a recent review on the physics of proton therapy, Newhauser and Zhang4 enumerated a number 
of unresolved physics issues that need to be urgently addressed if this is to be more widely taken up - these include 
improved quantification of range and uncertainty, optimal strategies for treating tumours, dose estimation and 
the introduction of novel treatment paradigms such as proton arc therapy. Uncertainty analysis in planning also 
remains a pressing and distinct problem - tackling dose distribution in non-homogeneous human tissue has 
received little attention to date, despite this being a much greater concern in charged particle therapy relative to 
conventional X-ray treatment10.

Carbon ions have much greater economic and practical barriers to implementation, and currently only 5 
facilities world-wide provide carbon treatment. While there is some clinical evidence of improved efficacy relative 
to x-rays and protons11, there is still a scarcity of data and scepticism over the economic and practical aspects of 
carbon therapy abounds12. Like proton radiotherapy, carbon therapy also needs significant research effort for 
similar reasons, in particular the estimation of dose through heterogeneous human tissue.
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Quite aside from the technical challenges, there are also a number of theoretical physical and modeling prob-
lems that demand the attention of physicists and modellers. One of the most significant difficulties is adequately 
modeling tissue-particle interaction, and the computational power required for this. Modeling of radiation inter-
action is crucial for many applications, and if charged particles are to be exploited to their full potential it is 
imperative that energy deposition through different media is well understood. Monte Carlo (MC) techniques 
are typically employed for this purpose13. MC particle transport packages such as GEANT414, MCNPX15 and 
FLUKA16 are extremely powerful and capable of simulating the interaction of particle radiation with matter as 
it traverses a medium. These approaches can capture system behaviour at all scales, including secondary and 
higher order interactions, but are computationally expensive with non-trivial evaluation times. Fast, approximate 
methods for estimating the energy profile through different media are especially useful in radiotherapy treatment 
planning, where multiple rapid dose calculations are needed to enable interactive optimization. More than this, 
such methods should ideally work with various particle energies and types, and be applicable not only to uniform 
media but also to the heterogenous nature of human tissue.

To achieve this, the purpose of this work is to derive an analytical model which captures the general behaviour 
of charged particles at the energy ranges pertinent to therapy (50–350 MeV for protons, 100–600 MeV/a.m.u 
for carbon ions). Previous authors have deduced useful functions to describe the Bragg curve in radiotherapy, 
based on empirically-determined range-energy relationships17, 18 which work well for low energy protons, but 
these are typically restricted to dose. Other formulations include empirically derived approximations of other 
radio-biologically relevant parameters, such as range or Linear Energy Transfer (LET) for a specific particle radi-
ation type19–21. In this work, we take a different approach, starting from fundamental physics in the form of the 
Bethe equation to yield an analytical general solution for velocity, range, energy, and LET. This is broadly appli-
cable for most charged particles used in therapy, with the notable exception of electrons, which violate important 
assumptions in the Bethe equation and are not considered in this work. The formulation here is suitable for 
heavier charged particles across the range of therapeutic energies. We compare results from this work with tabu-
lated data, and MC simulations for protons, to ascertain how effective such an approach is at capturing the gross 
behaviour of such systems, and demonstrate potential application of the method outlined.

Theoretical background
Charged particles undergo electronic interactions as they traverse a medium, losing energy in the process and 
slowing down. As the particle slows down, the density of ionizations induced in the medium increases, before. 
Ionization density drops abruptly to zero beyond the Bragg peak, since all of the particle’s kinetic energy has been 
exhausted and it can be considered stationary. Under certain assumptions, the stopping power in a medium is 
given by the relativistic Bethe equation22. Further corrections can be made to account for high energy particles 
and high atomic number targets, including the Barkas, Bloch and Fermi corrections, comprehensively reviewed 
by Ziegler23. However, at energies and in materials relevant to radiotherapy, these effects are expected to introduce 
errors less than 1% (less than 1 mm) whereas in radiotherapy, uncertainties greatly exceed this level13. Accordingly 
we neglect these corrections in order to achieve an analytical solution, without loss of accuracy in the regime of 
interest. The relevant form of the Bethe equation is then
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where n is the electron density of the material, e the electron charge, me the electron mass, I the mean excitation 
potential, z the multiple of electron charge and β = v

c , where v is the speed of the particle and c is the speed of 
light in a vacuum. Particle energy is a function of particle speed, itself a function of distance. The quantity given 
by equation 1 can be considered the linear electronic stopping power of a medium for a given particle type, and 
represents the effect of the medium on the particle. The reciprocal effect of the particle on the medium is termed 
unrestricted linear energy transfer (LET); the two quantities are equal by the definitions in ICRU Report 8524. In 
general LET only considers collisions where the kinetic energy imparted to secondary electrons is below a given 
threshold (or restriction). This restricts the quantity to shorter-range electrons, which might provide better char-
acterisation of radiation effects on the cellular scale. However, this study intends to characterise radiation on a 
millimetre scale, and microscopic dosimetry and radiobiological effects are considered outside its scope. It there-
fore follows many other medical physics investigations25–27 in considering unrestricted LET a relevant quantity for 
clinical modelling work. This is justifiable since calculations suggest a monotonic relationship between restricted 
and unrestricted LET28, and a number of radiobiological models29, 30 make use of unrestricted LET.

The range of a charged particle in a medium may be defined in a number of different ways, depending on 
the theoretical or experimental context. In this work, we focus on the continuous-slowing-down approximation 
(CSDA) range, obtained by integrating the inverse of Equation 1 between a particle’s initial energy and its station-
ary state. It should be noted that in practice the projected range (ie. the distance travelled by the particle along its 
initial direction) is slightly reduced by small deflections caused by scattering. However, the impact of this is min-
imal at clinical energies in low Z materials, with the ‘detour factor’ of the projected range compared to the CSDA 
range being greater than 99.87% for protons of energy >100 MeV in water31. Our definition of range is therefore, 
expressed in both energy and velocity terms as
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where the subscript 0 denotes the initial value at x = 0.
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Model derivation
We begin from the relativistic definition of particle kinetic energy, expressed in terms of the Lorentz factor:
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If equation 4 and equation 1 are equated directly, a solution for v(x) is analytically intractable. To circumvent 
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. For a high energy proton at 250 MeV, there is only ≈1% dif-

ference between both sides, and ≈2% for high energy (400 MeV/a.m.u) carbon ions. This minor difference rapidly 
dissipates as the particles decelerate, and so the simplification can be employed with only minor discrepancy for 

particles in the radio-therapeutic energy range. For brevity, we let = π
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the CSDA range in the x′ coordinate system using an expression of similar form to Equation 2.
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Substituting equation 6 into equation 5, and the result thereof into equation 7, we get an expression similar to 
that reported by Evans32:
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This can be solved, and yields a solution in terms of the exponential integral function Ei. From this, it can thus 
be shown that particle range in the x′ coordinate system is given by
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The velocity formula in equation 10 is sufficient when γ  1, but in practice high-energy charged particles 
used in treatment often are far beyond this, and a better expression is required to account for them. To allow for 
relativistic effects, we can introduce a transform from x′ to x. We can re-arrange equations 4 and 5 and equate 
them; it can thereby be shown that dx = γ3dx′ and consequently that
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This transform can be easily evaluated provided once v(x′) is known, and the transform yields the true solu-
tion v(x). In the x frame, the true CSDA range, R, is then given by
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This can also be calculated using a series expansion method, outlined in the appendix (Supplementary data). 
An illustration of the relativistic transform is depicted in Fig. 1. Once the transformed velocity profile is known, it 
can readily be applied to yield the mono-energetic energy curve and LET through identities 3 and 6 respectively.
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The inverse exponential integral function - Ei−1.  The solution derived above requires knowledge of 
the inverse exponential integral function. This is not a standard function, and to the authors’ knowledge no 
closed form expression exists for it. Values can be readily derived using simple root-finding methods in most 
computational software packages. It is also possible to employ some simple approximations - for most instances 
the approximation Ei−1(x) ≈ ln(xln(xlnx)) can be used without introducing serious error, and Chebyshev poly-
nomials can be employed to higher precision33, though knowledge of the limits of validity are important. A series 
expansion approach is also possible. For this work, we wished to plot the solution at high resolution (steps of 
1 μm), and to speed this up we created a high precision look-up table using root-finding methods. The look up 
table, as well as examples of how to implement the model, are available in the Supplementary data.

Methods
Comparison with numerical methods.  To ascertain how well the solution proposed fits the both forms 
of the Bethe equation, numerical solutions for equation 1 (fully relativistic) and 6 (simplified form) were found 
using a Runge-Kutta method. These solutions were contrasted with the analytical method outlined in this work, 
and the level of agreement between the two approaches was quantified. Physical parameters used in this work are 
given in Table 1.

Comparison with tabulated data, Monte Carlo methods and experimental data.  MC particle 
transport codes are traditionally used as the primary method for proton dose-depth calculations. We used the 
MCNPX v2.7.0 package15 to simulate proton pencil beams with a range of initial energies in water-like tissue and 
contrasted the predictions with the model outlined here. There has been less work done on carbon ions as these 
are less common in clinical use, though MC techniques using e.g. GEANT4 are emerging to explore this promis-
ing modality34. As implementing MC for carbon ions is still an area of active research, we have instead taken the 
measured range of carbon ions in water from various experimental investigations and contrasted this with the 
estimated range using the model to gauge the validity of model predictions for heavy ions like carbon.

The proton MC geometry comprised an infinitely narrow pencil beam of monoenergetic particles, incident on 
a water phantom with length 20% greater than the proton range. Phantoms of two different lateral cross sections 
were considered: a ‘broad’ 10 cm × 10 cm case, in which protons undergoing multiple Coulomb scattering (MCS) 
would be expected to stop, and a ‘narrow’ 1 mm × 1 mm case, in which the majority of protons undergoing MCS 
would be expected to escape. Mean energy and LET profiles were recorded at 1 mm intervals using surface tallies 
(MCNPX type F2, binned into 1000 subdivisions using the E card, modified to tally unrestricted stopping power 
by including the LET flag on an FT card). Only protons were tracked, from the source energy down to 1 keV. 
Default physics options were employed, with the addition of light-ion recoil. In addition to this, range estimates 
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Figure 1.  Comparison of v(x′) and v(x) (note Velocity shown on the vertical axis as a fraction of the speed of 
light c) for a 250 MeV proton. In this example, the projected range of the proton is 38.15 cm when the relativistic 
transform is considered. If this were neglected, projected range would be only 24.36 cm. This substantial 
difference suggests that taking account of the relativistic transform is vital for particles in the radiotherapy 
energy range.

Parameter Value (Proton) Value (Carbon Ion)

Electron density n 3.343 × 1029 m−3 3.343 × 1029 m−3

Electron mass me 1.672 × 10−27 kg 1.672 × 10−27 kg

Electron charge e 1.602 × 10−19 C 1.602 × 10−19 C

Vacuum 
permittivity εo

8.854 × 10−12 F 8.854 × 10−12 F

Ionization 
Potential I 75 eV 75 eV

Atomic number z 1 6

Particle mass mp 1.673 × 10−27 kg 2.007 × 10−26 kg

Table 1.  Parameters used for all simulations.
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were compared to fitted data from the National Institute of Standards and Technology (NIST) PSTAR database for 
protons in liquid water35 and compared to results derived from this method. Carbon ion ranges were compared to 
tabulated results from ICRU report 7336 and the MSTAR37 software empirical estimation.

Model applications.  The chief advantage of charged particle therapy is that dose can be accurately delivered 
to a tumour region whilst largely sparing healthy tissue downstream, in contrast to photons which deposit dose 
relatively uniformly throughout the beam path. However, this advantage also presents a significant difficultly 
- dose must be well-aimed and delivered to very high precision38. If this is not the case, then the bulk of dose 
deposition could occur away from the tumour and into healthy organs, negating any benefit from therapy. To 
complicate matters, for example there is a six-fold difference between the electron density of inflated lung and 
cortical bone39 – further examples are given in Table 2. Contemporary fast dose calculation methods employ 
pencil beam algorithms, which account for heterogeneity by scaling dose-depth curves measured in water; such 
an approach does not provide estimates of LET, which is an important consideration for the radiobiological eval-
uation of treatment approaches40. The model here could be useful for such applications, as it can be applied to 
quickly estimate energy distribution through inhomogeneous media, such as tissue and we demonstrate this here 
by applying the model to inhomogeneous tissue derived from a typical CT scan as proof of principle.

Additionally, the model here can be used to explore the effect of the physical parameters on energy deposition 
profile. Most of the parameters required in this model are accurately known physical constants, as can be seen in 
Table 1. Of all these parameters however, there has been considerable variation in literature for the mean ioniza-
tion potential for water. The value used of 75 eV is in line with the International Commission on Radiation Units 
and Measurement (ICRU) guidelines36, with a more recent ICRU report suggesting a lower value of 67 eV41. Other 
authors suggesting a much higher value of 80.2 ± 2 eV42 based on experimental range measurements. Using the 
model here, we can readily vary this and see what impact this has on range and energy profiles obtained.

Results
Comparison with numerical methods.  Equations 1 and 6 were solved using MATLAB ODE45, an adap-
tive step Runge-Kutta method. For protons the difference between the model and equation 6 was negligible, with 
a mean error of ≪1%. Even if the fully relativistic version of the Bethe equation is used (equation 1) errors tend 
to be minor; in the case of protons, the mean error between model and relativistic solution ranges from 0.049% at 
100 MeV to 0.7800% at 250 MeV. For carbon ions, the mean error between the model and relativistic numerical 
solution ranges from 0.43% at 250 MeV/a.m.u to a high of 2.1584% at 430 MeV/a.m.u. This suggests the model 
accurately captures the dynamics of equation 6 and can describe the fully relativistic case in equation 1 with 
only minor error. Figure 2 depicts the solutions as a function of depth for protons and carbon ions at high initial 
energy, where discrepancy should manifest. Even here model predictions agree closely with numerical solutions, 
with no discernable difference between model predictions and numerical solutions of equation 6, and only minor 

Tissue Electron density relative to water - ρe

Water 1.000

Muscle 1.040

Adipose tissue 0.957

Bone (Femur) 1.278

Bone (Rib) 1.347

Table 2.  Electron densities of various tissue types (From Schneider et al.39).

Figure 2.  Comparison of model with numerical solution of the full Bethe equation (Equation 1) and the 
simplified form (Equation 6) for (a) a high energy proton and (b) a high energy Carbon ion. High energies are 
shown here as this is where maximum disagreement should manifest. As can be seen from the figure, the model 
matches the numerical solutions to a very high degree of accuracy, even at these high energies.
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deviation from equation 1 and the model over a realistic range of energies. This suggests that the model robustly 
captures the dynamics of the Bethe equation without recourse to numerical ODE solvers.

Comparison with tabulated data, Monte Carlo methods and experimental data.  Figure 2 depicts 
the simulated energy profiles from the model established in this work and from traditional MC methods. In 
general there is good agreement between both approaches, quantified by the data in Table 3. The coefficient of 
determination column, R2 compares the fit of the MC data with the model data, and predicted ranges, RT, are 
shown also. For the model, this was theoretically predicted by equation 12, and for MC simulations this was the 
depth beyond which no protons penetrated in the ‘broad’ phantom. While the ranges are in close agreement, 
there are some interesting differences. Most noticeable is that the MC simulation predicts a slightly lower energy 
along the curve, as quantified in the table. Secondly, it predicts a small tail that extends beyond the predicted RT 
of the model. This is considered in the discussion, but most likely arises from the fact that a solution of the Bethe 
equation doesn’t consider energy and path length straggling, arising from stochastic effects and MCS respectively, 
or secondary charge particle production - all of which are incorporated in MCNPX. Further evidence for this 
is seen in comparing the curves in Fig. 3 for the ‘broad’ MC phantom to those for the ‘narrow’ phantom, where 
scatter effects are lower and the discrepancies between the model and simulation lesser. Table 3 also shows the 
percentage error between range estimated by method in this work and PSTAR NIST35 data, with errors of ≪1% 
between database and model.

The tail discrepancy is also obvious in the LET curves, depicted in Fig. 4. Obeying the Bethe equation, the 
model predicts a smooth asymptotic curve by definition from equations 1 and 3. The model closely matches the 
MC LET for most of the particle range, but diverges close to the terminal end of the track, as can be seen in the 

Energy RT (Model) RT (PSTAR) RT (MC) PSTAR Error R2 Mean error (MC)

100 MeV 7.72 cm 7.718 cm 8.1 cm 0.03% 0.9989 0.81 MeV

150 MeV 15.80 cm 15.77 cm 16.6 cm 0.19% 0.9977 1.96 MeV

200 MeV 26.05 cm 25.86 cm 27.2 cm 0.35% 0.9962 3.47 MeV

250 MeV 38.15 cm 37.94 cm 40.0 cm 0.55% 0.9931 5.89 MeV

Table 3.  Model results versus PSTAR values and Monte Carlo simulations for protons.

Figure 3.  Comparison of pristine (mono-energetic) model predictions and MC simulations for proton mean 
energy as a function of depth, for protons with initial energies of 100–250 MeV in both broad and narrow cross 
section phantoms.
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figure. This difference may be explained by straggling and secondary interactions, which the Bethe equation does 
not consider a priori.

Table 4 shows tabulated and experimentally determined ranges for carbon ions using different methodologies. 
For ease of comparison, the experimental range was determined as the depth of the zenith of the Bragg peak. The 
predicted range from the model agrees within ≈1% of empirical values derived from MSTAR37, and also well with 
the experimentally determined values across all energy ranges between 135 MeV/a.m.u to 380.45 MeV/a.m.u with 

Figure 4.  Comparison of pristine (mono-energetic) model predictions and and MC simulations for proton 
unrestricted LET as a function of depth, for protons with with initial energies of 100–250 MeV in both broad 
and narrow cross section phantoms.

Energy RT (Model) RT (MSTAR) RT (Experiment) MSTAR Error (%) Experiment Error (%)

135.00 MeV/u 4.38 cm 4.37 cm 4.43 cm52 0.23% 1.37%

195.00 MeV/u 8.31 cm 8.28 cm 8.34 cm52 0.36% 0.36%

208.58 MeV/u 9.33 cm 9.29 cm 8.79 cm34 0.43% 6.14%

241.50 MeV/u 11.99 cm 11.92 cm 11.87 cm53 0.58% 1.01%

270.00 MeV/u 14.48 cm 14.37 cm 14.45 cm52 0.76% 0.21%

279.97 MeV/u 15.39 cm 15.27 cm 14.73 cm34 0.78% 4.48%

330.00 MeV/u 20.24 cm 20.04 cm 19.98 cm52 0.99% 1.30%

332.15 MeV/u 20.46 cm 20.25 cm 19.74 cm34 1.03% 3.64%

380.45 MeV/u 25.57 cm 25.25 cm 24.76 cm34 1.25% 3.27%

Table 4.  Model results versus MSTAR and experimental results for carbon ions.
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relative errors ranging from 0.21 % to 6.14 %. Part of this discrepancy might be apparent in 2(b), in which a small 
reduction in particle energy at a given depth is observed when using the full Bethe equation, compared to the 
simplified form. A further part is likely attributed to straggling and secondary interactions. Figure 5 depicts the 
model prediction for range versus the tabulated values in ICRU 7336, showing high agreement for carbon-ions in 
the radiotherapy range of 100–600 MeV/a.m.u, with a co-efficient of determination between model and tabulated 
data of 0.9968.

Model application.  A major motivation for the model outlined here is to rapidly simulate likely energy 
profiles for dose optimization. This model also readily allows for fast simulation of dose through different tissue 
types. A typical prostate radiotherapy planning scan is depicted in Fig. 6(a), with the planning target volume out-
lined in blue. This image slice shows at least three distinct regions, and the energy deposition was calculated with 
this model for hypothetical proton beams assuming varying tissue electron density as given in Table 2. The results 
of this are shown in Fig. 6(b) and (c) for proton and carbon ion plans respectively.

The energy profile for both proton and carbon ions with variation of mean ionization potential of water is 
shown in Fig. 7 for a 250 MeV proton. The standard ICRU value of 75 eV was used for simulations in this work, 
but Paul42 has suggested 80.8 eV better fits some experimental data. The net effect of an increasing estimate of I is 
an increase in observed range, and converse a decrease in range if lower estimates of I are employed. The physical 
explanation for this is relatively intuitive, as higher estimates for mean ionization potential translates to fewer 
ionization events and thus an increase in possible range.

Discussion
The model presented here is an accurate and analytical solution to the Bethe equation - Fig. 1 shows how the 
continuous solution compares to that derived from conventional Runge-Kutta methods. Results from both are 
virtually identical, suggesting that the model captures the equation dynamics well. A further advantage of the 
analytical solution is that it explicitly yields a particle range RT and consequently the Bethe equation-predicted 
energy, velocity and LET at any point throughout the track. When contrasted to MC simulations, Figs 2 and 3 
show that the model captures the gross behaviour of a proton beam well but there are some important caveats 
to this. Primarily, the model slightly over-predicts particle energy along the track on average, with a mean error 
ranging from 0.81 MeV for 100 MeV protons up to 5.89 MeV for 250 MeV protons (Table 3), and discrepancies 
growing at an accelerating rate with particle energy. The most likely explanation for this is due to an inher-
ent limitation of the Bethe equation, which does not intrinsically consider MCS or secondary (or higher order) 
production, which the MC simulation does. In particular, the magnitude of straggling has been observed to be 
approximately proportional to total particle range4 - a trend also displayed in the mean errors reported in Table 3. 
The result would be additional observed energy loss at a given depth in MC, compared to the Bethe equation. 
This interpretation is supported by the inclusion of a “narrow” MC simulation also shown in Fig. 3 - particles in 
this simulation undergo less scattering and the results under this constraint lie closer to the continuous model 
solution. Model ranges were exceptionally close to tabulated PSTAR estimates, with errors of ≪1% for protons.

This has an interesting consequence around at the end of the particle track (typically defined in medical phys-
ics literature as the distal edge), at the particle’s maximum range. As can be seen from Fig. 4, the Bethe equation 
predicts a asymptotic increase in LET at RT. The MC simulation, by contrast, agrees closely with model prediction 
right up until the Bragg peak, where higher order effects manifest. An important consequence of this is that the 
model (and indeed, the Bethe equation itself) does not capture the dynamics of particles at the distal edge com-
pletely, instead only approximating the general behaviour around this point. For carbon ions, the predicted ranges 
and experimentally measured Bragged Peaks agreed closely (mean percentage errors 0.21%–6.14%) and again 
the bulk of this discrepancy might be explained by fundamental limitations of the Bethe equation around the 
distal edge. Model agreement with MSTAR data was high (≈1% error) even to energies beyond those employed 
in therapy (600 MeV/a.m.u).

It is crucial to note that the solution outlined here is not intended as a replacement to conventional MC 
methods, but as a useful means of rapid optimization. As the analytical form presented here can be rapidly imple-
mented with minimal computational costs, it could readily be applied in optimization when multiple iterations 

Figure 5.  Comparison of tabulated range data for Carbon-ions from ICRU report 73 versus model predictions. 
High agreement was found along the full energy range, with R2 = 0.9968 between model and data.
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of dose calculation are needed. Using the model here, a huge array or potential doses can be quickly simulated, 
and narrowed down to only the most promising, which then can be more robustly simulated with MC tech-
niques as a final calculation, potentially saving considerable time and expense. The other major advantage of 
the expression presented here is that it allows rapid simulation of complicated cases involving heterogeneous 
tissue, based on well-defined material constants such as electron density and mean ionization potential instead of 
water-equivalent stopping power ratios (SPRs). An example is shown in Fig. 6. This is readily implemented and, 

Figure 6.  (a) Typical radiotherapy treatment planning scan for prostate cancer, with tumour volume outlined 
in blue. Possible anterior and lateral beam trajectories are indicated with arrows. A lateral beam passes through 
7.3 cm of tissue before encountering 5.6 cm of bone and finally the organ. The anterior beam passes through a 
more uniform medium. (b) Energy profiles for 160 MeV protons, assuming different constituent tissues along 
the lateral beam trajectory. Regions of tumour are denoted by the shaded area and tissue interfaces by the 
vertical dashed lines (c) Energy profiles for protons entering along the anterior beam trajectory, with tumour 
region shaded. In this case, a 160 MeV proton would deposit the bulk of its energy downstream of the tumour 
into radio-sensitive tissue. By contrast, lower energy protons such as the 100 MeV path shown here would be 
sufficient to target the tumour volume.

Figure 7.  Energy profile for a 250 MeV proton in water with different choices of mean ionization potential, I, 
shown between 0.3 ≤ x ≤ RT. Profiles are initially similar, with divergence manifesting towards path end.
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as it is analytical, the approximate dynamics of particles in even complex media can be readily estimated. There is 
still debate over the ideal value for mean ionization potential for water, and the model was also applied to investi-
gate this. Figure 7 suggests that this difference chiefly manifests at the distal edge.

The method outlined here produces a solution for the Bethe equation, and hence the velocity, energy and 
LET curves for any charged particle rapidly from first principles. This is very useful, but it could potentially be 
extended to calculate Bragg curves in 1D by modelling energy variation and range straggling, or even in 3D by 
detailed consideration of MCS. These effects are the likely explanation for the departures between MC and model 
data seen at the distal edges in Figs 3 and 4. A number of semi-empirical formulations exist for multiple Coulomb 
scatter43 and energy variation4, but a detailed comparison of such approaches beyond the scope of this work. 
Examples of such Bragg curves are illustrated in Fig. 8, which were created using energy profiles from this model, 
a Gaussian approximation to the Vavilov energy straggling distribution44, and step-wise calculation of multiple 
Coulomb scatter using the Rossi formula45, 46. Additionally, the Bethe equation considers only stopping due to 
electrons within a material, but a full consideration of dose deposition mechanisms in tissue would also include 
nuclear effects.

For majority of the track length, the Monte Carlo LET agrees closely with the model as illustrated in Fig. 3. 
However, towards the distal edge the model (and Bethe equation itself) displays asymptotic behaviour. We can 
naively calculate the maximum obtainable LET from the Bethe equation presented in eq. 6 - defining this as S, we 
can readily calculate dS

dv
. At some velocity vm the particle is at its minimum speed and thus S tends to a maximum. 

Setting = 0dS
dv

, we can explicitly derive this velocity, given by

= =
.

v e
B

Ie
m2 (13)

m
e

0 5 1

This analysis yields vm = 0.0141c for charged particles. The maximum possible LET for protons from the Bethe 
equation is thus 84.35 KeV/μm and 3036.72 KeV/μm for carbon in water. In reality, particles will not reach any-
thing near this, due to deflections and energy losses from MCS, nuclear interactions and secondary production4. 
These are factors not intrinsically considered by Bethe equation or this model, and this in part explains the dis-
parity between the model and Monte Carlo results at the distal edge as illustrated in Fig. 3. Tellingly, LETs are 
higher in the ‘narrow’ phantom Monte Carlo, reflecting that fact that maximum LET increases as the potential 
for scatter decreases.

It is important to note too that the Bethe equation is a continuous function, whereas charged particle inter-
actions are in reality discrete events. Water and other discrete biological targets also have finite extent for energy 
transfer47, and we do not expect LET to reach these maximums. The resolution of the simulations is also worth 
considering; the model was evaluated continuously and plotted with a fine 1 micron resolution, whereas the MC 
has a much coarser scale of 1 mm. If a similar length scale is used for the model, the asymptotic behaviour at the 
distal edge disappears. The model presented is certainly not a substitute for MC calculations of LET, but captures 
the general behaviour well, though caution should be taken in interpreting results near the distal edge.

The ease and speed with which this formulation of the Bethe equation can be applied is a particular strength, 
as illustrated by the profiles shown in Fig. 6 for tissue of varying electromagnetic interaction properties. LET is 
also important in determining oxygen contribution to radiation damage, as molecular oxygen modulates the 
effectiveness of standard photon radiotherapy by up to a factor of three48, 49. It is known that oxygen enhance-
ment varies markedly with LET50, and in principle accurate determination of LET for charged particles could be 
applied in conjunction with information on regions of chronic and acute hypoxia51, potentially improving treat-
ment further. While this aspect remains speculative, the model presented in this work should lend itself to rapid 
approximation of particle range, energy and LET even in complex tissue, and ultimately should be of benefit in 
optimizing treatment and outcome.

Figure 8.  Example proton Bragg curves in water, found using calculations of proton kinetic energy as a 
function of path length from this work, combined with published formulations for energy and range straggling.
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Conclusion
The solution presented here to the Bethe equation can be rapidly applied to any charged particle type, and yields 
accurate estimates of energy profile, velocity and LET through a medium. These are shown to agree well with 
experimental and Monte Carlo results for both protons and carbon ions, with some discrepancy at the distal edge. 
The approach outlined also lends itself to the rapid calculation of dose profile through different media, and could 
serve as a basis for rapid dose optimization for charged particle therapy.
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