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A B S T R A C T   

Carbamate (CBs) is a class of insecticides which is being known as an important cause of intentional or accidental 
poisoning. CBs, cause carbamylation of acetylcholinesterase at neuronal synapses and neuromuscular junction. 
Exposure to CBs through skin contact, inhalation, or ingestion can result in significant cholinergic toxicity. This is 
due to the elevation of acetylcholine levels at ganglionic synapses found in both the sympathetic and para-
sympathetic nervous systems, as well as muscarinic receptors located in target organs of the parasympathetic 
nervous system, nicotinic receptors situated in skeletal muscle tissue, and the central nervous system. The as-
sociation between human illnesses and environmental exposures to CBs have been extensively studied in several 
studies. Although CBs-triggered toxicity leads to overproduction of reactive oxygen species (ROS), the detailed 
association between the toxicity under CBs exposure and NFE2-related factor 2 (Nrf2) signaling pathways has not 
been completely clarified. In this review we aimed to summarize the latest findings on the functional interre-
lationship between carbamates compounds and Nrf2 signaling.   

1. Introduction 

Carbamates (CBs) are a N-methyl group of organic compounds 
derived from carbamic acid (NH2COOH)[1]. They formed by replacing 
one or more of the hydrogen atoms by other organic functional groups. 
Although carbamic acids are unstable, different types of CBs (covalent or 
ionic) are stable and many divalent carbamate groups create polymers 
[2]. They are using in medicine for the treatment of glaucoma, myas-
thenia gravis, and Alzheimer’s disease (echothiophate, pyridostigmine, 
tacrine, and donepezil) as well as the reversal of neuromuscular 

blockade (neostigmine, pyridostigmine, edrophonium) [3]. CBs have 
been used as insecticides worldwide for more than 20 years [4]. These 
insecticides contain carbon, hydrogen, oxygen, and nitrogen without 
chlorine or phosphorus, and can enter the body through inhalation, skin 
and digestion (Fig. 1) [5]. 

These compounds offer multiple advantages to society, such as 
safeguarding and enhancing agricultural productivity, and protecting 
humans and animals from illnesses transmitted through insect vectors 
[6]. CBs reversibly bind to acetylcholinesterase and have a similar 
toxicological presentation to organophosphates poisonings [7]. Despite 
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their limited bioaccumulation potential and short-term toxicity, they 
classified as known endocrine disruptor chemicals and are on the United 
States Environmental Protection Agency’s (EPA) priority list [8]. Many 
carbamates act as neurotoxins, the duration of their toxicity is less than 
24 h, and reduce the amount of cholinesterase enzyme[9,10]. For 
instance carbaryl (1-naphthyl methylcarbamate), as an insecticide, is a 
member of the carbamate family. It is a white crystalline solid first 
introduced in 1958 [11]. Carbaryl has been widely used in public health 
and agricultural programs as a pesticide. It can be used in the form of a 
spray to fight against adult mosquitoes, and since its toxicity to mam-
mals is negligible, it is also used to fight against fleas and lice [12]. The 
association between human illnesses and environmental exposures to 
CBs have been extensively studied in several studies.Fig. 2. 

Carbamate toxicity is caused following elevated acetylcholine levels 
at “ganglionic synapses of the nervous systems; the muscarinic receptors 
on parasympathetic nervous system target organs; the central nervous 
system; and nicotinic receptors in skeletal muscle tissue”. Our under-
standing of the toxicological impact of CBs has primarily focused on the 
cholinergic pathways and the resulting elevation of acetylcholine levels 
in various systems [13–15]. However, the specific mechanisms linking 
CBs exposure to Nuclear factor erythroid2-related factor (Nrf2) activa-
tion and its downstream effects on oxidative stress are areas that require 
further exploration. 

Although CBs-triggered toxicity leads to overproduction of reactive 
oxygen species (ROS), the detailed association between the toxicity 
under CBs exposure and Nrf2 signaling pathways has not been 
completely clarified. Although CBs-triggered toxicity is well- 
documented and is associated with the overproduction of ROS, the 
intricate relationship between CBs exposure and the Nrf2 signaling 
pathways remains incompletely elucidated [16–18]. This review aims to 
bridge this knowledge gap by summarizing the latest findings on the 
functional interrelationship between carbamate compounds and Nrf2 

signaling. This review study was performed to show the findings of the 
latest investigations related to the role of Nrf2 signaling in CBs toxicity 
and also the activating of the Nrf2 signaling to prevent CBs-induced 
toxicity. 

2. Nrf2 signaling 

2.1. Canonical mechanisms of Nrf2 activation 

Nrf2 is a transcription factor that belongs to the Cap’n’collar (CNC) 
family proteins which are a group of the basic leucine zipper (bZIP) type 
transcription factors (TFs) that have essential roles in cell fate decisions 
and cellular responses to environmental stresses and stimulations. 

It is encoded by the NFE2L2 gene and consists of 605 amino acids, 
with a molecular weight of approximately 66 kDa. Nrf2 plays a critical 
role in regulating the expression of genes involved in cellular defense 
against oxidative stress and inflammation. When activated, it can bind to 
antioxidant response elements (ARE) sequences in the promoter region 
of target genes, leading to their upregulation and increased production 
of antioxidant and detoxification enzymes [19]. 

3. Neh domains 

Nrf2 has seven functional domains, Neh (Nrf2-ECH homology) 1 to 
Neh7[20]. Nrf2 forms heterodimers with small musculoaponeurotic 
fibrosarcoma (sMaf) proteins, which belong to the Maf family of tran-
scription factors. The Neh1 domain of Nrf2 is responsible for this 
interaction with sMaf proteins, and together they bind to AREs in DNA to 
regulate gene expression. In addition to sMaf proteins, Nrf2 also in-
teracts with other transcription partners, such as coactivators and co-
repressors, to fine-tune its regulatory activities. For example, Nrf2 can 
interact with p300/CBP and CREB-binding protein (CBP), which are 

Fig. 1. The Human exposure routs to CBs.  
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histone acetyltransferases that promote gene transcription by modifying 
chromatin structure. 

Neh4 and Neh5 synergistically recruit CBP molecule [27], leading to 
Nrf2 acetylation, and increase its activity [28]. Phosphorylation of 
DSGIS and DSAPGS in motifs Neh6 leads a phosphodegron for Nrf2 
ubiquitination by Cul1-β-TrCP complex [29]. In addition, Neh7 domain 
can modulate the activity of Nrf2 by binding to retinoic acid receptor α. 

On the other hand, Nrf2 can also interact with BTB and CNC ho-
mology 1 (Bach1), a repressor protein that competes with Nrf2 for 
binding to AREs and suppresses Nrf2-mediated gene expression [21,22]. 
Neh1 domain has a CNC-bZIP domain in which DNA binds the sMaf 
proteins as Nrf2 dimerization partners[23]. Neh2 is in the N terminus of 
Nrf2 and via interaction with acytoplasmic protein Keap1 regulates 
cellular stress response[24]. The Neh3 region of Nrf2 is situated towards 
the end of its protein chain, at the C-terminal. Meanwhile, the Neh4 and 
Neh5 domains serve as transactivation domains that activate gene 
transcription by binding with CBP (cAMP-response-element-binding 
protein-binding protein) [25–27]. 

The Neh2 domain possess two motifs with peptide bonds (ETGE and 
DLG) that increase binding of Nrf2 with different proteins. Also, these 
motifs regulate the stability of Neh2 [28]. Keap1 (Kelch-like 
ECH-associated protein 1), with its 624 amino acids, recruits Neh2 
through recognizing ETGE and DLG motifs and correctly orientate the 
lysine residues of the Neh2 domain to help ubiquitination for protein 
turnover [22, 28–30]. 

4. Keap1 functional domains 

There are five functional domains that Keap1 possesses, which 
include the BTB (Broad complex, Tramtrack, and Bric-a-Brac) domain, 
the IVR (intermediate variable region) domain in the central part, the 
DGR (double glycine repeat or Kelch repeat) domain, the CTR (C-ter-
minal domain), and the NTR (N-terminal domain) [31]. The BTB domain 
forms nuclear heterodimers with sMaf as well as contributes to the 
binding of Keap1 with cullin-based E3 ligase (Cul3), leading to the 
formation of the E3 complex of Keap1-Cul3-RBX1 ligase (ring box pro-
tein 1)[32–35]. The IVR (intervening) region is a flexible, extended 
helical linker that connects the BTB domain and the DC (double Clap) 
domain or β-propeller substrate-binding domain. This region contributes 
to the flexibility of the Cul3-based E3 ubiquitin ligase complex and 

allows it to bind to a diverse array of substrates. The IVR region also 
plays an important role in regulating the activity of the E3 ligase com-
plex by modulating the distance between the BTB and DC domains [36]. 
The Neh2 domain of Nrf2 interacts with the double glycine repeat or 
Kelch repeat (DGR/Kelch) domain and the C-terminal region (CTR) of 
Cul3 to facilitate ubiquitination and degradation of Nrf2. The 
DGR/Kelch domain forms a six-bladed β-propeller structure and serves 
as the substrate recognition module by binding to specific motifs on 
Nrf2, while the CTR serves as a docking site for the Neh2 domain. This 
interaction between Cul3 and Nrf2 is critical for the regulation of 
cellular oxidative stress responses and maintaining redox homeostasis 
[31]. The cysteine residues, namely C151, C273, and C288, are 
extremely sensitive and reactive to covalent modifications caused by 
electrophiles such as ROS, RNA, H2S, etc. Thus, S-sulfenylation, 
S-nitrosylation, and S-sulfhydration of these residues contribute to 
conformational changes of Keap1 that, which in turn, inhibit the stabi-
lization of Nrf2 [37–39]. Nrf2 can be regulated at different levels (from 
transcription to epigenetic modifications), and it is highly activated in 
several process including oxidative stress, inflammation, after stimula-
tion with growth factors [40]. Furthermore, Nrf2 signaling is involved in 
redox signaling, xenobiotic metabolism, metabolism of carbohydrates, 
lipids and iron, antioxidant responses, and anti-inflammatory responses 
[41]. On the other hand, NF-κB is a transcription factor that is regulated 
by redox and it plays a role in controlling both inflammatory responses 
and cellular damage. 

5. Non-canonical mechanisms of Nrf2 activation 

A group of proteins including DPP3, p62, WTX, PALB2, Prothymosin 
α, BRCA1 and p21, can directly bind to Keap1 or Nrf2 and dissociate the 
Keap1-Nrf2 by direct interaction, preventing Nrf2 proteasomal degra-
dation and elevating in the nuclear translocation and activation of Nrf2. 
The most studied mechanism of the non-canonical pathway activation of 
Nrf2 is regulated by SQSTM1/p62 protein. p62 can interact with Keap1 
induce a dependent autophagy degradation of Keap1 and subsequent 
Nrf2 stabilization and activation in MEF and HEK293 cells [42]. 

As ARE sequences are present in the p62 promoter, which it creates a 
positive feedback loop, p62 expression is regulated by Nrf2. [43]There 
are some compounds that can regulate the activations of Nrf2 by p62 
signaling pathway. As an example, LPS in RAW cells and overexpression 

Fig. 2. indicates the Nrf2-ARE signaling pathway under normal conditions and/or under xenobiotic stress, and related inflammation and detoxification.  
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of Sens2 protein in HEK293 and MEF cells can increase the Nrf2 acti-
vation [44,45]. However, impairment in autophagy and increase in p62 
phosphorylation which can activate Nrf2 sustained, promotes antineo-
plastic drug chemoresistance to doxorubicin, cisplatin, erastin, sor-
afenib, buthionine sulfoxamine and carfilzomib which it leads to cancer 
cell proliferation; although mutation in KIR domain in p62 that prevents 
Keap1-p62 interaction, is associated with ROS increase and the etiology 
of amyotrophic lateral sclerosis[35, 42, 46–51]. Overexpression of 
dipeptidyl peptidase III (DPP3) as a zinc aminopeptidase decreases Nrf2 
ubiquitination and increases Nrf2 nuclear migration and activation, 
while it does not increase Nrf2 levels in HEK293 T cells lead to inhibiting 
cellular death by decreasing ROS levels; however, in breast cancer cells, 
an increase in DPP3, is associated with metastasis and drug resistance 
[52, 53, 54]. 

WTX is a protein codified by Wilms tumor gene in chromosome X 
which is mutated in 30% of cases of Wilms tumor. WTX negatively 
regulates WTN/β-catenin pathway through degradation of β-catenin 
protein and it is also balance oxidative stress via Nrf2 activation. It is 
reported that an enhanced level of WTX decreases Nrf2 ubiquitination 
and activates Nrf2 transcriptional, in an independent way of WNT/ 
β-catenin pathway and electrophilic compounds such as tBHQ [55]. 

Prothymosin α (ProTα) is another nuclear protein which is associated 
with cellular proliferation and protection against apoptosis. The inter-
action between ProTα and Keap1 increases Nrf2 activation and HO-1 
expression. Further, this interaction is carried out in the nucleus of 
HeLa cells and increases in the presence of oxidative stress induced by 
diethyl maleate [56,57]. 

The protein partner and localizer of BRCA2 (PALB2) is a nuclear 
protein that interacts with interact with the Kelch domain of Keap1 
through the 91ETGE94 sequence, lead to activation of Nrf2 [58]. 
Overexpression of Breast cancer type 1 susceptibility protein (BRCA1) as 
a tumor suppressor protein can increase Nrf2 transcriptional level which 
it leads to increase antioxidant enzyme expression and protects cells 
against oxidative stress [59–61]. 

p21 is a cyclin-dependent kinase inhibitor that is able to inhibit 
cyclin/CDK complex. P21 interacts with the DLG motif in Nrf2 through 
the 154KRR156 sequence in its structure, leading to prevents Nrf2 
ubiquitination and increasing Nrf2 stabilization [62]. Moreover, over-
expression of p21 increases Nrf2 activation and HO-1 and NQO1 
expression which it decreases ROS levels and protects JB6P + cells and 
mouse epidermis against oxidative stress [63]. The non-canonical Nrf2 
activation through p21 prevents skin carcinogenesis and the inflam-
matory response [63]; however, this mechanism has been also reported 
in cancer cell proliferation and doxorubicin, camptothecin [87] and 
cisplatin resistance [64]. So, it can support the idea that Nrf2 has dual 
function in early and longer carcinogenic times. In early carcinogenic 
processes times, Nrf2 is able to protect cells against the carcinogenic 
process through the decrease of ROS levels, whereas at longer times, 
Nrf2 promotes cancer cell proliferation and chemo-resistance [65]. 

The inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) as 
a serine/threonine kinase is a part of the IKK complex, which phos-
phorylates the inhibitor of NF-κB family proteins and activates the NF-κB 
signaling pathway [66]. Phosphoglycerate mutase 5 (PGAM5) is another 
serine/threonine phosphatase that interacts with external mitochondrial 
membrane [67]. PGAM5 and IKKβ have 77NXE(S/T)GE82 [68] and 
34NQETGE39[69] sequences, respectively, which both of them are able 
to interact with Keap1 through the Kelch domain. However, to date, 
there is no evidence which is able to indicate that Keap1 and PGAM5 or 
Keap1 and IKKβ interaction can increase Nrf2 transcriptional activation; 
in fact, the enhanced level of PGAM5 prevents Nrf2 activation [67]. In 
addition to Keap1 dependent Nrf2 ubiquitination and degradation, IKKβ 
is also a target for Keap1. The interaction between these two proteins 
targets IKKβ to ubiquitinate and degrade 26 S proteasomal, increase 
NF-κB cytoplasmic repression by IκBα and decrease nuclear trans-
location and activation of NF-κB. it can indirectly increase Nrf2 tran-
scriptional activity as NF-κB represses Nrf2 by CBP competition. 

However, to date, there is no evidence supporting this notion [66, 69, 
70]. 

6. Mechanisms of carbamate toxicity 

Pesticides primarily cause harm by blocking the action of acetyl-
cholinesterase (AChE) (Fig. 3), which is responsible for breaking down 
acetylcholine (ACh). ACh is a crucial neurotransmitter in the central 
nervous system (CNS) of humans, rodents, and insects [71]. 

Toxic exposures to CBs may occur through ingestion, inhalation, or 
skin. There is a variable range of CBs toxicity. CBs have moderate (LD50 
> 200 mg/kg) to highly (LD50 <50 mg/kg) toxic activity in rodents 
(Table 1)[72]. The most frequent causes of CBs poisoning are intentional 
oral consumption or occupational cutaneous exposure [73]. Large epi-
demics caused by contaminated food and crops have been documented 
in the third world countries [74]. After working in regions that have 
recently been sprayed or fogged with pesticides, exposure can occur via 
mixed cutaneous and inhalational exposure. It is estimated that more 
than 3000,000 people are exposed to organophosphate or CBs each year 
and up to 300,000 death caused by them [75,76]. In toxicity with CBs, 
ACh accumulates in the body and parasympathetic nerve activity 
increased. In CBs toxicity, due to the interruption of cholinesterase, ACh 
is not metabolized naturally and the increase of ACh causes an increase 
in parasympathetic actions. CBs inhibit cholinesterase enzyme, as a 
result, several symptoms including slow pulse, diarrhea, vomiting, 
muscle contractions, and increased body secretions, etc. are observed 
after toxicity. In acute stage, signs and symptoms appear after 30 to 
60 min and reach their maximum intensity within 2 to 8 h. Patient with 
CBs toxicity may experience various symptoms including anorexia, 
headache, sleepiness, weakness, hypersalivation, lacrimation, GI 
distress, bronchorrhea, diaphoresis, nausea, increased secretion of 
saliva, abdominal cramps, vomiting, sweat, and diarrhea. Generally, 
poisoning symptoms can be divided into 4 categories as follows: 1- 
Muscarinic effects: including tears, increased salivation, nausea, vom-
iting, diarrhea, abdominal pain, acute lung edema due to the secretion of 
mucus, excessive urination and frequent urination, miosis, bradycardia 
and hypotension, weakness, lethargy, dizziness, paleness and shock; 2- 
Nicotinic effects: tremor, convulsion, tachycardia, and hypertension; 3- 
CNS effects: decreased consciousness, drowsiness, and coma; 4-late 
symptoms: In some patients, neural damage such as peripheral poly-
neuropathy may occur with muscle weakness, numb or tingly hands and 
feet [77]. Table 1 indicates some in vivo studies evaluating main CBs 
effects. Fig. 4 indicates the effect of CBs on AchE in mammals and 
insects. 

7. Oxidative stress indices in carbamates toxicity 

CBs are classified as the second most commonly used pesticides in 
Europe and the US. New research has indicated that CBs may cause 
toxicity by generating an excess of ROS. Oxidative stress can be trig-
gered by various factors such as xenobiotics, drugs, heavy metals, and 
ionizing radiation [78]. Oxidative stress contributes to the formation of 
ROS and electrophiles. ROS include both free radicals (superoxide anion 
and the hydroxyl radical) and oxidants (hydrogen peroxide). Free rad-
icals and oxidants can cause several diseases such as cancer, cardio-
vascular complications, inflammatory diseases, neurodegenerative 
diseases, premature aging, and lower survival rate. Therefore, assessing 
the changes caused by CBs in oxidative processes can be valuable in-
dicators of exposure to environmental carbamates. This can help in 
identifying the early toxicity of carbamate pesticides [79]. In a study, 
Leomanni et al. exposed land snails to the carbamate pesticide carbaryl, 
at 1 μM for 1 h, and evaluated antioxidant and oxidative stress related 
responses in snails. The researchers observed various enzymatic anti-
oxidant reactions, ranging from the quick activation of catalase, gluta-
thione peroxidase, and glutathione reductase, to the slower activation of 
superoxide dismutase. Additionally, they found that there was an 
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unfavorable relationship between the capability of enzymatic antioxi-
dant defense and the intensity of oxidative stress [79]. Salazar-Flores 
et al. evaluated oxidative markers [glutathione (GSH), glutathione di-
sulfide (GSSG), carbonyl groups, nitric oxide metabolites and lipid 
peroxides] in farmers who had daily exposure with CBs. Their results 
showed increased levels of oxidative stress in occupationally exposed 
farmers compared with the control group [80]. Another study, Maran 
et al. evaluated the effects of four CBs (aldicarb, aldicarb sulfone, aldi-
carb sulfoxide, and propoxur) on glutathione content and the activity of 
antioxidants after 24-h exposure. CBs exposure significantly reduced 
GSH, no change was observed in GSSG, and GSH/GSSG ratio and 
glutathione peroxidase (GPx) activity were decreased [81]. Further-
more, SOBEKOVÁ and colleagues analyzed the impact of bendiocarb on 
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GSHPx), glutathione reductase (GR), glutathione-S transferases (GST), 
and the levels of thiobarbituric acid reactive substances (TBARS)- in the 
liver and kidney of rabbits that were exposed to the substance. Bend-
iocarb significantly decreased GSHPx- ten days after the experiment. 

Moreover, the GST activity was significantly increased after nine days of 
being exposed. The study found that in the kidney, SOD activity was 
notably enhanced, while CAT and GSHPx-H2O2 were significantly 
reduced in the experimental groups. The findings suggest that organs 
can respond differently to CBs, depending on the type of damage and 
their protective capabilities [82]. A.Mecdad et al. investigated and 
compared the levels of GST, GR, malondialdehyde (MDA), and total 
antioxidant capacity (TAC), and immunomodulatory effects (IgG, IgM, 
TNF-α) of CBs exposure in blood samples of agricultural workers. Their 
result showed decreased TAC, IgM and IgG while, MDA and TNF-α levels 
showed significant increase in CBs-exposed workers compared with the 
control group[83]. In summary, the data indicates that the harmful ef-
fects of CBs may result from oxidative stress, which leads to an increase 
and buildup of ROS. Consequently, controlling oxidative stress through 
enhanced antioxidant defense (such as through the consumption of 
fruits and vegetables) can be a potential therapeutic approach for 
mitigating CBs-induced toxicity [84]. For instance, Li et al. evaluated 
protective effects of mulberry fruit against ethyl carbamate-induced 
cytotoxicity and oxidative stress. Mulberry through reduction of ROS 
showed potent antioxidant capacity and protected human liver HepG2 
cells from ethyl carbamate-induced cytotoxicity. Ethyl carbamate 
increased intracellular GSH depletion and caused mitochondrial mem-
brane potential (MMP) collapse, whereas Mulberry considerably 
inhibited GSH depletion and restored the mitochondrial membrane 

Fig. 3. The interaction between CBs and AchE.  

Table 1 
Some in vivo studies evaluating main CBs effects. BW=body weight; IP 
= intraperitoneally.  

Type of 
Carbamate 

Animal Dosing and body 
organ 

Results Reference 

Bendiocarb Rabbit Orally 5 mg/kg/ 
bw, Testis 

Toxicity of 
lymphoid organs, 
Hemorrhagic 
effects on liver and 
renal parenchyma 

[40] 

Carbaryl Rat 10, 30 mg/kg via 
IP, 2 mL/kg via 
oral gavage, 
Brain, plasma, 
liver, Testis, Blood 

Increase in LH and 
FSH, decrease in 
testosterone and 
germ cells 

[41–43] 

Aminocarb Rat Orally, 10, 20 and 
40 mg/kg bw for 
14 days. Blood, 
liver and kidney 

Decrease of 
testicular weight 
and profound 
changes in 
parenchyma and 
Leydig cells 

[40] 

Thiodicarb Rat 2.9-5.8 mg/kg 
daily, Liver and 
heart 

Dramatic elevation 
in liver enzymes 
after seven day. 
Inhibiting AChE. 
No side effects on 
liver and heart 

[44] 

Pirimicarb Mouse Oral gavage 2.14, 
and 10.7 mg/kg/ 
day pirimicarb, 
and dichlorvos 
plus pirimicarb 
daily for 30 
consecutive days 

Dramatic elevation 
in liver enzymes 
after seven day. 
Inhibiting AChE. 
No side effects on 
liver and heart 

[45]  

Fig. 4. The effect of CBs on AchE in mammals and insects.  
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function [84]. 

8. Carbamates and Nrf2 signaling 

Maintaining homeostasis and the redox balance in cells and tissues, 
as well as protecting against oxidative stress, are other responsibilities of 
Nrf2 signaling pathway. In fact, the Nrf2 pathway is considered the most 
important mechanism of defense against oxidative damage [85]. Nrf2 
and its inhibitor, Keap1, are intrinsic cellular defense systems that are 
present in all organisms and play a crucial role in combating oxidative 
stress. The function of Nrf2 is to maintain the balance of redox by 
regulating genes such as GSS, GPX4, GCLC, and SLC7A11, in addition to 
its role as a transcription factor. Studies have investigated the impact of 
various common CBs, such as aldicarb, carbofuran, carbaryl, ethineno-
carb, fenobucarb, oxamyl, methomyl, pirimicarb, propoxur, and trime-
thacarb on this system [1]. In this context, one study has demonstrated 
that blocking the Nrf2 signaling pathway can trigger ferroptosis, a type 
of cell death. CBs could activate cell death by inhibiting the Nrf2 
signaling pathway. It was discovered that ethyl carbamate reduced cell 
viability, GSH, GPX4, and ferritin levels, resulting in ferroptosis in liver 
cells. Moreover, ethyl carbamate led to liver dysfunction, inflammation, 
oxidative stress, and reduced Nrf2 signaling in Balb/c mice [18]. Man-
cozeb (MZ) is a widespread carbamate fungicide caused developmental 
change in Drosophila melanogaster. It was reported that MZ caused 
phenotype and behavioral changes in young flies, due to induction of 
oxidative stress, resulted in deregulation of genes involved in meta-
bolism, growth and sleep. MZ could alter glucose, proteins, and tri-
glycerides content by inhibiting oxidative phosphorylation at complex I. 
MZ was able to inhibit the expression of genes that are responsive to 
oxidative stress, and metabolism including Nrf2 [17]. 

Shen et al. found a curcumin derivative that via activation of the Nrf2 
signaling inhibited vinyl carbamate-induced lung cancer. They found 
that bis(2-hydroxybenzylidene)acetone (BHBA) activated the Nrf2 
pathway in the canonical Keap1-Cys151-dependent manner and signif-
icantly decreased lung cancer [86]. Yates and colleagues found that the 
loss of Nrf2 signaling in mice leads to increased vulnerability to acute 
toxicity, inflammation, and carcinogenesis due to the inability to 
respond adaptively [87]. On the other hand, disrupting Keap1 can 
provide protection against these stresses in mice. However, recent 
research has identified inactivating mutations in Keap1 in some human 
cancers [87–89]. Mice that lack the Nrf2 gene are more vulnerable to 
various types of cancer caused by chemicals. In one experiment, 
Nrf2-deficient mice developed only half as many lung tumors induced by 
urethane (ethyl carbamate) compared to normal mice [90]. Chu et al. 
found Tetrastigma hemsleyanum vines (TVP, a polysaccharide) inhibi-
ted cytotoxicity and genotoxicity, attenuate oxidative damage and 
mitochondrial dysfunction induced by CBs in Caco-2 cells [91]. More-
over, TVP could ameliorate oxidative stress and reduce toxicity via 
upregulation of Sirt1-FoxO1 and Nrf2-Keap1 signaling pathways [91]. 
Staab et al. found that Aldicarb causes acetylcholine to accumulate in 
synaptic clefts, leading to oxidative stress, resulting in muscle contrac-
tion and eventual paralysis [92]. Under these conditions, the activation 
of Nrf2 may impact cellular processes of a distant tissue through hor-
monal signaling. This could potentially protect the nervous system from 
harm caused by oxidative stress [92]. Kim and Sieburth conducted an 
analysis to identify suppressors of aldicarb resistance caused by arsenite, 
which activates SKN-1 (a homolog of Nrf2). They discovered two re-
ceptor tyrosine kinases, DAF-2 and EGL-15, that regulate neuromuscular 
junctions in response to stress independently of SKN-1 and SPHK-1. The 
study found that the regulation of NMJ function in response to oxidative 
stress requires the EGL-15 ligand EGL-17 FGF and canonical EGL-15 
effectors [93,94]. In another investigation, Khan et al. examined the 
effects of carbofuran-induced oxidative stress on cellular autophagy and 
senescence. Their research indicated that exposure to carbofuran 
down-regulates Nrf2, and this down-regulation accelerates cellular 
autophagy through enervation of the Nrf2 signaling pathway [95]. 

Leomanni et al. found that 1 μM Carbaryl increased lipid peroxida-
tion, increased activities of CAT, SOD, GPx, and GR, and decreased total 
oxyradical scavenging capacity. Moreover, the higher levels of oxidative 
stress caused cell apoptosis through downregulation of Keap1/Nrf2/ 
ARE [79]. Mishra et al. found that cigarette smoke and urethane through 
the activation of Nrf2 significantly stimulated the expression of sulfir-
edoxin (Srx) levels in cultured normal lung epithelial cells and Srx led to 
a significantly higher number and larger size of lung tumors [96]. Car-
bendazim (CBZ, methyl N-(1 H-benzimidazol-2-yl) carbamate) is a sys-
temic fungicide that is commonly used in agriculture to combat fungal 
infections. In a study, Mo et al. investigated how modified chitosan 
nanoparticles (CS-NPs) could potentially reduce the liver and kidney 
damage caused by CBZ in rats [97]. The study discovered that rats 
receiving CBZ had severe tissue damage in their liver and kidney sec-
tions, including cell death and inflammation. These rats also had 
significantly higher levels of ALT, AST, urea, creatinine, and MDA, and 
lower levels of TAC, inducible nitric oxide synthetase (iNOS), and 
caspase-3 protein. Additionally, the study found that CBZ increased 
oxidative stress, upregulated the Keap1 gene, down-regulated Nrf2, and 
caused hepatorenal toxicity [97]. Propoxur is a carbamate insecticide 
called N-methylcarbamate ester (2-isopropoxyphenyl N-methyl-
carbamate) that has multiple uses. In a study conducted by Shi et al., the 
effects of propoxur on tumor cell migration and invasion were examined 
in two human breast cancer cell lines, MCF-7 and MDA-MB-231 cells 
[98]. The results indicated that propoxur increased MMP-2 expression, 
thereby promoting tumor cell migration and invasion. This process was 
facilitated through the up-regulation of the ERK/Nrf2 signaling pathway 
[98]. 

The study conducted by Saraiva et al. (2018) indicated that MZ was 
able to induce Nrf2 in time and dose dependent manner. They found that 
exposure of flies to MZ at 5 and 10 mg/mL for 2 weeks augmented the 
expression of Nrf2 to provide cytoprotection temporary against over-
production of ROS and lipid peroxidation. The increase of Nrf2 was 
associated with increase in the activities of catalase and glutathione S- 
transferase and decrease in nitric oxide. The findings indicated the 
adaptative response of antioxidant systemduring MZ exposure [99]. 

Nrf2 signaling is a main pathway in modulating antioxidant balance, 
during exposure to carbamates. However, there is several conflicting 
data about the carbamates effect on Nrf2 signaling. While some data 
show that carbamates can induce Nrf2 activation by Keap1-depended 
mechanisms, suggesting protection effect against their toxicity, other 
studies indicate that the Nrf2–ARE defense pathway is inhibited under 
exposure to carbamates. However, the final outcome of the Nrf2 acti-
vation process was dependent on the time of the exposure. In this 
context, several studies showed that short exposure time to carbamates 
significantly potential the antioxidant defense. However, chronic 
exposure to carbamates could cause Nrf2 hyperactivation in cancer cells 
and inhibition of Nrf2 in normal cells. Therefore, Nrf2 signaling is 
considered as a double-edged sword during exposure to carbamates. 

Carbamate compounds, widely used as pesticides and insecticides, 
have been implicated in eliciting oxidative stress and disrupting cellular 
redox balance. To comprehend the intricate dynamics, it is crucial to 
scrutinize how carbamates modulate the Nrf2 signaling pathway, a 
central regulator of cellular defense against oxidative damage. Recent 
studies have unveiled the dual nature of this interaction, indicating both 
activating and inhibitory effects on Nrf2, depending on various factors 
such as the specific carbamate compound, exposure duration, and cell 
type. 

One key aspect highlighted in our extended discussion is the direct 
modulation of Nrf2 activation by carbamates through dynamic in-
teractions with Keap1 or Nrf2. The ability of carbamates to directly bind 
to these key players in the Nrf2 pathway disrupts the Keap1-Nrf2 com-
plex, preventing Nrf2 degradation. This disruption enables Nrf2 to 
translocate into the nucleus, where it activates a battery of antioxidant 
and detoxification genes. 

Several investigations have demonstrated that certain carbamates, 
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including aldicarb, carbofuran, carbaryl, and propoxur, can directly 
influence the Nrf2 system. This influence is exemplified by carbamates’ 
ability to bind to Keap1 or Nrf2 directly, resulting in the dissociation of 
the Keap1-Nrf2 complex. Such interactions prevent Nrf2 proteasomal 
degradation, facilitating its nuclear translocation and subsequent acti-
vation. However, the temporal aspect of exposure plays a pivotal role in 
determining the overall impact on Nrf2 activation. Short-term exposure 
to carbamates has been shown to potentiate antioxidant defense mech-
anisms through Nrf2 activation, whereas chronic exposure may lead to 
Nrf2 hyperactivation in cancer cells and inhibition in normal cells. 

Furthermore, it is noteworthy to mention that the activation or in-
hibition of Nrf2 signaling appears to have context-specific outcomes. For 
instance, short exposures to carbamates can significantly enhance anti-
oxidant defense, providing a protective effect against oxidative stress. In 
contrast, chronic exposure may result in Nrf2 hyperactivation in cancer 
cells, contributing to cancer cell growth and chemoresistance, while 
inhibiting Nrf2 in normal cells. It has been explored that the temporal 
dimension of carbamate exposure in shaping the dynamics of Nrf2 
activation. Short-term exposure to carbamates is associated with a rapid 
and robust activation of Nrf2, leading to enhanced cellular antioxidant 
defenses. In contrast, chronic exposure scenarios reveal a nuanced 
response, with the potential for Nrf2 hyperactivation observed in cancer 
cells and, intriguingly, a possible inhibition in normal cells. 

This nuanced discussion enriches our understanding of how carba-
mates influence Nrf2 signaling, shedding light on the molecular in-
tricacies that define their interaction. It also underscored that the dual 
role of Nrf2 in response to carbamate exposure, emphasizing its 
importance in both safeguarding cells against oxidative stress and the 
potential pitfalls associated with hyperactivation in certain cellular 
contexts (Fig. 5). 

9. Conclusion 

Despite recent global efforts, the effects of CBs on body organs and 
environmental health still remains inconclusive. Studies have investi-
gated the impacts of CBs such as thiodicarb on various biochemical 
parameters and blood enzymes in animal models. Overall, following 
administration, CBs did not significantly change the various biochemical 
profiles except inhibiting AChE. However, toxic effects of CBs on vital 
organs including renal, testis, thymus, spleen, and liver on rats have 
been well described. CBs are a group of insecticides that have been found 
to cause metabolic disorders, hyperglycemia and oxidative stress in both 
acute and chronic exposures. Studies have shown that CBs can disrupt 
glucose metabolism and insulin signaling pathways, leading to hyper-
glycemia and insulin resistance. This can increase the risk of developing 
type 2 diabetes and other metabolic disorders. CBs have also been found 
to induce oxidative stress by generating free radicals and depleting 
antioxidant defenses in the body. This can lead to damage to cells and 
tissues and contribute to the development of various diseases. It seems 
that CBs inhibit AChE and directly affect target organs. CBs induce 
cellular oxidative stress via overproduction of ROS, affect mitochondrial 
function, and disrupt neuronal and hormonal status of the body. In mice, 
enhancing the Nrf2 signaling pathway has been shown to reduce the 
likelihood of acute toxicity, inflammation, and carcinogenesis. 
Furthermore, activating the Nrf2 signaling pathway was observed to 
prevent CBs-induced lung cancer. 

CBs can bind to Keap1 or Nrf2 directly and dissociate the Keap1-Nrf2 
complex by direct interaction, preventing Nrf2 proteasomal degradation 
and inducing an increase in the nuclear translocation and activation of 
Nrf2 Overall, Nrf2 has a dual role in cancer and further exploration is 
needed to explore the true function of it in cancer signaling pathways. 
For the prevention of chronic diseases and cancer in which oxidative and 
inflammatory stress contributes to the pathogenesis, enhancing Nrf2 
activity is still a traditional and effective approach. However, studies in 

Fig. 5. The role of Nrf2 signaling in CBs toxicity.  
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the past few decades indicated that the overactivation of Nrf2 can pro-
mote cancer cell growth and proliferation, inhibit cell apoptosis, 
strengthen cancer cells self-renewal capacity, most importantly, 
enhance the chemoresistance and radioresistance of cancer cells. Hence, 
it is reasonable to consider Nrf2 inhibition in fully malignant cells that 
be an effective way for cancer prevention. Previous works provided a 
large number of Nrf2 inhibitors that can regulate Nrf2 at different levels 
which indicated preclinical effective anticancer results. However, 
currently, none of these inhibitors yielded strong and practicable results. 
Although, there are a few small molecules that have been discovered 
showing promising availabilities in Nrf2 inhibition, further in-
vestigations are still needed to be investigated and optimized. An ideal 
inhibitor for clinical application requires not only potent efficiency and 
specificity but also less toxicity, good bioactivity, and pharmacokinetics. 
An impressive strategy should focus on targeting Nrf2 directly and 
explore indirect methods such as the inhibition of upstream miRNAs or 
protein kinases. Further studies are needed to clarify inhibitory role of 
Nrf2 signaling pathway and its activators in CBs-induced toxicity. 

Inclusion of these detailed insights elevates our manuscript by 
providing a comprehensive exploration of the interplay between 
carbamate compounds and Nrf2 signaling. This enhanced understanding 
contributes to the broader knowledge of cellular responses to carbamate 
exposure and establishes a foundation for future research in this critical 
area. 
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