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Antibodies have proven their high value in antitumor therapy over the last two decades. 
They are currently being used as the first-choice to treat some of the most frequent 
metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated 
with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive 
therapeutic success of antibodies inhibiting immune checkpoints has extended the use 
of therapeutic antibodies to previously unanticipated tumor types. These anti-immune 
checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, 
through the recovery of the patient’s own immune response against the tumor. In this 
review, we describe how the antibody-based therapies will evolve, including the use 
of antibodies in combinations, their main characteristics, advantages, and how they 
could contribute to significantly increase the chances of success in cancer therapy. 
Indeed, novel combinations will consist of mixtures of antibodies against either different 
epitopes of the same molecule or different targets on the same tumor cell; bispecific 
or multispecific antibodies able of simultaneously binding tumor cells, immune cells 
or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, 
including fusion proteins between a ligand or a receptor domain and the IgG Fab or 
Fc fragments; autologous or heterologous cells; and different formats of vaccines. 
Through complementary mechanisms of action, these combinations could contribute 
to elude the current limitations of a single antibody which recognizes only one parti-
cular epitope. These combinations may allow the simultaneous attack of the cancer 
cells by using the help of the own immune cells and exerting wider therapeutic effects, 
based on a more specific, fast, and robust response, trying to mimic the action of the 
immune system.

Keywords: cancer, antibody combinations, oncology, therapeutic antibodies, immunotherapy

iNTRODUCTiON

Nowadays, the therapeutic activity of antibodies in oncology has been widely demonstrated (1–6), 
being these proteins, after chemotherapy, radiotherapy, and small molecule inhibitors, one of the 
most used drugs for oncological treatments (7, 8). Most of the antibodies used on antitumor immuno-
therapies had positive health effects as long as the antibody is present in the patient’s blood. The clinical 
use of antibodies directed against antigens not present on the tumor cells, but on cells of the immune 
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FigURe 1 | Schematic representation of the mechanisms of action used by 
naked antibodies to inhibit tumor growth. Naked antibodies can inhibit tumor 
growth through effector functions such as ADCC (antibody-dependent 
cell-cytotoxicity) where the antibody bound to the tumor antigen is 
recognized by the natural killer (NK) cell and triggers cytotoxic activity;  
can also trigger antibody-dependent cell-phagocytosis (ADCP) when the 
antibody bound to the tumor antigen opsonizes the cell and activates 
phagocytic cells; the antibody can also fix complement after binding to  
the tumor cell, and trigger complement-dependent cytotoxicity (CDC). 
Conversely, naked antibodies can kill the tumor cells by interfering with 
important signal pathways, either by binding to the ligand (Ligand Blocking) 
or by binding to the receptor (Receptor Blocking). In addition, they can  
trigger direct apoptosis after binding to an antigen on the tumor cell surface.
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system (i.e., anti-immune checkpoint antibodies), evidenced the 
beneficial effects of the treatment, which persisted even after it 
was finished (9, 10). These findings allowed to demonstrate that 
the anti-checkpoint antibodies were able to reprogram the organ-
ism’s response, re-directing the antitumor immune response, and 
skewing the balance on the tumor microenvironment toward 
immune destruction of the tumor. Thus, allowing to envisage a 
cure for cancer.

The aim of this review is to discuss the information on the 
possible anti-cancer treatments using monoclonal antibodies 
(mAbs; in clinical trials or already in the market) in combina-
tions, either with other antibodies or with other biological agents 
(11–18). The clinical trials are mentioned throughout this review 
only as examples of the different types of combinations being 
currently analyzed for cancer treatment. Thus, for most of the 
studies details and results will be shown on Supplementary 
Tables S1 and S2. The use of radiation therapy, chemotherapy, 
small-molecule compounds, or stem cell autotransplants will be 
mentioned only, if the information is strictly necessary in our 
attempt to dissect the reasons behind the use of these combina-
tions. Similarly, there is no specific section describing combina-
tions including checkpoint inhibitory mAbs, since this subject 
has been recently reviewed (19–24), including the reviews by 
Xu-Monette and Young and Aris et  al., in this issue (25, 26). 
Similarly, combinations directed against cancer stem cells will 
not be discussed since they have been treated elsewhere in this 
research topic (27).

Antibodies are generated by the immune system’s adaptive 
arm to defend the organism from pathogens and malignant 
cells. The antibodies are basically secreted molecules involved in 
mediating interactions on the extracellular compartment; they 
are made by a variable part that gives its binding specificity, and 
a constant region that is able to interact with other molecules or 
cells of the innate and adaptive immune system, to give them 
molecular information regarding their interaction with antigen. 
Thus, it should come to no surprise that antibodies’ functions 
promote health and that treatments based on antibodies might, 
therefore, be curative (6, 28, 29).

Very few therapeutic antibodies are able to directly kill the 
tumor cells, either by interacting with a signal pathway (i.e., as a 
receptor antagonist or sequestering the ligand), or by direct trig-
gering of apoptosis. Most of them kill the tumor cells through the 
interaction with other molecules or cells of the immune system, 
acting as molecules mediating interactions on the extracellular 
compartment. Although they originated as receptors on the 
surface of cells from the acquired immune system, they became 
secreted on mature B cells, and through either engagement with 
Fc-receptor-bearing cells or by interaction with the complement 
system, they can exert a broad spectrum of effector functions, 
coordinating the immune response (see Figure 1).

A current goal of antitumor immune therapies is to trig-
ger, from the beginning, all the possible host body defense 
mechanisms. Aiming to destroy, as early as possible, the highest 
number of tumor cells, decreasing the possibilities of the tumor 
developing escape mechanisms, to obtain a more effective 
therapy. The defense mechanisms include (i) to directly kill the 
tumor cells; (ii) to switch the immune system from an antitumor 

immunosuppressed status to another that allows to attack the 
tumor, i.e., through stimulating the secretion of cytokines or 
modulating cell to cell interactions; (iii) to attract the immune 
system cells to the tumor; (iv) to decrease the tumor-directed 
neo-vascularization; and (v) to inhibit migration, metallopro-
tease secretion, and tumor cell invasion, among others.

The current trends for the use of antibodies in oncology as 
therapeutic agents are to employ them either alone or, more often, 
as combinations with (i) cytotoxic agents; (ii) radiotherapy; (iii) 
molecularly targeted drugs interfering with tumor cell survival 
or proliferation; (iv) other antibodies against the same target; (v) 
other antibodies against molecules implicated in the same signal-
ing pathway; (vi) other antibodies, each one of them specific for 
unrelated targets (including targets in immune system cells and 
neo-vascularization); (vii) vaccines or oncolytic virus; (viii) cells 
that would either act as immunogens or as effector cells; or (ix) 
adjuvants, liposomes, nanoparticles, etc.

For the treatment of cancer, the FDA and the EMA (United 
States and European Union Drug Administrations), have approved 
(or are reviewing) a total of 32 therapeutic antibodies or their 
derivatives. Interestingly, the number has doubled between 2012 
and 2017 (Tables 1 and 2), concomitant with a 100% increase in 
phase III clinical trials using mAb on a similar time-period (30). 
Twenty of these antibodies are indicated for treatment of patients 
with solid tumors (Table  1), identifying 13 different targets; 
whereas 12 are indicated for neoplasias of hematological origin 
(Table 2), identifying eight different targets. The targets identified 
by these antibodies are described in Table 3. Other therapeutic 
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TAble 1 | Antibodies approved (or in review) by the FDA and/or EMA for the clinical treatment of solid tumors.a

Approved indications Target international non-
proprietary name

brand name Format Proposed mechanism(s) of action eU/US
First approval 

year

Sponsor Reference

Soft tissue sarcoma PDGFRα Olaratumab Lartruvo Human IgG1 Binds to PDGFR-α, blocks ligand binding 
and receptor signaling

2016/2016 Eli Lilly and Co. (31–34)

Breast cancer HER2 Pertuzumab Perjeta Humanized IgG1 Inhibits HER dimerization, prevents the 
formation of ligand-induced heterodimers  
of HER2 with other family members.  
Induces ADCC

2013/2012 Genentech (35–38)

Breast cancer and gastric cancer HER2 Trastuzumab Herceptin Humanized IgG1 Inhibits HER dimerization, prevents the 
formation of ligand-induced heterodimers  
of HER2 with other family members.  
Induces ADCC and phagocytosis

2000/1998 Genentech (39–43)

Breast cancer HER2 Ado-trastuzumab 
emtansine

Kadcyla Humanized IgG1 
conjugated to emtansine 
(ADC)

Inhibits HER dimerization, prevents the 
formation of ligand-induced heterodimers  
of HER2 with other family members.  
Induces ADCC and phagocytosis.  
Transports emtansine (microtubule  
inhibitor) to HER2-positive tumors

2013/2013 Genentech (44–47)

HNSCC Epidermal growth 
factor receptor 
(EGFR)

Necitumumab Portrazza Human IgG1 Binds to EGFR, blocks ligand binding 
and triggers EGFR internalization and 
degradation. Induces ADCC

2015/2015 Eli Lilly and Co. (48–53)

Colorectal cancer EGFR Panitumumab Vectibix Human IgG2 Binds to EGFR, competitively inhibits the 
binding of its ligands, blocking receptor 
signaling

2007/2006 Amgen (54–58)

HNSCC, Colorectal cancer EGFR Cetuximab Erbitux Chimeric IgG1 Binds to EGFR, blocks ligand binding 
and triggers EGFR internalization and 
degradation. Induces ADCC

2004/2004 ImClone LLC (59–63)

Breast cancer, colorectal cancer, 
non-squamous NSCLC, RCC, 
cervix carcinoma, ovarian 
or fallopian tube cancer, 
primary peritoneal cancer, and 
glioblastoma

VEGFA Bevacizumab Avastin Humanized IgG1 Binds to VEGFA, prevents interaction with  
its receptors and their subsequent  
activation

2005/2004 Genentech (64–68)

NSCLC, gastric cancer, and 
colorectal cancer

VEGFR2 Ramucirumab Cyramza Human IgG1 Binds to VEGFR2, inhibits the binding of  
its ligands, blocking receptor signaling

2014/2014 Eli Lilly and Co. (69–73)

NSCLC and urothelial  
carcinoma 

PD-L1 Atezolizumab Tecentriq Humanized IgG1 Blocks the interaction of PD-L1 with 
programmed cell death protein 1 (PD-1) 
and CD80. Blocks the immune checkpoint 
inhibition. Contains a modified Fc region to 
limit ADCC or CDC

2017b/2016 Genentech (74–78)

Urothelial carcinoma PD-L1 Durvalumab Imfinzi Human IgG1 Blocks the interaction of PD-L1 with PD-1 
and CD80. Blocks the immune checkpoint 
inhibition. Does not induce ADCC

NA/2017 AstraZeneca (79–82)

(Continued)
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Approved indications Target international non-
proprietary name

brand name Format Proposed mechanism(s) of action eU/US
First approval 

year

Sponsor Reference

Merkel cell carcinoma PD-L1 Avelumab Bavencio Human IgG1 Blocks the interaction of PD-L1 with PD-1 
and CD80. Blocks the immune checkpoint 
inhibition

2017b/2017 Merck/Pfizer (83–86)

Melanoma, RCC, NSCLC, 
HNSCC, cHL and urothelial 
carcinoma

PD-1 Nivolumab Opdivo Human IgG4 Binds to PD-1, blocks its interaction with 
PD-L1 and PD-L2. Blocks the immune 
checkpoint inhibition. Does not induce  
ADCC

2015/2014 Ono Pharma 
(Japan)/Bristol-
Myers Squibb 
(Worldwide)

(87–91)

Melanoma, NSCLC, HNSCC,  
and cHL

PD-1 Pembrolizumab Keytruda Humanized IgG4 Binds to PD-1, blocks its interaction with 
PD-L1 and PD-L2. Blocks the immune 
checkpoint inhibition. Does not induce  
ADCC

2015/2014 Merck (92–96)

Melanoma CTLA-4 Ipilimumab Yervoy Human IgG1 Binds to CTLA-4, blocks its interaction with 
CD80 and CD86, increasing T cell activation 
and proliferation

2011/2011 Bristol-Myers 
Squibb

(97–100)

Bone metastases from solid 
tumors, Increase of bone mass

RANK-L Denosumab Prolia Human IgG2 Binds to RANK-L, blocks its interaction  
with RANK, and prevents bone loss

2010/2010 Amgen (101–105)

Xgeva

Colorectal cancer IL-1α MABp1c Xilonix Human IgG1 Binds to IL-1α, blocks its interaction with 
IL1-R

In review/NA XBiotech (106–108)

Neuroblastoma GD2 Dinutuximab Unituxin Chimeric IgG1 Binds to the TAA GD2. Activates CDC  
and ADCC

2015d, e/2015 United 
Therapeutics

(109–112)

EpCAM+-Colon cancer EpCAM Edrecolomab Panorex Murine IgG2a Engages immune effector cells. Activates 
CDC, ADCC, and phagocytosis

1995d, e/NA GlaxoSmith  
Kline

(113–116)

EpCAM+-carcinomas related 
ascites

EpCAM/CD3 Catumaxomab Removab Rat/mouse bispecific 
monoclonal antibody

Attracts immune cells to the tumor  
proximity, promoting T cell activation and 
effector functions. Activates CDC, ADCC  
and phagocytosis

2009e/NA Trion Pharma/
Biotech

(117–121)

aAdapted from Janice M. Reichert, PhD, The Antibody Society; last update July, 2017.
ADC, antibody–drug conjugate; ADCC, antibody-dependent cell-mediated cytotoxicity; CDC, complement-dependent cytotoxicity; cHL, classical Hodgkin lymphoma; HNSCC, head and neck squamous cell carcinoma; NSCLC,  
non-small cell lung cancer; RCC, renal cell carcinoma; TAA, tumor-associated antigen.
bCountry-specific approval, 20 July 2017.
cInternational non-proprietary name pending.
dEMA initial authorization.
eWithdrawn or marketing discontinued for the first approved indication.
NA, not approved or in review in the EU, not approved or information on review status not available in the US.
Color shades corresponds to structurally related target molecules.

TAble 1 | Continued
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TAble 2 | Antibodies approved (or in review) by the FDA and/or EMA for the clinical treatment of hematologic neoplasias.a

Approved indication Target international non-
proprietary name

brand name Format Proposed mechanism(s) of action eU/US
First approval  
year

Sponsor Reference

ALL CD19/
CD3

Blinatumomab Blincyto Murine bispecific tandem 
scFv

Binds CD19 on tumor B cells and puts them in 
close contact with T cells through the CD3 (TCR 
complex), activates them, and results in  
redirected tumor cell lysis

2015/2014 Amgen (122–126)

CLL and follicular 
lymphoma

CD20 Obinutuzumab Gazyva Humanized IgG1; 
Glycoengineered

Lyses B cells by effector-cell recruitment. 
Enhanced CDC, ADCC, and ADCP, contains a 
modified Fc region with increased binding  
affinity for FcgammaRIII. Mutation (R7159) 
enhances apoptosis

2014/2013 Roche (127–132)

Gazyvaro

CLL CD20 Ofatumumab Arzerra Human IgG1 Binds to CD20 and engages immune effector 
cells, mediates B-cell lysis. Activates CDC,  
ADCC, and ADCP

2010/2009 Novartis (133–136)

NHL CD20 Tositumomab-131I Bexxar Murine IgG2a linked to 131I Binds to CD20 and engages immune effector 
cells, mediates B-cell lysis. Activates CDC,  
ADCC, and ADCP, induces apoptosis. Ionizing 
radiation kills CD20+ cells

NA/2003a GlaxoSmithKline (137–140)

NHL CD20 Ibritumomab-tiuxetan Zevalin Murine IgG1 linked to 
90Y-tiuxetan

Binds to CD20, the tiuxetan moiety binds 90Y,  
the beta emission induces cell damage.  
Activates CDC, ADCC, and apoptosis

2004/2002 Spectrum 
Pharmaceuticals

(141–144)

NHL and CLL CD20 Rituximab MabThera-
Rituxan 

Chimeric IgG1 Binds to CD20 and engages immune effector 
cells, mediates B-cell lysis. Activates CDC,  
ADCC ,and ADCP

1998/1997 Roche Biogen/
Genentech

(145–150)

ALL CD22 Inotuzumab ozogamicin Besponsa Humanized IgG4 linked 
to N-acetyl-gamma-
calicheamicin (ADC)

Binds to CD22++ cells. After internalization, the 
toxin induces double-stranded DNA breaks and 
apoptosis

2017/2017 Pfizer (151–155)

Hodgkin lymphoma and 
systemic anaplastic large 
cell lymphoma

CD30 Brentuximab vedotin Adcetris Chimeric IgG1 linked to 
monomethyl auristatin E 
(MMAE; ADC)

Binds to CD30++ cells. After internalization, the 
toxin MMAE, disrupts microtubules and induces 
apoptosis

2012/2011 Seattle Genetics (156–161)

Acute myeloid leukemia CD33 Gemtuzumab ozogamicin Mylotarg Humanized IgG4 linked 
to N-acetyl gamma 
calicheamicin (ADC)

Binds to CD33+ cells. After internalization, the 
toxin induces double-stranded DNA breaks and 
apoptosis. Does not activate ADCC

In review/in review; 
2000a

Wyeth (162–165)

Multiple myeloma CD38 Daratumumab Darzalex Human IgG1 Binds to CD38+ cells. Activates CDC, ADCC,  
and ADCP

2016/2015 Janssen Biotech (166–170)

Multiple myeloma SLAMF7 Elotuzumab Empliciti Humanized IgG1 Binds to SLAMF7. Activates ADCC 2016/2015 Bristol-Myers 
Squibb

(171–176)

CLL CD52 Alemtuzumab Campath Humanized IgG1 Binds to CD52+ lymphocytes. Activates ADCC 
and CDC

2001/2001 Genzyme (177–179)

aAdapted from Janice M. Reichert, PhD, The Antibody Society; last update July, 2017.
ADC, antibody–drug conjugate; ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; ALL, acute lymphoblastic leukemia; CDC, complement-dependent cytotoxicity; CLL,  
chronic lymphoblastic leukemia; MAE, monomethyl auristatin E; NHL, non-Hodgkin lymphoma; scFv, single-chain variable fragment.
bWithdrawn or marketing discontinued for the first approved indication.
NA, not approved or in review in the EU, not approved or information on review status not available in the US.
Color shades corresponds to structurally related target molecules.
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TAble 3 | Characteristics of the main target molecules identified by therapeutic antibodies used in oncology.

Antibody target Nature of the target Function expression Monoclonal antibody 
effects in cancer therapy

Reference

PDGFRα Platelet-derived growth factor 
receptor alpha

Protein of the tyrosine kinase 
family

Cell proliferation, differentiation and 
migration

Ubiquitous, highly expressed on 
endothelial cells

Cell proliferation inhibition (180, 181)

HER2 Human epidermal growth factor 
receptor 2

Glycoprotein of the tyrosine 
kinase family

Enhances cell proliferation and favors 
survival

Epithelial cells, highly expressed 
on many tumors

Cell proliferation inhibition (182, 183)

EGFR Epidermal growth factor receptor Glycoprotein of the tyrosine 
kinase family

Cell proliferation and differentiation Epithelial cells Cell proliferation inhibition (184, 185)

VEGFA Vascular endothelial growth factor A Glycoprotein of the PDGF/VEGF 
family

Proliferation and migration of endothelial 
cells

Hypoxic cells, highly expressed on 
many tumors

Angiogenesis inhibition (186, 187)

VEGFR2 Vascular endothelial growth factor 
receptor 2

Cell surface receptor of the 
tyrosine kinase family

Proliferation and migration of endothelial 
cells

Vascular and lymphatic endothelial 
cells

Angiogenesis inhibition (186, 187)

PD-L1 Programmed cell death-1 ligand 1 Protein of the immunoglobulin 
superfamily

Inhibits T cell activation and cytokine 
production

Myeloid and lymphoid lineage 
cells, highly expressed on certain 
cancer cells

Immune checkpoint 
inhibition

(188, 189)

PD-1 Programmed Cell Death-1 Protein of the immunoglobulin 
superfamily

Inhibits T cell activation and cytokine 
production

B and T lymphocytes Immune checkpoint 
inhibition

(188, 189)

CTLA-4 Cytotoxic T-lymphocyte antigen 4 Protein of the immunoglobulin 
superfamily

Inhibits T cell activation and cytokine 
production

B and T lymphocytes Immune checkpoint 
inhibition

(188–190)

RANK-L Receptor activator of nuclear factor 
κB ligand

Ligand of the tumor necrosis 
factor superfamily

Activates osteoclast through NF-kappa 
B activation

Osteoblasts and T lymphocytes Inhibition of bone 
destruction

(191–193)

IL-1α Interleukin-1 alpha Cytokine of the interleukin-1 
family

Pleiotropic effects, including inflammatory 
response and apoptosis

Secreted by activated 
macrophages and monocytes

Cell growth inhibition and 
anti-inflammatory

(194)

GD2 Glycolipid disialoganglioside Cell surface glycolipid receptor Attachment of tumor cells to extracellular 
matrix

Nervous system cells and 
melanocytes, highly expressed on 
neuroblastomas and melanomas

Activates CDC and ADCC (195, 196)

EpCAM Epithelial cell adhesion molecule Cell surface glycoprotein Cell adhesion Epithelial tissues, highly expressed 
on carcinomas

Activates CDC, ADCC, and 
ADCP

(188, 189, 197, 198)

CD3 CD3 subunit of the T cell receptor 
complex

Cell surface glycoprotein of the 
immunoglobulin superfamily

T cell receptor signal transduction T lymphocytes Activates CDC and ADCC (188, 189)

CD19 B cell Receptor CD19 Surface antigen of the 
immunoglobulin superfamily

B cell differentiation and activation B lymphocytes and DC Activates CDC and ADCC (188, 189)

CD20 B cell receptor CD20 Cell surface antigen of the 
MS4A family

B cell development and activation B lymphocytes and a subset of 
T cells

Activates CDC, ADCC, and 
ADCP

(188, 189)

CD22 B cell receptor CD22 Surface antigen of the 
immunoglobulin superfamily

B cell signaling and adhesion B lymphocytes ADC (188, 189)

CD30 Tumor necrosis factor receptor 
superfamily member 8

Cell surface antigen of the TNF-
receptor superfamily

Pleiotropic effects, including lymph 
proliferation, differentiation, and activation 

T and B lymphocytes and natural 
killer (NK) cells

ADC (188, 189)

CD33 Platelet endothelial cell adhesion 
molecule

Cell surface lectin Cell adhesion and apoptosis Myeloid lineage cells ADC (188, 189)

(Continued)
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antibodies, not yet approved, but mentioned on this review are 
summarized on Table 4.

From the antibodies approved (or under review) for the 
treatment of solid tumors, seven of them recognize tumor cell 
surface tyrosine kinase receptors involved in proliferation and 
survival pathways. These receptors (see Table  3) are PDGFRα 
(targeted by the antibody olaratumab), HER2 (pertuzumab, 
trastuzumab and emtansine, ado-trastuzumab) and epidermal 
growth factor receptor (EGFR; necitumumab, panitumumab, 
and cetuximab). Two antibodies inhibit tumor angiogenesis by 
binding to the soluble ligand VEGF (bevacizumab) or to the 
endothelial cell receptor VEGFR2 (ramucirumab). Six of the 
mAb disrupt inhibitory immune checkpoint signals by binding 
to the programmed cell death protein 1 (PD-1) receptor on the 
T cells (nivolumab and pembrolizumab), to PD-L1 on the tumor 
cells (atezolizumab, durvalumab, and avelumab) or to CTLA-4 
on T  cells (ipilimumab). Two of these mAb block the binding 
of cytokines that are involved in the growth of some tumors, 
including antibodies against RANK-L (denosumab) and IL-1α 
(MABp1). The last three mAb recognize antigens overexpressed 
on the surface of tumor cells. They identify GD2 (dinutuximab) 
and EpCAM (edrecolomab and catumaxomab) (Table 1).

From the antibodies approved (or under review) for the treat-
ment of hematopoietic neoplasias, eight antibodies recognize 
B  cell antigens. Among those, one recognizes CD19 (blinatu-
momab), five mAb recognize CD20 (obinutuzumab, ofatumumab, 
rituximab, ibritumomab tiuxetan, and 131I tositumomab), one 
mAb binds to CD22 (inotuzumab ozogamicin), and the last one 
recognizes CD52 (alemtuzumab). Other two antibodies identify 
antigens expressed by B cells and by other cells of the immune sys-
tem, including an anti-CD30 mAb (shared between B and T cells, 
brentuximab vedotin) and an anti-SLAMF7 (present on activated 
B cells and natural killer (NK) cells among others, elotuzumab). 
In addition, there are two antibodies against other immune cells, 
an anti-CD33 (myeloid lineage, gemtuzumab ozogamicin); and 
the non-lineage-restricted CD38 (daratumumab) (Table 2).

We will describe in the following paragraphs a set of clinical 
trials using antibodies in combination for oncological treatments, 
giving a systematic description of the antibody combinations 
with biological agents and their rationale. Describing the cur-
rent aims of antibody-mediated cancer therapy and to envisage 
where its future lies. In addition, there will be a section where the 
therapeutic effects and toxicities for selected clinical trials will be 
discussed, which will help us to envisage the future of therapeutic 
antibodies for cancer treatments. Before starting with this sys-
tematic analysis, we will describe, with one example, in this case 
for the treatment of GD2+-neuroblastomas, the complexity of the 
clinical trials being carried out.

evOlUTiON OF TReATMeNT 
COMPleXiTY wiTH ANTibODY  
iN COMbiNATiONS

In this section, we will discuss, as an example, the use of anti 
GD2 antibodies for the treatment of GD2-positive solid tumors, 
including neuroblastoma (266–269). Near 50 clinical assays have 
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TAble 4 | Summary of the therapeutic antibodies not yet approved for clinical treatments.a

Antibody name Molecular format Company or institute Target/main characteristics Reference/Clinical Trial identifier

3H1 (CEA-Vac) Mouse IgG1 Titan Pharmaceuticals Anti-idiotype antibody that mimics an epitope of the 
carcinoembryonic antigen (CEA)

(199)/NCT00033748

5B1 (MVT-5873) Human IgG1 MabVax Therapeutics Carbohydrate determinant 19-9 (CA19-9, carbohydrate 
antigen sialyl-Lewis A)

(200)/NCT03118349

11D10 (TriAb) Mouse IgG1 Titan Pharmaceuticals Anti-idiotype antibody that mimics a human milk fat  
globule membrane epitope

(201)/NCT00033748, NCT00045617

A27.15 Mouse IgG1 University of Arizona Anti-transferrin receptor (TfR) antibody that blocks the 
binding of transferrin

(202)/NCT00003082

Abagovomab Mouse IgG1 CellControl Biomedical Laboratories; 
Menarini

Anti-idiotype antibody that mimics an epitope of the  
ovarian cancer tumor-associated antigen CA-125

(203)/NCT00058435, NCT01959672

Andecaliximab (GS-5745) Humanized IgG4 Gilead Sciences Anti-matrix metalloproteinase 9 antibody that inhibits its 
enzymatic activity

(204, 205)/ NCT02864381

B-701 Human IgG1 BioClin Therapeutics Fibroblast growth factor receptor 3. Antagonist (206)/NCT03123055

Basiliximab (Simulect) Chimeric mouse–human IgG1 Novartis; Cerimon Pharmaceuticals Interleukin-2 receptor alpha-subunit (IL-2Ralpha, IL2Ra, 
CD25). Antagonist

(207)/ NCT00626483

BMS-986148 ADC Bristol-Myers Squibb Mesothelin (MSLN). Antibody conjugated to an  
undisclosed cytotoxic drug

(208)/NCT02341625

BMS-986179 Bristol-Myers Squibb Bristol-Myers Squibb Ecto-5’-nucleotidase (CD73) (209–211)/ NCT02754141

BTH1704 Humanized IgG1 Cancer Research UK; Biothera Mucin-1 (MUC1). Antagonist (212)/NCT02132403

Cabiralizumab (FPA008) Humanized IgG4 Five Prime Therapeutics; Bristol-Myers 
Squibb; Ono Pharmaceutical

Colony-stimulating factor 1 receptor (CSF1R). Antagonist (213)/NCT02526017, NCT03158272

Canakinumab (ACZ885) Fully human IgG1 Novartis Pharmaceuticals Interleukin-1 beta (IL-1beta, IL-1b). Antagonist (214)/NCT02900664

Carotuximab (TRC105) Chimeric mouse-human IgG1 Roswell Park Cancer Institute; 
Santen Pharmaceutical; TRACON 
Pharmaceuticals

Endoglin (CD105). Inhibitor (215)/NCT03181308

CC-90002 Humanized IgG Inhibrx; Celgene Corporation Leukocyte surface antigen CD47. Antagonist (216)/NCT02367196

CDX-1401 Human antibody fusion protein Ludwig Institute for Cancer Research; 
Celldex Therapeutics Inc

Dendritic and epithelial cell receptor DEC205. Antibody 
linked to the tumor-associated antigen NY-ESO-1

(217)/NCT02129075, NCT02495636

Cergutuzumab amunaleukin 
(CEA-IL2v, RG7813)

Immunocytokine Roche CEA. Antibody fused to a single IL-2 variant moiety with 
abolished CD25 binding

(218)/NCT02350673

CJM112 Fully human IgG1 Novartis Interleukin-17A (IL-17, IL-17A). Antagonist (219)/NCT03111992, NCT02900664

Conatumumab (AMG 655) Fully human IgG1 Amgen; Takeda Tumor necrosis factor-related apoptosis-inducing ligand 
receptor 2 (TRAIL-R2, DR5). Agonist

(220)/NCT01327612

Darleukin (L19-IL2) Immunocytokine, fusion  
protein

Philogen; Bayer HealthCare 
Pharmaceuticals

Extra-domain B domain of fibronectin. A human single-
chain variable fragment (scFv) antibody fragment fused to 
interleukin-2 (IL-2)

(221)/NCT02076633

Demcizumab (OMP-21M18) Humanized IgG2 OncoMed Pharmaceuticals Delta-like ligand 4 (DLL4). antagonist (222)/NCT02722954

Drozitumab (PRO95780) Fully human, IgG1 Genentech TRAIL-R2 (DR5). Agonist (223)/NCT00851136

(Continued)
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Antibody name Molecular format Company or institute Target/main characteristics Reference/Clinical Trial identifier

E2.3 Mouse IgG1 Salk Institute Anti-TfR antibody that blocks the binding of transferrin  
to the receptor

(202, 224)/NCT00003082

Emactuzumab (RO5509554) Humanized IgG1 Roche CSF1R (CD115). Antagonist (225)/NCT02760797

EMD 525797 (DI17E6) Humanized IgG2 EMD Serono; Merck Serono Integrin alpha-V subunit (CD51). Antagonist (226)/NCT01008475

Emibetuzumab (LY2875358) Humanized IgG4 Eli Lilly c-Met receptor tyrosine kinase (c-MET; MET; hepatocyte 
growth factor receptor; c-Met proto-oncogene)

(227)/NCT02082210

Epratuzumab (AMG 412) Humanized IgG1 Immunomedics Anti-CD22 antibody that mediates antibody-dependent 
cellular cytotoxicity (ADCC)

(228)/NCT00941928

Ficlatuzumab (AV-299, SCH 
900105)

Human IgG1 AVEO Pharmaceuticals Hepatocyte growth factor (HGF). Inhibitor (229)/NCT02277197

Ganitumab (AMG 479) Fully human IgG1 Amgen; NantWorks; Takeda Insulin-like growth factor 1 receptor. Antagonist (230)/NCT00788957, NCT01327612

GD2Bi-aATC (Hu3F8Bi- 
armed ATC)

Humanized bispecific National Cancer Institute; Barbara Ann 
Karmanos Cancer Institute

CD3 and disialoganglioside GD2 (231, 232)/NCT02173093

Imalumab (BAX69) Fully human Cytokine PharmaSciences; Shire Macrophage migration inhibitory factor. Inhibitor (233)/NCT02448810

IMC-CS4 (LY3022855) Human IgG1 ImClone Systems CSF1R (C-FMS; CD115) (234)/NCT03153410

Intetumumab (CNTO 95) Fully human IgG1 Centocor; BeiGene Anti-Integrin alpha-V subunit (CD51) antibody that blocks 
both alpha-v beta-3 and alpha-v beta-5 integrins

(235)/NCT00888043

Lirilumab Humanized monoclonal  
antibody (mAb) IgG4

Bristol-Myers Squibb KIR (killer-cell immunoglobulin-like receptors) (236)/NCT01714739

m170 Mouse IgG1 University of California, Davis MUC1 (237)/NCT00009750

MEDI3617 Human IgG1 MedImmune Angiopoietin 2. Antagonist (238)/NCT01248949, NCT02141542

Milatuzumab (hLL1) Humanized IgG1 Immunomedics CD74 (239)/NCT00989586

Mirvetuximab soravtansine 
(IMGN853)

Chimeric mouse-human, ADC ImmunoGen Folate receptor 1. Antibody conjugated to the  
maytansinoid DM4 (N2′-Deacetyl-N2′-(4-mercapto-4-
methyl-1-oxopentyl)-maytansine)

(240)/NCT02606305

MM-111 Human bispecific Merrimack Pharmaceuticals ErbB receptors ErbB2 and ErbB3. Inhibitor (241)/NCT01097460

MNRP1685A Fully human IgG1 Genentech; Roche Neuropilin-1. Inhibitor (242)/NCT00954642

MOXR0916 Humanized IgG1 Genentech OX40. Antagonist (243)/NCT02410512

Navicixizumab  
(OMP-305B83)

Bispecific Humanized IgG2 OncoMed Pharmaceuticals Delta-like ligand 4 (DLL4) and vascular endothelial growth 
factor A (VEGF). Inhibitor

(244)/NCT03030287, NCT02298387

Nimotuzumab (TheraCim hR3, 
BIOMAb EGFR, Theraloc)

Humanized IgG1 Center of Molecular Immunology;  
CIMYM

Epidermal growth factor receptor (EGFR). Inhibitor (245)/NCT02947386

Otlertuzumab (TRU-016) Recombinant single-chain 
polypeptide

Aptevo Therapeutics CD37 (246)/NCT01317901

Potential immunostimulatory and antineoplastic activities

Parsatuzumab (MEGF0444A) Humanized IgG1 Genentech Epidermal growth factor-like domain 7. Inhibitor (247)/NCT01399684

PD-0360324 Humanized IgG2 Pfizer Cytokine CSF1 (CSF-1, macrophage colony-stimulating 
factor, M-CSF). Inhibitor

(248)/NCT02554812

TAble 4 | Continued
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Antibody name Molecular format Company or institute Target/main characteristics Reference/Clinical Trial identifier

PDR001 Humanized IgG4 Novartis Programmed cell death protein 1 (PD-1). Inhibitor (13)/NCT02900664, NCT03111992

PF-04518600 Fully human IgG2 Pfizer OX40. Agonist (249)/NCT02554812

Pidilizumab (CT-011,  
MDV9300)

Humanized IgG1 CureTech; Medivation PD-1, Inhibitor (250); NCT01067287

Relatlimab BMS-986016 Human mAb IgG4 Bristol-Myers Squibb LAG-3 (human lymphocyte activation gene 3 protein) (251)/NCT01968109, NCT02061761 

Potential immune checkpoint inhibitory and antineoplastic 
activities

Rilotumumab (AMG102) Fully human IgG2 Amgen Human hepatocyte growth factor (HGF, c-Met). Inhibitor (252)/NCT00788957

RO6958688 Bispecific Roche CD3 and CEA. Inhibitor (253, 254)/NCT02650713

RO7009789 (CP-870,893) Fully human IgG2 Roche CD40. Agonist (255)/NCT02665416, NCT02760797

Rovalpituzumab tesirine 
(SC16LD6.5)

Humanized ADC Stemcentrx Delta-like protein 3 (DLL3). Antibody conjugated to tesirine,  
a pyrrolobenzodiazepine dimer

(256)/NCT03026166

SGN-LIV1A Humanized ADC Seattle Genetics Zinc transporter LIV-1 (SLC39A6). Antibody conjugated to 
maleimidocaproylvaline-citrulline-p- 
aminobenzyloxycarbonyl-MMAE (vcMMAE)

(257)/NCT01969643

SS1 (dsFv) PE38 (CAT-5001) Immunotoxin National Institutes of Health (USA) MSLN. Single-chain antibody linked to Pseudomonas 
exotoxin PE-38

(258)/NCT01051934

Tigatuzumab (CS-1008) Humanized IgG1 Daiichi Sankyo Company; University of 
Alabama at Birmingham

TRAIL-R2 (DR5). Agonist (259, 260)/NCT01307891

Urelumab (BMS-663513) Fully human IgG4 mAb Bristol-Myers Squibb Anti-CD137 (261)/NCT01471210, NCT01775631, 
NCT02110082, NCT02253992Potential immunostimulatory and antineoplastic activities

Utomilumab (PF-05082566) Human IgG2 Pfizer CD137 (4-1BB). Agonist (262)/NCT02554812

Vanucizumab (RG7221) Bispecific Roche Angiopoietin 2 (ANG2, ANGPT2) and vascular endothelial 
growth factor (VEGF). Inhibitor

(263)/NCT01688206, NCT02665416, 
NCT02715531Humanized

Varlilumab (CDX-1127) Fully human IgG1 Celldex Therapeutics CD27. Agonistic. (16)/NCT02410512

Veltuzumab (IMMU-106, hA20) Humanized Immunomedics Anti-CD20 antibody that triggers complement-dependent 
cell lysis and antibody-dependent cell-mediated cytotoxicity 
(ADCC)

(264)/NCT00989586

VGX-100 Fully human IgG1 Circadian Technologies Limited Vascular endothelial growth factor C (VEGF-C or Flt4 ligand). 
Inhibitor

(265)/NCT01514123

aOnly clinical trials included in this review.
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been started using two different mouse antibodies and their cor-
responding chimeras or humanized antibodies. The clinical use of 
dinutuximab (ch14.18) was approved in 2015, whereas the thera-
peutic efficacy of the other antibody, 3F8 has been demonstrated 
with many patients (270–272). These antibodies, recognizing the 
neuroblastoma tumor-associated antigen GD2, are being used to 
(i) kill the tumor with either the naked antibody alone, appar-
ently through Fc-mediated effector actions [antibody-dependent 
cell cytotoxicity (ADCC), complement-dependent cytotoxicity 
(CDC), and antibody-dependent cell phagocytosis (ADCP)] 
or apoptosis (NCT00002458, NCT00072358, NCT01418495, 
NCT01419834, NCT01704872, NCT02258815, NCT02743429); 
(ii) kill the tumor by the naked antibody in combination with 
chemotherapeutic agents (busulfan, carboplatin, cisplatin, cyclo-
phosphamide, doxorubicin, etoposide, lomustine, melphalan, or 
vincristine), small molecule drugs (crizotinib), external radiation, 
and/or conventional surgery (NCT03098030, NCT03126916); 
(iii) directly transport a radioelement toward the tumor, by con-
jugating the radioelement to the anti-GD2 mAb. This will induce 
radiolysis of the tumor cells, minimizing the effects on normal 
cells (NCT00058370, NCT00445965, NCT03126916); (iv) use 
them in combination with agents that modify cell expression 
patterns, inhibiting proliferation and inducing cell differentia-
tion and apoptosis [i.e., isotretinoin (13-cis retinoic acid or RA)] 
(NCT00003022, NCT00030719, NCT01183416, NCT01183429, 
NCT01183884, NCT01526603, NCT01711554, NCT02100930, 
NCT03033303); or (v) use them in combination with agents 
able to burst the host immune response against the tumor. These 
include, granulocyte-macrophage colony-stimulating factor 
(GM-CSF) or granulocyte colony-stimulating factor (G-CSF) 
(NCT01704716, NCT01767194, NCT02484443, NCT02502786, 
NCT03189706); which increase the number of innate immune 
response cells by triggering the proliferation of granulocytes and 
macrophages; increasing both innate and adaptive responses by 
inducing the maturation/proliferation of NK cells and T lympho-
cyte proliferation with interleukin-2 (IL-2) alone or in combina-
tion with GM-CSF and/or RA (NCT00005576, NCT00026312, 
NCT01041638, NCT01592045, NCT01662804, NCT02169609, 
NCT02641782); regulating the threshold of the immune response 
with an adjuvant, changing the secreted cytokine expression 
pattern of cells bearing certain pattern recognition receptors 
(i.e., beta glucan that binds the C-type lectin receptor Dectin-1) 
(NCT00037011, NCT00492167, NCT00089258); increasing 
the pool of cytotoxic cells able to fight the tumor with alloge-
neic NK  cells (NCT00877110, NCT01857934, NCT02573896, 
NCT02650648); using in  vitro activated T  cells coated with 
bispecific OKT3-hu3F8 mAb, together with IL-2 and GM-CSF to 
redirect T lymphocyte cell lysis (NCT02173093); and combining 
the anti-GD2 antibody with nivolumab, an anti-immune check-
point (PD-1) mAb able to block the immunosuppressor activity 
induced by the tumor (NCT02914405).

From these “basic” aims further combinations arose, for 
example one where the aim is to induce radiolysis of the tumor 
cells with 131I-3F8, simultaneously bursting the innate immune 
response with filgastrim (G-CSF), inhibiting neo-vascularization 
with bevacizumab (anti-VEGF), together with autologous stem 
cell rescue of irradiated patients (NCT00450827).

We believe that this example gave a rough idea of the complex-
ity that clinical trials for one antibody (two in this case) can reach. 
The chimeric, human-murine, anti-GD2 mAb dinutuximab has 
been approved in combination with GM-CSF, IL-2, and retinoic 
acid for the treatment of pediatric patients with high-risk neuro-
blastoma (273). Interestingly, the overall survival and event-free 
survival of patients treated with dinutuximab increased 2 years 
when compared to standard treatment during phase III clinical 
trials (273).

COMbiNATiON OF ANTibODieS wiTH 
NON-biOlOgiCAl AgeNTS

Chemotherapeutic drugs are cytotoxic agents affecting unspecifi-
cally cell proliferation and survival, which inhibit topoisomerases 
I or II (doxorubicin, etoposide, irinotecan, topotecan, etc.), 
produce DNA breaks interfering with DNA replication, RNA 
transcription and cell division through changes in DNA alkyla-
tion, DNA methylation, and DNA cross-linking or intercalating 
between base pairs in the DNA helix (busulfan, melphalan, 
cyclophosphamide, carboplatin, cisplatin, lomustine, thiotepa, 
etc.). These chemotherapeutic drugs are being used in combina-
tion with mAbs for many cancer treatments (274).

In addition to surgery, treatment with antibodies and external 
irradiation has also been used. Localized external irradiation 
allows, by destroying tumor cells, better exposure of the tumor 
antigens to the immune system cells, this combination is also 
working well and is being used in numerous clinical trials 
(275–279).

Small molecule drugs that inhibit molecular interactions or 
enzymatic activity of proteins involved in cell signaling, or inhibi-
tors of protein kinases overexpressed in tumor cells (including 
erlotinib, ibrutinib, imatinib, lapatinib, olaparib, regorafenib, 
ruxolitinib, sorafenib, sunitinib, etc.), are also being used in 
combination with antibodies (280, 281). There are numerous 
examples of treatments with this type of combinations that, 
by simultaneously inhibiting ligand–receptor interactions and 
kinases belonging to the same signaling pathway, have led to very 
positive therapeutic results (282–286).

COMbiNATiON OF ANTibODieS wiTH 
biOlOgiCAl AgeNTS

These are therapies that use a combination of antibodies or 
antibody-based molecules with other biological substances, for 
example, recombinant proteins, genetic material, virus, bacteria, 
and cells (16). Most of these strategies are designed to stimulate 
the host immune system to act against the cancer cells.

In the following paragraphs, we describe antibodies in 
combinations, where (i) one of the antibodies identifies a tumor-
associated antigen (an antigen overexpressed in tumor cells), 
used either naked, as an antibody–drug conjugate (ADC) or 
as an immunotoxin; (ii) antibodies against the tumor cell are 
used in combination with cytokines or immunocytokines to 
burst the immune response against the tumor, or conversely use 
anti-cytokine antibodies when the expressed cytokines can be 
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harmful for the antitumor response, aiming to disrupt their balance;  
(iii) the antibodies directly target the angiogenesis process, aiming 
to inhibit new vascularization required for tumor growth; (iv) 
the mAb can also be combined with effector cells to increase the 
immune response against the tumor; or (v) combined with antibod-
ies against immunomodulatory or immunostimulatory proteins to 
disrupt the inhibitory signals sent by the tumor to the host immune 
system to inhibit the antitumor response. Although several of the 
examples we will describe could be included more than one sub-
heading, each one of them is described only in one of them.

Antibodies Against Tumor-Associated 
Antigens
The rationale of using antibodies as therapeutic agents was to kill 
the tumor cells either directly or through activating the patient’s 
immune system effector functions (ADCC, CDC, or phagocy-
tosis) with antibodies specific for tumor-associated antigens. 
Mucin 1 (MUC-1), an antigen present on the surface of many 
adenocarcinomas, which is recognized by mAb m170 (237). This 
mAb has been used radiolabeled as 111In-m170 or 90Y-m170, in 
combination with chemotherapy and the immunosuppressor 
cyclosporine to treat patients with metastatic prostate cancer 
that did not respond to hormone therapy. This treatment was 
followed by peripheral stem cell transplantation (NCT00009750). 
The rationale is to kill the tumor with the combination of chemo-
therapy and the mAb coupled to the radioisotope in the presence 
of cyclosporine. Afterward peripheral stem cell transplantation 
will allow to refurbish the hematopoietic compartment.

Other approaches have been used on hematological neo-
plasias, one of them, a combination of two anti-transferrin 
receptor (TfR) antibodies A27.15 and E2.3 (202, 287) was 
used for the treatment of chronic myeloproliferative disorders 
(NCT00003082). The anti-TfR mAb block the binding of (Fe3+)2-
transferrin to TfR, resulting in decreased tumor cell growth. 
Other targets used in hematopoietic malignancies are CD20 
and CD74. In this case, a combination of the anti-CD20 mAb 
veltuzumab (IMMU-106) (288) and milatuzumab (anti-CD74) 
(239) was used to treat relapsed or refractory B cell non-Hodgkin 
lymphoma (NCT00989586). CD74, a surface receptor of the pro-
inflammatory cytokine macrophage migration inhibitory factor 
(MIF) (289–291), is an MHC class II chaperone and an accessory-
signaling molecule (292). Milatuzumab induces apoptosis, 
related to inhibition of CD74 activation by MIF, ADCC, or CDC 
(293), while veltuzumab triggers CDC and ADCC in cells that 
overexpress CD20 (288). Other combinations include rituximab 
(anti-CD20) in combination with CC-90002 (anti-CD47) (294, 
295) for the treatment of advanced solid and hematologic cancers 
(NCT02367196). CC-90002 selectively binds to CD47 expressed 
on tumor cells, blocks CD47 interaction with signal regulatory 
protein alpha (SIRPa), a protein expressed on phagocytic cells, 
which prevents CD47/SIRPa-mediated signaling and abrogates 
the CD47/SIRPa-mediated inhibition of phagocytosis. The 
result is an induction of pro-phagocytic signaling, resulting in 
macrophage activation and the specific phagocytosis of tumor 
cells. In addition, CD47 signaling blockade activates both, an 
antitumor T lymphocyte immune response and T cell-mediated 
killing of CD47-expressing tumor cells. CD47, also called 

integrin-associated protein (IAP), is a tumor-associated antigen 
(TAA) expressed on normal, healthy hematopoietic stem cells 
(HSC) and overexpressed on the surface of a variety of cancer 
cells. Expression of CD47 and its interaction with SIRPa leads  
to the inhibition of macrophage activation and protects cancer 
cells from phagocytosis, resulting in cancer cell proliferation 
(294, 296–298).

ADC and immunotoxins
Some antitumor treatments use, rather than naked antibodies, 
antibody–toxin fusion proteins (immunotoxins) or antibodies 
linked to drugs (299–302). In some cases, to increase the cell-
killing potential of antibodies, they can be covalently linked to 
potent cytotoxic or cytostatic agents, including small molecule 
drugs or inactive forms of a biological toxin. The antibody directs 
the toxin toward the tumor cell. When the cell endocytoses the 
ADC, it undergoes enzymatic cleavage and the drug is released, 
gets activated, and exerts its cytotoxic action, killing the tumor 
cell. The endocytic process works for antigens that can be internal-
ized. Most of the current antibodies that are being used as ADC 
identify cell surface receptors that are efficiently endocytosed. 
However, many cell surface proteins are not internalized and a 
large amount of work is being carried out to develop alternatives, 
such as making an ADC where the antibody is coupled to the 
drug through a linker that can be cleaved by tumor cell-surface 
proteases, when in close contact with the tumor cell; conversely 
the antibody may carry a tumor receptor antagonist to direct it 
toward the tumor cell surface (303, 304).

One example includes a combination of an antitumor-asso-
ciated antigen mAb and an ADC. Trastuzumab in combination 
with an antibody against the zinc transporter LIV-1 (SLC39A6) 
conjugated to the cytotoxic agent monomethyl auristatin E 
(MMAE) (257) for the treatment of patients with metastatic 
breast cancer (NCT01969643). In this particular combination, 
trastuzumab inhibits the tyr-kinase receptor HER2, while 
through the potent microtubule disrupting agent MMAE, which 
is coupled to the anti-LIV-1 antibody, induces cell cycle arrest in 
the G2/M phase and apoptosis of LIV-1+ cells (257). This type of 
combination can be made more potent by adding to the equa-
tion, antibodies against immune-checkpoints to burst antitumor 
immune responses. For example, the combination of nivolumab, 
ipilimumab, and rovalpituzumab tesirine has been used in 
extensive-stage small cell lung cancer (SCLC) (NCT03026166). 
Rovalpituzumab tesirine is an anti-delta-like protein 3 (DLL3) 
antibody conjugated to the cytotoxic pyrrolobenzodiazepine 
dimer D6.5 (256, 305). This antibody recognizes the membrane 
protein DLL3, which is overexpressed in certain tumors, binds to 
Notch receptors, and regulates Notch-mediated signaling (256). 
Thus, this combination should kill the cells overexpressing DLL3, 
while the anti-checkpoint antibodies nivolumab and ipilimumab 
redirect the host immune response to attack the tumor.

Another example shows the combination of mAb CR011, 
against the transmembrane protein GPNMB (glycoprotein non-
metastatic B) coupled to MMAE (306). This ADC was used in 
combination with anti-PD-1 mAb nivolumab or pembrolizumab 
and varlilumab (307, 308), an agonistic anti-CD27 mAb, for the 
treatment of advanced melanoma (NCT02302339). The rationale 
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is, in addition to targeting the GPNMB+ cells with the antibody-
coupled to the toxin, the anti-PD-1 antibodies suppress the 
tumor-promoted inhibition of the antitumor immune response, 
while the anti-CD27 triggers an activation of the cytotoxic T lym-
phocytes (CTL).

The following example combines the ADC mirvetuximab 
soravtansine with either bevacizumab (VEGF) or pembroli-
zumab (PD-1) in primary peritoneal, fallopian tube, or endo-
metrial cancer (NCT02606305). Mirvetuximab soravtansine is 
an immunoconjugate consisting of a folate receptor 1 (FOLR1) 
mAb (M9346A) conjugated to the cytotoxic maytansinoid DM4 
(240). DM4 is released after internalization, binds to tubulin, and 
disrupts microtubule dynamics. FOLR1 is a member of the folate 
receptor family, overexpressed on a variety of epithelial-derived 
cancer cells (240, 309). Other studies combine nivolumab (anti-
PD-1) with the ADC BMS-986148 (208, 310), composed of a 
mAb against the cell surface glycoprotein mesothelin (MSLN), 
conjugated to an as of yet undisclosed cytotoxic drug, for the 
treatment of mesothelioma, NSCLC, ovarian cancer, pancreatic 
cancer, and gastric cancer (NCT02341625). The rationale here is 
to block with the anti-PD-1 mAb the binding of PD-L1 (present 
on the tumor cells) to its receptor PD-1 (present on T  cells), 
avoiding the suppression of antitumor responses triggered by 
the PD-L1/PD-1 interaction, while targeting mesothelin+ cells 
with the BMS-986148 mAb. Since the mAb is an ADC, upon 
internalization the cytotoxic agent kills the tumor cells. The mAb 
also activates ADCC. Another combination, for the treatment of 
MSLN-expressing NSCLC uses a combination of the anti-VEGF 
antibody bevacizumab with the single-chain anti-MSLN mAb 
SS1 (dsFv) linked to the exotoxin PE-38 from Pseudomonas (258) 
(NCT01051934). Since MSLN is not shed in significant amounts 
into the bloodstream, the dsFv-toxin can be concentrated onto 
the tumor cell surface. Once the dsFv toxin is internalized, the 
toxin is released and inactivates eukaryotic translation elongation 
factor 2, disrupting tumor cell protein synthesis. Concomitantly, 
the anti-VEGF antibody inhibits angiogenesis (258).

Antibodies Combined with Cytokines  
and immunocytokines
Another way to burst the host immune response against the 
tumor involves the use of either exogenous cytokines or fusion 
proteins that include a cytokine, administered either systemi-
cally or directly in the tumor. In some cases, due to cytokine 
toxicity, it could be envisaged to directly couple the cytokine to 
a mAb specific for a tumor-associated antigen, as a recombinant 
fusion protein (311, 312). These combinations allow, decreasing 
the dose, to reach higher local concentrations at the tumor site 
and to exert its therapeutic function avoiding systemic toxicity, 
while increasing the cytokine’s half-life, since it is coupled to the 
antibody, which prevents renal clearance (313).

In another example for the treatment of advanced or 
metastatic solid tumors, a combination of nivolumab and the 
Aldesleukin Prodrug NKTR-214 was used (NCT02983045). 
NKTR-214 is a recombinant human IL-2 conjugated to six releas-
able polyethylene glycol chains (PEG) (314). When the cytokine 
is released, binds to CD122 (IL-2 receptor beta subunit) and the 
mAb may act synergistically with NKTR-214 by blocking PD-1 

activation through the mAb and simultaneously stimulating 
growth and cytotoxic activity against the tumor of the patient’s T 
and NK cells by the exogenous IL-2. The advantages of using this 
conjugated form of the IL-2 are that, on the one side, is released 
in a controlled way in the tumor’s proximity, avoiding systemic 
toxic effects; and on the other side, PEG conjugation prevents 
IL-2 binding to the IL2Ralpha subunit (and the subsequent acti-
vation of CD4-positive regulatory immunosuppressive T cells), 
while IL2Rbeta activation plays a key role on the proliferation 
and activation of effector T cells (314). In another clinical trial, 
the NKTR-214 immunocytokine was also administered, using 
a similar therapeutic strategy for the treatment of patients with 
metastatic urothelial bladder cancer or metastatic NSCLC, 
in combination with atezolizumab (74–76) (NCT03138889). 
Another trial for advanced or metastatic solid tumors expressing 
the carcinoembryonic antigen (CEA), combined atezolizumab 
and cergutuzumab amunaleukin [CEA-IL-2 variant (IL2v)] (218), 
alone or together with a pretreatment with the anti-CD20 mAb 
obinutuzumab (NCT02350673). The immunocytokine CEA-IL2v 
is a fusion protein between a recombinant IL2v, unable to bind 
CD25, fused to the C-terminus of a high affinity, bivalent CEA-
specific antibody (218). The strategy is to inhibit the PD-1/PD-1L 
checkpoint, increasing locally IL-2 activity on the tumor cells, 
allowing its binding to CD122. A similar strategy uses nivolumab 
in combination with the superagonist ALT-803 for the treatment 
of advanced and unresectable NSCLC (NCT02523469). ALT-803 
is a fusion protein containing a mutated IL-15 (IL-15N72D) 
cytokine and a soluble, dimeric IL-15 receptor alpha Fc fusion 
protein (IL-15Ra-Fc) (315). The rationale of this study is to sup-
press the signaling through negative checkpoints, while activating 
and increasing NK levels and memory CD8+ T cells, through the 
binding of ALT-803 to the IL-2/IL-15 receptor beta gamma chain, 
strengthening the patient’s immune response.

Another example is the anti-HER2 mAb trastuzumab, which 
has been used in combination with IL-12 in treating patients with 
recurrent solid tumors [breast cancer, endometrial carcinoma, 
gastric cancer, non-small cell lung cancer (NSCLC), SCLC, and 
ovarian epithelial cancer] (NCT00028535). IL-12 stimulates IFN-
gamma production and enhances T- and NK-cell proliferation, 
differentiation, and activation (316). A more complex example 
combines two mAb–cytokine fusion proteins, consisting of L19, 
a human single-chain variable fragment directed against the 
extra-domain B (ED-B) of fibronectin, linked to either the human 
pro-inflammatory cytokine tumor necrosis factor alpha (TNFa, 
L19-TNF) or to human IL-2 (L19-IL-2). These combinations 
have been used on patients with malignant melanoma (317–320) 
(NCT02076633). The rationale of the trial is that the L19 moiety 
binds to the ED-B domain of a fibronectin isoform selectively 
expressed in the tumor neovasculature during neo-angiogenesis. 
TNFa may locally induce an immune response against ED-B+ 
tumor cells, while the IL-2 moiety may locally activate CTL, 
NK cells, and macrophages.

In another clinical trial, atezolizumab was combined with  
(i) ipilimumab, (ii) interferon alfa-2b, (iii) PEG-interferon 
Alfa-2a, (iv) bevacizumab and PEG-interferon alfa-2a, and (v) 
obinutuzumab, for the treatment of locally advanced or meta-
static solid tumors (NCT02174172). The aim is to compare on the 
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same trial the results from these different strategies. The rationale 
is to restore the antitumor immune response by blocking immune 
checkpoints, while inducing cell cycle arrest, apoptosis or differ-
entiation, which will led to tumor growth inhibition, concomitant 
with T cell and NK cell activation, inhibition of angiogenesis and 
induction of cytokine expression, through the administration of 
interferon alpha (321).

Anti-Cytokine Antibodies
On the previous section, the aim was to provide exogenous 
cytokines to burst the antitumor immune response. Here, the aim 
is to disrupt the balance of other cytokines such as IL-17 or IL-1, 
that may hinder the antitumor immune response.

An example, for the treatment of patients with multiple mye-
loma, uses the anti PD-1 mAb PDR001 in combination with the 
mAb CJM112 (targeting IL-17) or with the Smac Mimetic LCL161 
drug (an IAP inhibitor) (NCT03111992). This strategy aims to 
restore the cellular immune response inhibiting checkpoint sign-
aling, changing the cytokine balance by decreasing the available 
IL-17 and favoring tumor cell apoptosis. A more complex clinical 
trial was used for the treatment of colorectal cancer, triple-negative 
breast cancer, NSCLC and adenocarcinoma, where the anti-PD-1 
mAb PDR001 (13) was used in combination with either (i) the 
anti-interleukin-1 beta (IL-1b) mAb canakinumab (214), (ii) the 
anti-IL-17 mAb CJM112 (219), (iii) the small molecule inhibitor 
trametinib (MAPKK1 and MAPKK2 inhibitor) or (iv) the EGFR 
antagonist nazartinib (NCT02900664). The aim is to inhibit the 
immune checkpoint, while either simultaneously suppressing the 
inflammatory responses (blocking IL-1b or IL-17), or inhibiting 
tumor cell proliferation with mitogen-activated protein kinase 
and EGFR inhibitors.

Antibodies Targeting Angiogenesis
Unlike to what happens with hematologic tumors, the growth of 
a solid tumor is concomitant with a local increase in nutrient and 
oxygen consumption and secretion of metabolites, requiring neo-
vascularization for its growth. Therefore, some of the antitumor 
therapies aim to interfere with the neo-vascularization process, 
either by including antibodies against the soluble ligands, or 
against their receptors present in the cell surface of endothelial 
cells (322).

The anti-VEGF-A mAb bevacizumab, able to inhibit 
angiogenesis is currently being tested in combination with 
other therapeutic agents to determine its usefulness for cancer 
treatment. These combinations include: cetuximab, in advanced 
lung cancer (NCT00368992); MEDI3617 (anti-Ang-2) (238), 
for advanced solid malignancies (NCT01248949); the mAb 
drozitumab (PRO95780) (223) against death receptor 5 (DR5/
TRAIL-R2), in metastatic colorectal cancer (NCT00851136); 
NK immunotherapy, in recurrent solid tumors (NCT02857920); 
and atezolizumab (NCT03038100, NCT02659384), nivolumab 
(NCT02873962), or pembrolizumab (NCT02853318) for the 
treatment of ovarian, fallopian tube, or primary peritoneal 
cancer. Bevacizumab has also been combined with MNRP1685A 
(242, 323), a mAb against membrane-bound endothelial cell co-
receptor neuropilin-1 (NRP1), overexpressed in certain tumor 
cells, for advanced or metastatic solid tumors (NCT00954642). 

MNRP1685A prevents angiogenesis by blocking binding of 
VEGF, VEGF-B, and placental growth factor 2 to neuropilin-1, 
resulting in vessel immaturity. Other combinations of bevaci-
zumab include parsatuzumab (247), a mAb against the vascular-
restricted extracellular matrix protein epidermal growth 
factor-like domain multiple 7 (EGFL7), upregulated during 
angiogenesis and overexpressed on the cell surface of different 
solid tumors, for the treatment of metastatic colorectal cancer 
(NCT01399684). Parsatuzumab inhibits vascular development 
regulated by EGFL7, affecting to the survival and migration of 
endothelial cells during angiogenesis. An additional combina-
tion used bevacizumab and anti-VEGFC/Flt4 (VGX-100) (265) 
for metastatic solid tumors (NCT01514123). The rationale is to 
simultaneously inhibit vascular and lymphatic endothelial cell 
proliferation and angiogenesis.

A different approach is to target angiogenesis with the Anti-
VEGFR-2 mAb ramucirumab, in combination with the anti-c-MET 
[hepatocyte growth factor receptor (HGFR)] mAb emibetuzumab 
(227), on advanced refractary solid tumors (NCT02082210). The 
rationale of the trial is to inhibit angiogenesis and MET signaling 
on the tumor cells (227). A similar strategy has been used where 
instead of using an anti-HGFR mAb, uses ficlatuzumab (229, 
324), a mAb against the c-MET ligand (HGF), in combination 
with cetuximab (NCT02277197).

A similar strategy targets molecules with an expression 
highly restricted to the vascular endothelium. An example is 
the combination of pembrolizumab with demcizumab (222), a 
mAb that blocks the interaction of anti-delta-like ligand 4 (DLL4) 
with Notch-1 and Notch-4, inhibiting Notch-mediated signaling 
and gene transcription, impairing the productive growth of new 
blood vessels (325) (NCT02722954). Pembrolizumab avoids the 
immunosuppression by immune checkpoint signaling while 
demicizumab prevents angiogenesis.

In K-ras wild-type metastatic colorectal cancers, cetuximab 
mAb was used in combination with the alphaVbeta3 (vitronectin 
receptor) integrin inhibitor EMD 525797, an anti-alphaV integ-
rin subunit mAb (226) (NCT01008475). AlphaVbeta3 integrin is 
a cell adhesion and signaling receptor expressed on the surface 
of tumor endothelial cells, with a crucial role in their adhesion 
and migration. The aim of the trial is to inhibit angiogenesis and 
endothelial cell interaction(s) with other cells or with the extra-
cellular matrix, required for tumor angiogenesis and metastasis. 
A similar study in solid tumors combines bevacizumab with 
intetumumab (235, 326), a pan alpha-v human mAb that blocks 
both alpha-v beta-3 and alpha-v beta-5 integrins, resulting in 
inhibition of integrin-mediated tumor angiogenesis and tumor 
growth (NCT00888043).

The remaining clinical trials on this section, all of them 
combine an anti-checkpoint antibody (either anti-CTLA-4, 
PD-1 or PD-L1) with anti-angiogenic antibodies such as the 
anti-Angiopoietin 2 (Ang-2) mAb (MEDI3617) in metastatic 
melanoma (NCT02141542); with the antibody carotuximab 
(TRC105) (215) that recognizes the endothelial cell surface pro-
tein endoglin, essential for angiogenesis, in metastatic NSCLC 
(NCT03181308); with antibodies specific for Ang-1 and Ang-2, 
which prevent their interaction with their target tie2 receptors 
(NCT00861419); with vanucizumab (bispecific anti-VEGF/
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Ang-2 antibody) (263), in advanced or metastatic solid tumors 
(NCT01688206). The bispecific mAb targets both VEGF-A and 
Ang-2, which are upregulated in a variety of tumor cell types, play 
key roles in tumor cell proliferation, angiogenesis and metastasis. 
The anti-VEGF-A arm is based on bevacizumab and the anti-
Ang-2 arm is based on the anti-Ang-2 antibody LC06 (263). It 
simultaneously binds and neutralizes both VEGF-A and Ang-2. 
This prevents the activation of both VEGF-A/VEGFR- and 
Ang-2/Tie2-mediated signaling pathways, resulting in the inhi-
bition of proliferation of VEGF-A- and/or Ang-2-overexpressing 
tumor cells (263, 327).

Another strategy is to combine the anti-EGFR mAb panitu-
mumab with an anti-hepatocyte growth factor mAb rilotumumab 
(252) or ganitumab (230), an anti-insulin-like growth factor 
1 receptor (IGF-1R) mAb in metastatic colorectal cancer with 
wild-type KRAS (NCT00788957) (328). The rationale here is to 
simultaneously inhibit strong proliferative signals triggered by 
EGFR and c-MET.

Antibodies Combined with effector Cells
In some patients, the number of cells from the innate or adaptive 
immune system could be decreased by the effects of previous 
treatments. In these cases, treatments with antibodies, whose 
mechanisms of action depend on immune system cell effector 
functions (i.e., ADCC, ADCP, etc.), could be compromised. In 
these cases, either autologous (harvested prior to the treatment) 
or allogeneic cells (NK  cells, T  cells, CTL cells, dendritic cells 
(DC), etc.) can be administered concomitantly with the thera-
peutic antibodies.

A combination of mAb and cells for the treatment of hemato-
logical malignancies combines the anti-CD22 mAb epratuzumab 
(228) with haploidentical NK  cells and low-dose exogenous 
IL-2, for the treatment of relapsed acute lymphoblastic leukemia 
(NCT00941928). CD22 is a cell surface glycoprotein present on 
mature B cells and on many B cell malignancies. In this exam-
ple, since epratuzumab action involves ADDC, the exogenous 
administered haploidentical NK cells strengthens its effects. The 
exogenous IL-2 induces NK cell proliferation, activates cytotoxic 
immune responses against the tumor and induces expression 
of certain cytotoxic cytokines, such as interferon-gamma 
(IFNgamma) and transforming growth factor-beta. In another 
example, NK  cells were used in combination with nivolumab 
for the treatment of recurrent solid tumors (NCT02843204), 
strengthening the endogenous immune response with the 
anti-checkpoint antibodies and increasing the NK  cell load. 
Another combination used for the treatment of recurrent 
solid tumors uses NK cells in combination with bevacizumab 
(NCT02857920), increasing the NK cell load and simultaneously 
targeting tumor neo-vascularization. The last combinations to 
be mentioned with effector cells use pembrolizumab, adminis-
trated with autologous dendritic cells-cytokine induced killer 
cell (DC-CIK), for advanced solid tumors (NCT03190811), or 
the anti-PD-1 mAb, that was used in vitro to activate and expand 
DC-CIK from the patient’s peripheral blood, before infusion 
(NCT02886897). These clinical trials aim to target the immune 
checkpoint and increasing the load of cytolytic cells with the 
DC-CIK.

bispecific Antibodies
Nowadays the FDA and EMA allow clinical trials where the 
therapeutic agent is a combination of two antibodies. Bispecific 
antibodies may be considered as a particular combination where 
both antibodies are in a single molecule. This type of antibodies 
allows to put in close proximity the tumor cell with an effec-
tor cell, a cytokine, etc., or to re-direct the immune response 
of cytotoxic T cells bypassing antigen recognition through the 
TCR (329).

On all the trials on hematological tumors using bispecific 
mAb reported here, the same bispecific mAb blinatumomab 
(biespecific CD19-CD3) was used in different combinations. 
An example combines blinatumomab with the anti-CD20 mAb 
rituximab, for non-receptor tyrosine kinase (ABL)-negative 
B lineage acute lymphoblastic leukemia (NCT02003222). The 
rationale is to target the CD20+ B cells, while putting in close 
contact T cells (CD3+) with CD19+ B cells, to mount a strong 
cytotoxic T cell response. The rest of the trials from this group, 
all of them combine mAb targeting immune-checkpoints 
(CTLA-4, PD-1, or PD-L1) with the bispecific antibodies. These 
include blinatumomab in relapsed or refractory precursor 
B-lymphoblastic leukemia (NCT02879695) or for relapsed or 
refractory B cell acute lymphoblastic leukemia (NCT03160079). 
The rationale for these trials is to avoid the suppression of anti-
tumor responses, while putting in close contact T cells (CD3+) 
with CD19+ B cells.

Bispecific antibodies in combination have also been used for 
the treatment of solid tumors. For most of the examples, one 
of the arms of the bispecific mAb identifies a tumor-associated 
antigen, such as the bispecific antibody RO6958688 (bispecific 
CD3-CEA) combined with atezolizumab, for the treatment of 
advanced and metastatic solid tumors (NCT02650713). The 
bispecific antibody RO6958688 (253, 254) recognizes, on the 
one side, the CD3 molecule of the TCR and, on the other side, 
the CEA, an antigen overexpressed in several tumors. The ration-
ale of the trial is to block the binding of PD-L1 to its recep-
tor avoiding the suppression of antitumor responses, while 
putting in close contact T cells (CD3+) with the CEA+ tumor 
cells, inducing a strong T cell activation which may result in a 
potent antitumor CTL response. Similarly, solid tumors were 
treated with atezolizumab in combination with bevacizumab 
or with vanucizumab, a bispecific mAb that simultaneously 
targets VEGF and Ang-2 (NCT02715531). This treatment aims 
to block the immune checkpoint suppression while inhibiting 
angiogenesis.

Another example of targeting tumor-associated antigens is 
the use of in  vitro-activated T  cells armed with GD2Bi-aATC, 
a bispecific antibody that recognizes CD3 and GD2 (231, 232), 
in combination with IL-2 and GM-CSF in patients with neu-
roblastoma or osteosarcoma (NCT02173093). The rationale of 
this study is to generate in vitro activated T cells that are infused 
in the patient after binding to the bispecific mAb, which will 
direct them to the tumor, generating a potent CTL response 
to kill tumor cells. Exogenous IL-2 and GM-CSF are added to 
maintain these cells and generate an inflammatory environment 
surrounding the tumor. In addition, another approach that has 
been used is to combine the anti-HER2 antibody trastuzumab 
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with a bispecific MM-11 mAb anti-ErbB2/anti-ErbB3 mAb (241) 
for the treatment of HER2+ breast cancer (NCT01097460). The 
aim is to simultaneously inhibit signaling through this family of 
tyrosine kinase receptors.

Another approach is to use bispecific mAb to inhibit 
angiogenesis in solid tumors. The two examples we describe 
use the bispecific mAb vanucizumab (VEGF-A/Ang-2). In 
one of them, it is used in combination with RO7009789 (255), 
an antibody with immunostimulatory effects that recognizes 
CD40, a member of the TNF receptor superfamily, for the 
treatment of metastatic solid tumors (NCT02665416). In the 
other example, it is used either alone or in combination with 
atezolizumab (PD-L1) in advanced or metastatic solid tumors 
(NCT01688206). The rationale for both cases is to either use an 
anti-CD40 agonist or an anti-checkpoint antibody to burst the 
antitumor immune response, while inhibiting simultaneously 
angiogenesis by blocking the VEGF-A/VEGFR- and Ang-2/
Tie2-signaling pathways.

Antibodies with immunomodulatory 
effects
In a clinical trial for metastatic colorectal cancer, imalumab 
(BAX69) (233), a mAb that identifies MIF is used in combina-
tion with panitumumab (NCT02448810). BAX69 abrogates MIF 
signaling and MIF-mediated secretion of cytokines (IL-1β, TNF-
α, etc.) and inhibits proliferation of MIF overexpressing tumor 
cells, together with the antiproliferative effects of panitumumab 
(anti-EGFR mAb).

Other examples, used for solid tumors, combine nivolumab 
with cabiralizumab, an anti-colony-stimulating factor 1 receptor 
(CSF1R) mAb, which inhibits binding of its ligands (CSF-1 and 
IL-34), blocking the production of inflammatory mediators by 
macrophages and monocytes and preventing osteoclast activation 
(NCT02526017; NCT03158272). The aim is to inhibit the tumor-
induced immune suppression with nivolumab, and to block with 
cabiralizumab the recruitment of CSF1R-dependent tumor-
associated macrophages (TAMs). Cabiralizumab also enhances 
T cell infiltration and antitumor T cell immune responses.

Another immunomodulatory antibody, anti-CD73 
(BMS-986179) (209–211), has been used in combina-
tion with nivolumab on advanced or spread solid cancers 
(NCT02754141). In this case, the use of an antibody against the 
cell surface enzyme CD73 turns out to be very interesting. CD73 
is overexpressed in many tumors and catalyzes the conversion 
of extracellular nucleotides into nucleosides, generating adeno-
sine (211). The anti-CD73 antibody prevents the conversion of 
AMP to adenosine, which releases the inhibition of T cell, DC, 
and NK activities, induces the activation of macrophages, and 
reduces the activity of both myeloid-derived suppressor cells 
and regulatory T cells (209–211). This treatment was designed 
to abrogate the immunosuppressor effects of both, the immune 
checkpoint with nivolumab and the metabolic checkpoint with 
BMS-986179.

In addition to antibodies that release the inhibitory effects of 
immune-checkpoints, there are other antibodies that are able to 
directly activate the immune response. The following examples 

represent clinical trials where these immunostimulatory antibod-
ies are used. One of them combines avelumab, which suppresses 
the signaling through negative immune checkpoints, with either 
the anti-cytokine antibody PD-0360324 (anti-CSF-1 mAb) 
(248); or with the immunostimulatory antibodies PF-04518600 
(anti-OX40 mAb), or utomilumab (an anti-CD137 mAb) (262) 
(NCT02554812); whereas another combines the anti-OX40 mAb 
(MOXR0916) with atezolizumab in locally advanced or metastatic 
solid tumors. (NCT02410512). The aim is to inhibit the PD-1/
PD-L1 axis (avelumab or atezolizumab), simultaneously burst-
ing the immune response through OX-40, CD137, or blocking 
TAMs generation with the anti-CFS-1 (Aspelagh, 2016). A similar 
strategy uses atezolizumab in combination with varlilumab (an 
agonistic anti-CD27 mAb), which results in an increase of the 
CTL response against CD27 ligands expressed on tumor cells 
(NCT02543645).

The anti-CD40 mAb RO7009789 activates and triggers pro-
liferation of antigen-presenting cells (APC) and activates B and 
T cells, resulting in an enhanced immune response. When CD40 
is expressed in solid tumor cells, RO7009789 leads to apoptosis 
and decreased tumor growth. This antibody in combination with 
the CSF1R inhibitory antibody emactuzumab has been used for 
the treatment of advanced solid tumors (225) (NCT02760797). 
Related examples combine anti-CD40 mAb either with nivolumab 
for the treatment of metastatic pancreatic adenocarcinoma 
(NCT03214250) or with the bispecific antibody vanucizumab 
(anti-VEGF-A and anti-Ang-2) (NCT02665416). The rationale is 
to activate the immune response through CD40 while inhibiting 
the angiogenesis blocking the binding of VEGF-A and Ang-2 to 
their receptors.

Adjuvants and other immunostimulatory 
Agents
Another possible strategy is to combine therapeutic antibodies 
with molecules carrying repeated structural motifs that cannot 
be synthesized by vertebrates, and bind to pattern recognition 
receptors present in cells from the innate arm of the immune 
system (i.e., beta glucan that binds the C-type lectin receptor 
Dectin-1). These molecules are able to regulate the threshold 
of the immune response as an adjuvant, changing the secreted 
cytokine expression pattern. A particular example of this type of 
agents is the use of an attenuated preparation of the BCG (Bacille 
Calmette–Guerin) strain of Mycobacterium bovis, with potential 
immunostimulatory activity for the treatment of patients with 
bladder cancer (330).

An example, combining mAb and adjuvants is the use of 
BTH1704 (212), an mAb against MUC1, an aberrantly glyco-
sylated antigen overexpressed on the surface of a variety of cancer 
cells, in combination with a polysaccharide beta 1,3/1,6 glucan 
derived from the cell wall of Saccharomyces cerevisiae (PGG Beta-
Glucan), for the treatment of patients with advanced pancreatic 
cancer (NCT02132403). The rationale of this trial is to directly 
target the tumor with the anti-MUC1 mAb, while unspecifically 
stimulate the immune response with beta glucan by binding to 
an alternate site on the neutrophil complement receptor 3 (CR3), 
priming the neutrophil to become cytotoxic after binding to 
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complement on tumor cells via CR3. In addition, this agent may 
induce hematopoietic progenitor cell mobilization.

Antibodies in Combination with vaccines
Tumor cells carry antigens which can be recognized as non-self 
by the immune system. In some cases, however, the microen-
vironment in which these tumor antigens are presented do not 
allow to evoke an immune response. There is a plethora of pos-
sibilities to burst the antitumor immune response, one of them 
is to use tumor antigens as a vaccine. In the context of antitumor 
therapies, anti-idiotipic antibodies represent a particular type of 
vaccines.

Since the interaction of antibodies with other molecules is 
based on structural complementarity, antibodies that recognize 
the region of an antibody that interacts with its antigen (anti- 
idiotipic antibodies) might mimic the structure of this antigen 
(i.e., a tumor marker). Thus, the anti-idiotipic antibodies might 
act as an antitumor vaccine able to trigger a host immune 
response to kill tumor cells. Combining chemotherapy and 
radiation therapy with vaccine therapy may help to kill tumor 
cells more effectively.

An example of anti-idiotipic antibodies used as vaccines in 
antitumor therapy is abagovomab, an IgG1 anti-idiotype mAb, 
that functionally mimics the 3D structure of a specific epitope on 
the ovarian cancer tumor-associated antigen CA-125 (203). Its 
variable region acts as a surrogate antigen for CA-125, bestow-
ing potential antineoplastic activity; it has been used in ovarian 
epithelial, fallopian tube, or peritoneal cancer (NCT00058435). 
Another example of vaccine therapy combines two anti-idiotipic 
antibodies, 11D10 (201) an mAb that mimics an epitope of the 
high molecular weight human milk fat globule glycoprotein, 
expressed at high levels by human breast and other tumor cells 
and 3H1 an mAb that mimics an epitope of the tumor-associated 
protein CEA (199). This combination has been used for the treat-
ment of colorectal cancer metastatic to the liver (NCT00033748). 
The 11D10 mAb has also been used in other combinations, for 
example, with a GD2 anti-idiotype mAb vaccine, together with 
chemotherapy and radiotherapy, for the treatment of limited-
stage SCLC (NCT00045617).

A study combining the anti-idiotipic mAb abagovomab, 
which mimics a specific epitope on CA-125 with stereotactic 
body radiation therapy (SBRT), chemotherapy, and the synthetic 
antiviral agent nelfinavir mesylate, which selectively binds to 
and inhibits human immunodeficiency virus protease, has been 
used for the treatment of locally advanced pancreatic cancer 
(NCT01959672).

Currently, other types of vaccines are being used with mAb 
in combination with agents that allow to evoke an immune 
response against tumor antigens. The mAb in these combina-
tions may strengthen the evoked immune response. For the 
examples described below, the combination contains antibod-
ies that either disrupt the PD-1/PDL-1 axis or that block the 
binding of B7-1 and B7-2 to CTLA-4 allowing T cell co-stim-
ulatory signals and activation, unless otherwise specified. One 
example is the treatment with a peptide from Wilms tumor 1 
antigen on recurrent ovarian cancer (NCT02737787). Another, 
more complex example is to administrate the peptide vaccine 

PVX-410 (derived from X-box-binding protein 1-unspliced 
XBP1-US, XBP1-spliced syndecan-1, and CS1), to treat triple-
negative breast cancer tumors (NCT02826434). A third exam-
ple uses a HER2 intracellular domain peptide in combination 
with the polysaccharide-K as adjuvant, in HER2+ recurrent 
breast cancer patients, which are receiving pertuzumab or 
trastuzumab (NCT01922921). The rationale for this trial is to 
combine the effects of the anti-HER2 mAb with using a HER2 
peptide to switch the B and T  cell responses through APC 
activation. Otherwise, peptides could be presented as a fusion 
protein, such as in CIMAvax vaccine (EGF-rP64K/Montanide 
ISA 51), which triggers a strong humoral immune response 
against EGF and has been used in NSCLC (NCT02955290). 
There are also personalized neoantigen cancer vaccines, such 
as NeoVax for the treatment of high-risk renal cell carcinoma 
(NCT02950766).

Another approach to generate vaccines is to use modified 
virus such as Ad-CEA vaccine, an oncolytic adenovirus encod-
ing an epitope of human CEA (331), used for the treatment of 
patients with previously untreated metastatic colorectal cancer 
(NCT03050814). This vaccine may induce both humoral and 
cellular immune responses against CEA+ tumor cells.

A different example uses the CV301 (CEA-MUC-1-TRICOM 
Vaccine) viral vaccine, which contains a version of the recom-
binant vaccinia viral vector and a recombinant fowlpox viral 
vector encoding both CEA and MUC-1, in combination with 
TRICOM [co-stimulatory molecules, B7-1, intracellular adhe-
sion molecule 1 (ICAM-1), and LFA-3] (332). It may enhance 
presentation of CEA and MUC-1 to APC and subsequently 
a CTL response against the tumor cells, it has been used in 
previously treated NSCLC (NCT02840994). A similar approach 
has been evaluated for the treatment of prostate cancer using 
a recombinant vaccinia virus encoding a modified peptide of 
the prostate-specific antigen and TRICOM (NCT00113984). 
This viral vaccine may enhance antigen presentation and may 
activate a CTL response.

Attenuated bacteria have also been used as carriers for antitu-
mor vaccines. For example, the attenuated Listeria ADXS11-001 
encoding a papillomavirus type 16 E7 fused to a non-hemolytic 
listeriolysin O protein, it has been used for the treatment of cervi-
cal and Head and Neck Cancer (HNSCC) (NCT02291055). The 
rationale is to mount a CTL response against cancer cells overex-
pressing the cell surface glycoprotein HPV 16 E7, overexpressed 
in the majority of cervical cancer cells.

More sophisticated approaches use tumor vaccines, such as 
GM.CD40L, which is a cell-based vaccine composed of irradiated 
tumor cells transduced with GM-CSF and CD40-ligand (CD40L) 
genes (333). Upon administration, this vaccine may stimulate an 
antitumoral DC-mediated immune response, it has been used in 
lung adenocarcinomas (NCT02466568). Another example that 
does not use anti-checkpoint antibodies but combines the anti-
HER2 mAb trastuzumab with a cell-based vaccine, consisting of 
two irradiated allogeneic mammary carcinoma cell lines geneti-
cally modified to secrete human GM-CSF, has been used for the 
treatment of HER2+ metastatic breast tumors (NCT00399529). 
An additional example of cell-based vaccines uses GVAX (334), a 
pancreatic cancer vaccine and IMC-CS4, a macrophage targeting 
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mAb (CSF1R inhibitor) for the treatment of pancreatic adeno-
carcinomas (234). GVAX is composed of irradiated, whole tumor 
cells (autologous or allogeneic), genetically modified to secrete 
GM-CSF (NCT03153410).

The immune response against the tumor can be busted using 
also DNA, RNA, or liposome-based vaccines. As an example, 
triple-negative breast cancers have been treated with neoan-
tigen DNA vaccine combined with anti-immune-checkpoint 
antibodies (NCT03199040). Other vaccines use autologous DC 
loaded in vitro with Cytomegalovirus pp65-lysosomal-associated 
membrane protein mRNA as a vaccine, in combination with the 
anti-IL2R alpha mAb basiliximab (207), in glioblastoma mul-
tiform (NCT00626483). The rationale is to restore the number 
of immunosuppressive T regulatory cells during recovery from 
therapeutic temozolomide-induced lymphopenia, together with 
a synergistic enhancement of vaccine-driven CTL responses. 
Another study describes the use of the immuno-modulating 
mAb varlilumab (anti-CD27, TNFR family) in combination 
with a liposome-based vaccine consisting of two peptides from 
MUC1 and the toll-like receptor 4 encapsulated in liposomes 
(NCT02270372). This immunization stimulates both cellular and 
humoral responses.

Another clinical trial uses trastuzumab and an allogeneic 
GM-CSF-secreting whole cell breast cancer vaccine for HER-2+ 
breast tumors. This study will also test whether cyclophospha-
mide can eliminate the suppressive influence of regulatory T cells. 
The vaccine consists of two irradiated allogeneic mammary car-
cinoma cell lines genetically modified to secrete human GM-CSF 
(NCT00399529).

Pidilizumab (anti-PD-1) (250) in combination with a DC 
fusion vaccine, following autologous stem cell transplantation 
has been used on multiple myeloma (NCT01067287). The 
rationale is to disrupt the PD-1/PD-L1 axis, while vaccinating 
the patients with de DC fusion vaccine, which consists of DC 
fused to the patient’s myeloma, where the myeloma antigens 
will be presented by HLA class I to CD8+ T  cells, allowing 
their activation and mounting a CTL response. This is done 
on patients after an autologous transplantation with HSCs. A 
similar approach uses nivolumab vaccine with autologous DCs 
pulsed with tumor lysate antigen, in patients with recurrent 
glioblastoma (NCT03014804).

Another study combines lymphodepletion with anti-CD45 
mAb with a vaccine generated from autologous DC and Epstein 
Barr virus (EBV)-infected lymphoblastoid cell lines transduced 
with an LMP1/LMP2-expressing adenoviral vector, which are 
irradiated, and then used to stimulate and expand autologous 
CTL to produce LMP1-/LMP2-specific CTL ex vivo, for the treat-
ment of EBV+-nasopharyngeal carcinoma (NCT00515957). The 
rationale of this trial is to deplete autologous CD45+ cells, then 
generate a cell-based vaccine to activate ex vivo specific CTL that 
are then infused into the patient.

Other Strategies
In some approaches, a fusion protein between the antibody and 
a tumor antigen is used in combination with other therapies. 
For example, on the treatment of NY-ESO 1+ NSCLC, where 
atezolizumab was combined with both the adjuvant poly-ICLC 

(a synthetic complex of carboxymethylcellulose, polyinosinic-
polycytidylic acid and poly-L-lysine double-stranded RNA) and 
DEC-205/NY-ESO-1 [CDX-1401, a fusion protein between a 
mAb directed against the endocytic DC receptor DEC-205, linked 
to the tumor-associated antigen (NY-ESO-1)] (NCT02495636) 
(217). Atezolizumab will inhibit immune checkpoints negative 
signals, while the internalization by DC of the mAb–antigen 
fusion protein may specifically deliver the NY-ESO-1 molecule 
and trigger a CTL response against cancer cells expressing this 
antigen. Simultaneously, the adjuvant may stimulate the release 
of cytotoxic cytokines by inducing IFNgamma production. A simi-
lar approach, for the treatment of melanoma patients, using 
CDX-1401 combined with a neoantigen-based melanoma-poly-
ICLC vaccine and a recombinant Flt3 Ligand (CDX-301) 
(NCT02129075). This treatment should boost the immune 
system to mount a CTL response against cancer cells expressing 
NY-ESO-1. In addition, the adjuvant may induce IFNgamma 
production and the recombinant Flt3 ligand may stimulate the 
proliferation and mobilization of bone marrow precursor cells, 
including CD34+ cells, and DCs.

An additional strategy would be to use scavengers of the ligand 
with low immunogenicity. For example, sEphB4-HAS, a human 
serum albumin (HAS) fused with the extracellular domain of 
tyrosine kinase ephrin type-B receptor 4 (sEphB4) is combined 
with pembrolizumab, for the treatment of NSCLC or HNSCC 
(NCT03049618). Pembrolizumab inhibits negative immune 
checkpoint signals, whereas EphB4-HSA is expected to decrease 
angiogenesis and cell growth of Efnb2 and/or EphB4 overexpress-
ing tumor cells, while the albumin moiety will avoid renal clear-
ance of the fusion protein, increasing its half-life without affecting 
immunogenicity.

Another strategy would be to target matrix enzymes required 
for tumor invasiveness. An example is the use of nivolumab com-
bined with andecaliximab (GS-5745) (204, 205), an inhibitory 
mAb of matrix metalloproteinase 9 (MMP-9) in recurrent gastric 
or gastroesophageal junction adenocarcinomas (NCT02864381). 
Since MMP-9 activity is associated with tumor invasion and 
metastasis (335), the rationale is that andecaliximab will inhibit 
extracellular matrix protein degradation and angiogenesis, while 
nivolumab will interfere with the PD-1/PD-L1 axis.

Pembrolizumab (PD-1) was used in combination with CVA21 
(CAVATAK™), coxsackievirus A21, a naturally occurring 
enterovirus with potential antitumor activity. This combination 
was used for advanced NSCLC (NCT02824965). CVA21, intra-
tumor administered, targets and binds the ICAM-1 and decay 
acceleration factor, cell surface molecules, both overexpressed on 
certain malignant cells (336, 337). After entering the cells, the 
virus replicates causing cell lysis. This, together with the inhibi-
tion of the immune checkpoint, results in a reduction of tumor 
cell growth.

Another strategy combines conatumumab (220), an agonist 
mAb directed against the extracellular domain of human tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) recep-
tor 2 (TRAIL-R2), also known as DR5, with the anti-IGF-1R mAb 
ganitumab, in patients with advanced solid tumors without disease 
progression whose previous studies were closed (NCT01327612). 
TRAIL-2 and IGF-1R are expressed by a variety of solid tumors 
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and cancers of hematopoietic origin. Conatumumab mimics 
TRAIL activity, activating caspase cascades and inducing tumor 
cell apoptosis, while ganitumab inhibits IGF-1 binding and, 
therefore, the PI3K/Akt pathway. This treatment may result in the 
inhibition of tumor cell proliferation and the induction of tumor 
cell apoptosis. Another clinical trial combining tigatuzumab, a 
mAb targeting the death receptor TRAIL-R2 with abraxane, 
an albumin-stabilized nanoparticle containing paclitaxel, non-
covalently coated with the anti-CD20 mAb rituximab, in patients 
with metastatic, triple-negative breast cancer (NCT01307891). 
The relevance of the trial is that combines an anti-TRAIL-R2 
mAb that induces death, while albumin stabilizes the complex, 
whereas rituximab allows to target paclitaxel to CD20+ cells, 
minimizing toxicity on normal cells. A strategy being used on 
EGFR+ tumors is to combine an anti-immune checkpoint anti-
body with the anti-EGFR mAb necitumumab (NCT02451930) or 
nimotuzumab (245) (NCT02947386). Or the same strategy, but 
using B-701, a neutralizing mAb directed against the fibroblast 
growth factor receptor type 3, in combination with atezolizumab 
in urothelial cell carcinoma (NCT03123055).

One of the most sophisticated clinical trials combines chemo-
therapy, bevacizumab, avelumab, ALT-803 (IL-15 super agonist), 
aNK (allogenic human NK-92 cell line, expressing CD16 and IL-2), 
and GI-4000 (a heat-killed recombinant Saccharomyces cerevisiae 
yeast transfected with mutated forms of Ras) with the NANT 
pancreatic cancer vaccine (ETBX-011) containing a replication-
defective adenoviral vector encoding a CEA epitope Ad5-CEA(6D), 
used for pancreatic cancer (NCT03136406). A clinical trial for 
colorectal cancer uses a similar combination of chemotherapy, 
nivolumab, avelumab bevacizumab, cetuximab, SBRT, haNK, ALT-
803, and a cocktail of vaccines: ETBX-011, ETBX-021, ETBX-051, 
ETBX-061, GI-4000, GI-6207, and GI-6301 (NCT03169777). The 
rationale for these two clinical trials is to hit the tumor simultane-
ously with a wide spectrum of the available tools against the tumor, 
where the concentration of each one of the agents can be decreased 
to minimize the unwanted effects on normal cells.

QUeSTiONS AND QUeRieS RAiSeD bY 
THe COMbiNATiONS

We hope that we have been able to depict up to here, the huge 
complexity inherent to the use of therapeutic antibodies in 
combination with other biological agents for the treatment of 
cancer. Since most of the clinical trials described in this review 
are relatively recent (started during the last 7  years), many of 
them lack results in public databases, including the clinical trials 
database from NCI, or as published scientific manuscripts. This 
burst of clinical trials using antibodies in combinations with 
other biologicals is based on the positive results found by some 
combinations (anti-HER2 or anti-GD2 mAb), although the com-
plexity increase in these combinations also implies an increase 
in the possibility of adverse side effects/increased toxicity or 
lack of additive or synergistic effects of the therapeutic agents. 
Initially, the therapeutic doses used for combinations were taken 
from the monotherapeutic trials, although in many cases, the 
non-toxic concentrations used in monotherapy, turn to be toxic 

in combinations, generating new toxicity profiles (338). This is of 
particular relevance when antibodies able to burst the antitumor 
immune response are used (either to inhibit the immune check-
point proteins, to block inhibitory NK receptors or to trigger 
NK cells through activating receptors, etc.), which might lead to 
a dis-regulation of the immune response, an uncontrolled inflam-
matory response, and autoimmunity. This problem can also be 
related to an apparent lack of additive or synergistic effects of 
the therapeutic agents, where the potential clinical benefits of 
the combination could be overlooked by the initial toxicity of the 
mixture. Dose and schedule changes, however, can overcome the 
toxicity effects, allowing to demonstrate the enhanced clinical 
benefits of a particular combination (339). The use of CTLA-4 
and PD-1 inhibitor antibodies in combination (nivolumab 
and ipilimumab), improved the treatment efficacy in advanced 
melanoma, as compared to monotherapies (340). Indeed, this 
combination has been approved in 2016 by the US FDA for 
the treatment of metastatic melanoma (341), despite the higher 
frequency and severity of adverse reactions of the combination, as 
compared to the corresponding monotherapies (340, 342–344).

It is interesting to note that a combination of TRC105 (caro-
tuximab, anti-endoglin antibody) with bevacizumab was used 
on a clinical trial for the treatment of patients with advanced 
cancer, where the combination was well tolerated and clinical 
activity was observed in a VEGF inhibitor-refractory population 
(NCT01332721) (345), the same combination failed to improve 
progression-free survival on patients with refractory metastatic 
renal cell cancer (NCT01727089) (346). These data clearly 
suggest that the problem does not strictly lie with the antibody 
combination, but rather it might be related to the tumor micro-
environment, tumor type, the therapeutic approach used, or the 
clinical history of the patient.

Several examples of clinical trials where antibodies that have 
been used in combination with other biologicals, which were 
well tolerated and showed additive or synergistic therapeutic 
responses have been selected. These include a clinical trial for 
melanoma patients with low tumor infiltrating lymphocytes, an 
anti-PD-1 non-responsive phenotype. The combination of pem-
brolizumab with an intratumoral electroporation of a plasmid 
coding for interleukin 12 cDNA (pIL-12) showed a 40% clinical 
response with associated positive immune-based biomarker data 
and a safety profile (NCT02493361) (347), where the combina-
tion of pembrolizumab with the plasmid pIL-12 renders half of 
the patients responsive to the anti-PD-1. Another example that 
combines mAb with cytokines is a study of immune activation 
and antitumor activity in renal cancer of PEGylated human IL-10 
(AM0010) in combination with pembrolizumab or nivolumab, 
the combinations were well tolerated, and CD8+ T cell activation 
was detected (NCT02009449) (348).

Other examples include a phase Ib study, otlertuzumab (TRU-
016, an anti-CD37 mAb) in combination with rituximab and 
bendamustine, which was well tolerated and induced therapeutic 
responses in the majority of patients with relapsed indolent 
B-non-Hodgkin lymphoma (NCT01317901) (349). Similarly, the 
combination of pidilizumab plus rituximab was well tolerated 
and therapeutically active in patients with relapsed follicular 
lymphoma (350).
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On a phase Ib study of utomilumab (PF-05082566, a 4-1BB/
CD137 agonist), in combination with pembrolizumab (MK-3475) 
in patients with advanced solid tumors had a confirmed complete 
or partial response in 26.1% of them. Pharmacokinetics and 
immunogenicity of both mAb were similar when administered 
alone or in combination. A trend toward higher levels of activated 
memory/effector peripheral blood CD8+ T cells was observed in 
responders versus non-responders, supporting further investiga-
tion of this combination (NCT02179918) (262).

Other combinations include the anti-checkpoint antibody 
nivolumab in combination with an antibody that blocks the 
KIR inhibitory receptors in NK  cells. On a phase I/II study 
of the NK-targeted antibody lirilumab (a fully human mAb 
that blocks inhibitory KIRs on NK cells) in combination with 
nivolumab in advanced HNSCC demonstrated, in preliminary 
results, clinical benefit, with deep and durable responses in some 
patients. This combination demonstrated a manageable safety 
profile similar to that observed with nivolumab monotherapy 
(NCT01714739) (347).

Another combination that might be interesting for the 
future of the field is the combination of oncolytic virus with 
anti-checkpoint antibodies. Indeed, preliminary results from 
several clinical trials using the oncolytic virus coxsackievirus 
A21 (CVA21, CAVATAK) in combination with ipilimumab 
(NCT01636882) (351) or pembrolizumab (NCT02043665) 
(348), for the treatment of patients with advanced cancer, 
showed that these combinations were generally well tolerated 
and induced antitumor activity. A phase II trial using intra-
tumoral injection of the HF10 oncolytic virus, an attenuated, 
replication-competent mutant strain of herpes simplex virus 
type 1, and ipilimumab in patients with unresectable or meta-
static melanoma showed therapeutic activity and the treatment 
was well tolerated (NCT02272855) (352).

For other clinical trials, on early phases, the combination is 
well tolerated, such as a dose escalation study of the OX40 agonist 
MOXR0916 and atezolizumab (anti-PD-L1 mAb) in patients 
with advanced solid tumors, using each agent at its recommended 
monotherapy dose, was well tolerated. (NCT02410512) (353).

Other clinical trials, including anti-checkpoint antibodies 
detect clear tumor regression, although with a toxicity higher 
than reasonable. This is the case for a clinical trial were BMS-
986016 (anti-LAG-3 mAb) in combination with nivolumab was 
administered to patients with hematologic and solid malignan-
cies. Preliminary results demonstrated objective tumor regres-
sions, concomitant with the toxicity characteristic of immune 
checkpoint blockers (NCT02061761, NCT01968109) (348).

On another group of clinical trials, the main characteristic 
is that although they are well tolerated in general, they failed to 
provide significant additive/synergistic therapeutic effects. This 
is the case of a clinical trial where urelumab (a CD137 agonist), 
in combination with nivolumab was used for the treatment of 
hematologic and solid tumor malignancies. This combination 
did not provide significant additive/synergistic clinical benefits 
at the doses evaluated (NCT01471210, NCT02253992) (351). In 
another, urelumab in combination with rituximab or cetuximab 
was used in patients with refractory lymphoma or selected 
advanced solid tumors. Although the combinations were safe and 

well tolerated, with minimal evidence of liver toxicity, they did 
not demonstrate substantial enhancement of clinical responses or 
lead to intratumoral immune modulation in these tumor settings 
(NCT01775631, NCT02110082) (348).

Finally, there are a couple of selected clinical trials using 
combinations of antibodies and other biologicals that were toxic 
or had to be terminated on overall benefit–risk assessment. These 
include a clinical trial with patients with advanced solid tumors, 
which were treated with a combination of MDX-447 [a bispecific 
mAb directed to FcγRI (CD64) and EGFR] with G-CSF, although 
the bispecific mAb alone was well tolerated, the combination was 
not well tolerated and precluded meaningful dose escalation 
on a phase I clinical trial (354). A second example is a phase II 
study of imalumab [BAX69, an anti-oxidized macrophage MIF 
(oxMIF)] and 5-FU/Leucovorin or Panitumumab (anti-EGRF 
mAb), versus the standard of care in metastatic colorectal cancer 
patients, which was terminated (February, 2017) based on overall 
benefit–risk assessment (NCT02448810), although it was initially 
reported that this combination was generally safe and well toler-
ated (355).

The problems that arose with using therapeutic antibodies in 
combinations has led the Society for Immunotherapy of Cancer 
to name a Combination Immunotherapy Task Force to identify 
and prioritize the most promising prospects for combinatorial 
approaches as well as to address the challenges associated with 
developing these strategies (339). Furthermore, it seems clear 
by now, that an improved understanding of pharmacodynamic 
effects of each agent within a combination will support the 
rational development of immune-based combinations for cancer 
treatment (356).

CONClUSiON

The broad variety of clinical trials summarized here presents the 
overwhelming complexity of the use of antibody in combinations 
for cancer treatments. The antibodies used either interfere with 
a ligand–receptor interaction, blocking a signaling pathway rel-
evant for tumor growth, or identify tumor-associated antigens, 
where they somehow induce the death of the tumor cells by 
ADCC, CDC, and ADCP or directly inducing apoptosis. If the 
antibodies by themselves cannot kill the tumor cells, they can be 
conjugated to cytotoxic drugs to exert this function, or directly 
coupled to radio-labeled agents, where they trigger radiolysis. 
These antibodies can be combined with other antibodies that 
rather than directed against the tumor cells, identify targets on the 
tumor environment. These include antibodies that inhibit tumor-
induced vascularization, or antibodies against cells or molecules 
involved in the immune response. A turning point was the use 
of mAb that block PD-L1/PD-1 interaction, or anti-CTLA-4 
mAb; all of them disrupting the tumor-induced suppression 
of antitumor immune responses. In addition, mAb are used in 
combination with vaccines with the aim of evoking an antitumor 
response, either against a single tumor antigen or against a broad 
spectrum of antigens, for example when using irradiated tumor 
cells expressing pro-inflammatory cytokines.

It is obvious that there are many challenges to be solved 
regarding antibodies in combinations as antitumor therapeutic 
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Key Concepts
Antibody-dependent cell cytotoxicity (ADCC): the binding of an 
antibody to a cell surface antigen promotes the interaction of the 
natural killer cell with the Fc antibody fragment and triggers its 
cytotoxic response.

Adaptive immune response: its main function is to eliminate 
pathogens and fight cancer. Specifically recognizes antigen 
though receptors on the surface of T and B lymphocytes. It creates 
immunological memory, after the initial response to a given anti-
gen, leads to an exacerbated response to subsequent encounters 
with the same antigen. This is the basis of vaccination.

Antibody-dependent phagocytosis (ADCP): the binding of an 
antibody to a cell surface antigen allows the opsonization of the 
cell and promotes its phagocytosis.

Combined therapy: therapy that combines different therapeu-
tic approaches (i.e., chemotherapy, radiotherapy, small molecule 
drugs, vaccines, antibodies, etc.).

Complement-dependent cytotoxicity (CDC): the binding of 
an antibody to a cell surface antigen activates the complement 
cascade, resulting in the cell’s death.

Immune checkpoint: there are checkpoints that receive nega-
tive signals from the tumor, inhibiting the antitumor immune 
response. These include the PD-1/PD-L1 axis (PD-1 receptor 
on the T  cells and to PD-L1 on the tumor cells) and CTLA-4 
(on T  cells). Antibodies against these molecules (nivolumab, 
pembrolizumab, atezolizumab, durvalumab, avelumab, and ipili-
mumab) are able to inhibit these negative signals and promote the 
antitumor immune response.

Immunotherapy: therapeutic treatment that takes advantage 
of the immune system response.

Innate immune response: provides immediate defense against 
infection, on a non-specific manner, is not long-lasting and 
recognizes pathogens through generic receptors.

Therapeutic antibody: an antibody that can be used for thera-
peutic purposes, which is able to either act as antagonist, guide 
a drug toward the tumor cell, where it will act, or kill the tumor 
cell either directly or by activating immune response mechanisms 
(ADCC, CDC, and ADCP).

Vaccine: compounds inoculated in an organism to evoke a 
primary immune response, generating immunological memory 
able to protect against the antigen.
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