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Abstract

Motivation: The function of an RNA molecule is not only linked to its native structure, which is usu-

ally taken to be the ground state of its folding landscape, but also in many cases crucially depends

on the details of the folding pathways such as stable folding intermediates or the timing of the fold-

ing process itself. To model and understand these processes, it is necessary to go beyond ground

state structures. The study of rugged RNA folding landscapes holds the key to answer these ques-

tions. Efficient coarse-graining methods are required to reduce the intractably vast energy land-

scapes into condensed representations such as barrier trees or basin hopping graphs (BHG) that

convey an approximate but comprehensive picture of the folding kinetics. So far, exact and heuris-

tic coarse-graining methods have been mostly restricted to the pseudoknot-free secondary struc-

tures. Pseudoknots, which are common motifs and have been repeatedly hypothesized to play an

important role in guiding folding trajectories, were usually excluded.

Results: We generalize the BHG framework to include pseudoknotted RNA structures and system-

atically study the differences in predicted folding behavior depending on whether pseudoknotted

structures are allowed to occur as folding intermediates or not. We observe that RNAs with pseu-

doknotted ground state structures tend to have more pseudoknotted folding intermediates than

RNAs with pseudoknot-free ground state structures. The occurrence and influence of pseudoknot-

ted intermediates on the folding pathway, however, appear to depend very strongly on the individ-

ual RNAs so that no general rule can be inferred.

Availability and implementation: The algorithms described here are implemented in Cþþ as

standalone programs. Its source code and Supplemental material can be freely downloaded from

http://www.tbi.univie.ac.at/bhg.html.

Contact: qin@bioinf.uni-leipzig.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Beyond the role as carriers of genetic information, RNA molecules

often play much more active roles in regulating gene expression,

intracellular transport and even as catalysts (Cech and Steitz, 2014).

More often than not, these functions are associated with the RNAs’

ability to undergo specific conformational changes, as is the case for

riboswitches. The function of an RNA molecule thus is often poorly

described by its ground state structure and instead has to be studied

as a dynamic ensemble of structures (Dirks et al., 2004; Onoa and

Tinoco, 2004). Quantities of biological interest include folding
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times, life times of meta-stable states and folding pathways.

Riboswitches that control transcription, for example, often function

through finely balanced time-scales of transcriptional elongation

and formation of a terminator hairpin structure (Barrick and

Breaker, 2007). These relevant kinetic parameters can in principle

be derived from the folding landscapes.

The most direct way of dealing with the ensemble aspect of an

RNA is to enumerate its entire energy landscape. In addition to the

list of conformations, the landscape picture emphasizes a notion of

adjacency between RNA structures. In most cases, opening or clos-

ing of a single base pair is taken to be the elementary operation, and

thus as the definition of adjacency between two structures (Flamm

et al., 2000a). The dynamics of folding is then modeled as a Markov

process of transitions between adjacent conformations with transi-

tion rates estimated from energy differences using, e.g. the

Metropolis rule (Flamm et al., 2000a; Smit et al., 2007;

Xayaphoummine et al., 2007).

Except for very short RNAs, this approach is not feasible in prac-

tice because the number of secondary structures grows exponentially

with sequence length (Hofacker et al., 1996). The dynamic program-

ming algorithms for finding the ground state or evaluating the parti-

tion function can be modified to enumerate only the lowest energy

states (Wuchty et al., 1999). Even so, condensed representations are

required to gain insights into the properties of the energy landscapes

that are relevant for the definition of folding pathways and the inter-

pretation of folding kinetics. The first representation of this type is a

barrier tree with local minima as leafs and saddle points as interior

nodes. This notion has been developed independently in different

contexts including spin glasses (Klotz and Kobe, 1994; Sibani et al.,

1999), potential energy surfaces for protein folding (Garstecki et al.,

1999; Wales, 2011), molecular clusters (Doye et al., 1999) and

RNA secondary structures (Flamm et al., 2000a). The kinetics on

the landscape can then be approximated by the Arrhenius law on

the barrier tree. However, this abstraction has significant shortcom-

ings. It completely neglects both the entropic information on the size

and the shape of the basin surrounding its corresponding local min-

imum (LM), and the topological information of their relative loca-

tions. Wolfinger et al. (2004) showed that much of the entropic

effects can be captured by partitioning the landscape into the basins

of LMs. This yields a barrier tree with energy scales in terms of ener-

gies of basins rather than structure energies. But, still the barrier tree

necessarily ignores the general topology of the landscape since in

most cases there are more than one folding pathways between RNA

structures.

Kucharı́k et al. (2014) introduced the basin hopping graph

(BHG) to capture more information regarding adjacency between

LMs. Nodes in the BHG are LMs, and two LMs are neighbored

only if the direct transition between their corresponding basins are

‘energetically favorable’. The corresponding saddle height is anno-

tated on the edge. In this abstraction, possible folding pathways are

represented as sequences of adjacent basins represented by their

LMs. The BHG is particularly suitable to describe the ruggedness of

RNA folding landscapes and to explain the interconversion between

multiple ‘active’ LMs as observed by Solomatin et al. (2010). Like

barrier trees, BHGs can be obtained by complete enumeration for

small RNAs. Kucharı́k et al. (2014) also developed an efficient and

accurate heuristic that makes the approach feasible for RNA mol-

ecules with a length up to �200 nucleotides (nt).

So far, these techniques are largely restricted to pseudoknot-free

secondary structures despite the fact that pseudoknots are crucial

for the function of many RNA elements, e.g. ribosomal frame-

shifting (Giedroc et al., 2000), regulation of translation and splicing

(Draper et al., 2000), or the binding of small molecules (Gilbert

et al., 2008; Klein et al., 2009; Spitale et al., 2009). Large RNAs

often feature long-range pseudoknots (Adams et al., 2004; Klein and

Ferre-DAmare, 2006; Toor et al., 2008) that may play important

roles in both biochemical function and mechanical stability (Chen

et al., 2009). Even though pseudoknots have been considered in the

contexts of folding pathways and kinetic mechanisms in particular

case studies (Cho et al., 2009; Engel et al., 2014; Isambert and

Siggia, 2000; Roca et al., 2015), the energy landscapes of RNAs

with pseudoknots and other tertiary contacts have not received

much systematic attention. There are several reasons for this state of

affairs: (i) detailed thermodynamic and kinetic measurements on

pseudoknots are still rare despite recent progress (Liu et al., 2010)

so that energy models for pseudoknotted RNAs are crude approxi-

mations at best; (ii) computational methods for sampling pseudo-

knotted structures are expensive in terms of both CPU time and

memory (Reidys, 2011) and (iii) there are many competing alterna-

tive definitions of the space of pseudoknotted structures ranging

from small extensions of pseudoknot-free structures to essentially

arbitrary matchings (Condon et al., 2004; Lyngso and Pedersen,

2000; Nebel and Weinberg, 2012).

The contribution of this article is two-fold: First, we demonstrate

that the BHG can be computed in practice using the so-called

1-structures as its search space as described by the gfold (Reidys

et al., 2011) algorithm and the work of Bon et al. (2008). To this

end, we propose an efficient sampling algorithm for detecting LMs

and we generalize the estimation of direct saddles to structures with

pseudoknots. We will see that the inclusion of pseudoknotted struc-

tures indeed leads to a significant reduction in saddle heights.

Second, we model the folding kinetics as a continuous-time Markov

chain on the BHG to investigate the effects of pseudoknotted LMs

on the folding kinetics. This contribution is organized as follows: In

Section 2.1, we generalize the existing BHG model by taking pseu-

doknotted structures into consideration. Next, in Section 2.2, we de-

scribe the continuous-time Markov chain simulation based on the

BHG and the quasi-steady-state (QSS) strategy utilized to reduce the

dimension of our model. In Section 3, we present and discuss our ex-

perimental results. Section 4 summarizes our findings and suggests

directions for future work.

2 Methods

2.1 BHG of pseudoknotted RNAs
We start with a brief, conceptual description of the BHG of an RNA

landscape. Complete formal definitions can be found in Part A of

the Supplementary material (SM) and in our previous publication

(Kucharı́k et al., 2014). Consider two LMs x and y and a path P

connecting them in the landscape. A structure of maximal energy

along P is called a peak. A saddle point between x and y is a peak

along a particular path from x to y with minimal possible energy.

We say that P is a direct path between x and y if P contains a peak s

such that the energy is non-decreasing along P from x to s and non-

increasing from s to y. A direct path is energetically optimal if its

peak is a saddle point between x and y, i.e. if the direct path is an en-

ergetically optimal connection between x and y. The edges of the

BHG correspond exactly to these energetically optimal transitions.

A diagram to illustrate these concepts is provided in Supplementary

Figure S2.

In Kucharı́k et al. (2014), we described an efficient heuristic to

estimate the BHG for pseudoknot-free structures. It consists of

two independent components: (1) A sample set of LMs within a
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user-defined energy range above the structure with minimum (free)

energy (MFE structure) is produced by simulating gradient walks

starting from randomly sampled structures. This step is implemented

in the program RNAlocmin. (2) Direct saddle connections between

LMs are constructed by a heuristic that iteratively improves initial

paths and expands the initial LM set by additional indispensable

intermediate LMs. Both construction procedures can be generalized

to structures with pseudoknots in a conceptually straightforward

manner. On the technical side, however, we encounter non-trivial

problems.

Since the inclusion of pseudoknots dramatically enlarges the

search space, exhaustive enumeration is not feasible in practice;

hence, we have to generalize RNAlocmin for pseudoknotted struc-

tures. RNAlocmin works by producing a Boltzmann-weighted sam-

ple of initial structures generated by stochastic backtracking. To our

best knowledge, the only tool that does Boltzmann sampling of

structures with pseudoknots is gfold (Reidys et al., 2011). Its sam-

pling space is restricted to a class of pseudoknotted structures which

are characterized by the topological genus to be 1 as their ‘elemen-

tary’ components and therefore referred to as ‘1-structures’.

This class comprises the four basic types of pseudoknots shown in

Figure 1—the most common H-type and kissing hairpin (K-type) to-

gether with more exotic L-type and M-type pseudoknots. It includes

virtually all pseudoknot structures that have been discovered so far

(Bon et al., 2008). The Boltzmann sampling from 1-structures is

computationally demanding. It takes Oðn6Þ time to computed the

partition function and then Oðn5Þ time to sample a single structure

of length n. This first step is asymptotically optimal. The sampling

step could probably be expedited considerably e.g. using the bous-

trophedon method (Ponty, 2008). In practice, our current implemen-

tation is limited to an RNA of length �130 nt. In SM Part B, we

summarized the technical adaptations that had been made to ensure

the consistency of the energy model within our BHG framework.

Gradient walks and connecting paths are also more difficult to

implement for pseudoknotted structures. The key issue is to deter-

mine whether the insertion of a base pair leads outside the class of

1-structures. The corresponding problem for secondary structures is

simple: it suffices to check whether the proposed extra base pair

crosses an existing base pair or not. For 1-structures, we construct

the conflict graphs whose vertices are the helices. An edge connects

two helices whenever they cross. For a 1-structure, its conflict graph

consists of isolated vertices and the four types of connected compo-

nents shown in Figure 1 bottom. Relatively simple manipulations of

conflict graphs can be used to decide efficiently whether a particular

base pair can be added. For details, we refer to SM Part B.

In order to determine the BHG-adjacency between LMs, we ex-

tended the findpath heuristic (Flamm et al., 2000b) to compute

near optimal folding paths involving pseudoknotted structures.

Allowing pseudoknots should always result in lower or equal barrier

heights. However, since the accuracy of the findpath heuristic de-

creases as the landscape grows, its estimation results can in rare

cases be slightly worse than the original (pseudoknot-free) find-

path. We will return to this point in Section 3.1.

2.2 RNA folding kinetics
From a microscopic point of view, the dynamics on an RNA folding

landscape can be described by a continuous-time Markov process

with infinitesimal generator R ¼ ðryxÞ (Flamm et al., 2000a). The

transition rate ryx from a secondary structure x to y is non-zero only

if x and y are adjacent, i.e. if they differ by adding/removing a single

base pair. Typically, the Metropolis rule,

ryx ¼ r0minfexpf�ðf ðyÞ � f ðxÞÞ=RTg; 1g, is used to assign micro-

scopic rates. Here, f evaluates the (free) energy of x, R is the univer-

sal gas constant, T is the absolute ambient temperature and r0 is a

parameter used to gauge the time axis from experimental data. Here

we simply use r0 ¼ 1, implicitly defining our time unit. On the

BHG, we use the Arrhenius approximation. For two adjacent LMs x

and y with saddle height S(x, y) between them we set

rxy ¼ exp
�
� ðSðx; yÞ � f ðyÞÞ=RT

�
: (1)

For all other pairs of LMs, rxy¼0. Kinetic trajectories are computed

by numerically computing the matrix exponential expðtRÞ. We have

shown already in previous work that the Arrhenius formula on BHG

is an excellent approximation of the dynamics on all time scales

(Kucharı́k et al., 2014). Analogous validation data are given in SM

Part C.

The number of LMs in the energy landscape of randomly gener-

ated RNA sequences grows roughly as the square root of the total

number of structures (Lorenz and Clote, 2011). Most of these LMs,

however, contribute only to fast fluctuations because they have nar-

row basins and low barriers. We therefore adopt the QSS strategy

(Rao and Arkin, 2003; Schuster and Schuster, 1989) to reduce our

model complexity. The key idea is to reduce the dimension of the

model by removing intermediate QSS and to update the transition

rates between the remaining states if correlated. To this end, one as-

sumes that population of a QSS remains unchanged over the time of

the simulation. In general, the a priori identification of QSS inter-

mediates is a hard problem. Here, however, we can simply use the

degree of LMs in the BHG: LMs with low degree are typically inter-

mediates of quick folding pathways between LM with primary func-

tion and their population stays extremely low during whole

simulation. Further technical details can be found in SM Part D.

Throughout this contribution, the state spaces of the examples are

pruned to at most 5000 LMs. For clarity, an LM is included in a

visualization only if its population exceeds 7% at some time during

the simulation.

3 Results and discussion

3.1 Pseudoknotted LMs’ role in folding
We first analyze the composition of the LMs in the ‘lower’ part of

the energy landscapes of RNA molecules, which we take here as

structures within 10 kcal/mol above the minimal free energy of the

Fig. 1. (Top) Four basic types of pseudoknots considered in gfold program.

(Bottom) The conflict graph can only have either isolated vertices or four

types of components of size >1
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whole landscape. We contrast RNAs with pseudoknots in their

ground state selected from Pseudobaseþþ, (Han et al., 2002;

Taufer et al., 2009) and pseudoknot-free structures from the RNA

STRAND database (Andronescu et al., 2008). In addition, we select

the molecules such that their MFE structures predicted by gfold

have both sensitivity and PPV beyond 80%, so that effects caused by

the prediction software can be limited. A statistic summary of the se-

lected RNAs is provided in Supplementary Table S2 Part E.

In Supplementary Table S3, we report the composition of the

LMs obtained by gradient walks starting from gfold-sampled

structures. Analogous result of these sampled structures is summar-

ized in Supplementary Table S4.

In our test set, LMs with pseudoknots occupy on average about

75% of LMs included in the BHG if the ground states contains pseu-

doknots. For RNAs with pseudoknot-free ground states, only about

35% of the nodes in the BHG contains pseudoknots. These data sug-

gest that pseudoknotted LMs can dominate the BHG only if the

ground state is also pseudoknotted. Furthermore, it follows from the

pseudoknot energy model of gfold (SM Part B) with its large penal-

ties for pseudoknots that a gradient walk starting from a pseudo-

knot-free structure cannot lead to a pseudoknotted LM. Gradient

walks starting from pseudoknotted structures preferrentially termin-

ate in pseudoknot-free or H-type pseudoknotted LMs due to the

even larger penalties assigned to the more complex pseudoknot

classes K, L and M.

General combinatorial arguments show that for n!1 almost all

structures contain pseudoknots (Saule et al., 2011). The energy model,

however, ensures that they are fairly rare among the stable structures

at the length scales of n � 100 . . . 300 nt that we can investigate com-

putationally and that are of most direct interest for experimental stud-

ies of RNA folding kinetics. Furthermore, folding is typically

dominated by local rearrangements, so that conclusions drawn for

moderate-size domains are likely to carry over to most transitions

along the folding pathways of very large RNAs. In other words, even

if pseudoknots appear almost certainly somewhere in long RNAs,

they are still sparse and most of the local folding at length scales of

around 100 nt is still dominated by pseudoknot-free structures.

A central question to ask is ‘What is the role of pseudoknotted

LMs in RNA folding pathways?’. One might expect that they help

decrease the saddle heights between structures. We therefore con-

sider, for an RNA whose ground state is pseudoknot-free the full

BHGw including pseudoknotted LMs and a pruned BHG
�

in which

first all pseudoknotted LMs are removed from BHGw and then the

BHG-adjacency is recomputed using only pseudoknot-free struc-

tures along the paths. This re-evaluation may result in the removal

of adjacencies from BHGw.

We illustrate in Figure 2 the saddle-height differences between

BHGw and BHG
�

for two RNA molecules, a substrate for Qb replic-

ases (SV11, 115 nt, pseudoknot-free native state—Biebricher and

Luce, 1992) and an H-type pseudoknot forming a tRNA-like struc-

ture at the 30end of RNA beta of barley stripe mosaic virus

(Pseudobase entry PKB_138, 96 nt). See SM Part F for additional ex-

amples. Note here, saddle heights between LMs in BHG
�

should

never be lower than in BHGw. In practice, however, the inclusion of

additional LMs during the recomputation of the adjacencies can in

rare cases lead to a decrease in estimated saddle heights. In these

cases, the saddle heights in BHGw are overestimated due to the heur-

istic nature of the findpath method. The effect can be reduced by

a moderate increase of findpath’s search depth (using the –depth

parameter), see SM Part F for further details.

We observe that pseudoknotted LMs help to reduce saddle

heights more significantly in the RNAs with pseudoknotted ground

states. This is a direct consequence of the large energy penalties asso-

ciated with pseudoknots, which makes is energetically expensive to

nucleate a pseudoknot directly from a pseudoknot-free structure

without certain detour. For PKB_138, these two types of pseudo-

knotted LMs help over 42% pairs of LMs to reduce their saddle

heights beyond 50%, or up to 12.3 kcal/mol in absolute terms.

In the case of SV11, the improvement is not that significant

(about 23% of pairs reduce their saddle heights beyond 10% up to

3.4 kcal/mol). Nevertheless, pseudoknotted LMs play an important

role in reducing the saddle height between the meta-stable and

ground state, see the more detailed discussion in Section 3.2.

We next study the effects of pseudoknotted LMs on the folding

kinetics. Here, we restrict ourselves to RNAs with pseudoknot-free

ground states since a direct comparison is not possible for pseudo-

knotted structures. Furthermore, we require that the native structures

are well predicted by gfold (both sensitivity and PPV beyond 80%).

We compare the times for the molecule to reach its thermo-

dynamic equilibrium in BHGw and BHG
�
, respectively. In most ex-

amples, the time to equilibrium is nearly the same. For example, the

folding kinetics of the Bacillus subtilis transcriptional riboswitch

preQ1 (36 nt) is shown in Figure 3 (left). In some cases, such as the

Escherichia coli rRNA fragment (94 nt) in Figure 3 (middle), we find

that pseudoknotted LMs significantly accelerate the folding kinetics.

This can be explained by the appearances of some lower energy re-

folding paths with pseudoknotted LMs. Finally, folding can be

slowed down when pseudoknotted kinetic traps appear in the land-

scape, as in the signal recognition particle RNA (Fig. 3, right).

Results for more RNAs are collected in SM Part G.

Since the BHG is built based on a sampling procedure, one might

be concerned about the robustness of our results. We therefore re-

peated each analysis 10 times starting from independent sampling

runs. As seen in Supplementary Table S5, saddle heights between

low-energy LMs vary little between runs. Therefore, we conclude

Fig. 2. Histograms of saddle height changes between BHGw and BHG
�

for a

substrate for SV11 (left) and the tRNA-like pseudoknot of barley stripe mosaic

virus PKB_138 (right). (Top left/right) The x-axes denote the relative changes

(%) between saddle heights of LMs pairs in BHGw and BHG
�

and y-axes are

the corresponding numbers of pseudoknot-free LMs pairs with such saddle

changes. (Bottom left/right) The x-axes denote the exact changes (kcal/mol).

Colors indicate the pseudoknot types appearing in the energetically optimal

paths between LM pairs. Green (N-type) indicates the simulated paths do not

contain any pseudoknotted structures. Pink (HK-type) indicates the simulated

paths contain pseudoknotted structures of both H-type and K-type. More ex-

amples can be found in SM Part F (Color version of this figure is available at

Bioinformatics online.)
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that folding dynamics derived based on these saddle heights are

fairly stable.

3.2 A case study: SV11
The 115 nt SV11 RNA was discovered in in vitro selection experi-

ments as an excellent substrate for Qb replicase (Biebricher and

Luce, 1992). It features a nearly palindromic sequence with an ex-

tremely stable, hairpin-like ground-state structure which does not

contain any pseudoknot. Pulse-chase experiments showed that the

active conformation is a metastable structure formed during replica-

tion, while the ground-state structure (with energy –95.9 kcal/mol)

does not serve as a template for the Qb replicase. Melting experi-

ments indicated that the metastable structure (pseudoknot-free) with

energy –63.6 kcal/mol comprises two distinct stems (Biebricher and

Luce, 1992). The energy difference between the ground state and the

metastable structure is 32.3 kcal/mol, well beyond the reach of ex-

haustive enumeration. In both BHGw and BHG
�
, the ground state is

correctly predicted as the MFE structure and the metastable struc-

ture is detected as an LM ranked as 47 478 in BHGw and 2466 in

BHG
�

according to its free energy.

To further investigate the influence of pseudoknots on refolding

between the metastable and the MFE structure, we constructed and

compared optimal refolding paths in BHGw and BHG
�
. Even though

we considered only paths with a peak energy equal to the saddle

height and despite the coarse graining provided by the BHG, the

number of paths connecting the two minima remains very large.

Moreover, there is no common criterion to define which among

these paths is the ‘best’. We therefore employed two alternative cri-

teria to define the optimal folding path U ¼ ðx0; x1 . . . ; xkÞ. (A) U

minimizes the peak energy maxsff ðxsÞg and, among equally good

solutions, minimizes the accumulated activation energy,

X
s
fSðxs; xsþ1Þ � f ðxsÞg. (B) U is a maximum likelihood trajectory

with an upper time bound Tm as introduced by Perkins (2009).

Consider a trajectory U ¼ ðx0; t0; x1; t1; . . . ; xk�1; tk�1; xkÞ where

the xi are the consecutive states and the ti are the waiting time in

state xi, i.e. xi stays in state xi for a time ti and then transitions to

state xiþ1 until time Tm. The likelihood of U is

LðUÞ ¼
Yk�1

i¼0

ðkxi
� e�kxi

ti � Pxi ;xiþ1
Þ � e

�kxk
Tm�
X

ti

� �
(2)

whenever
X

ti � Tm, t and LðUÞ ¼ 0 otherwise. Since kxi

¼
X

xj

rxixj
and Pxi ;xiþ1

¼ rxiþ1 ;xi
=kxi

in our model, Equation (2) sim-

plifies to

LðUÞ ¼
Yk�1

i¼0

rxixiþ1
� e
�
�Xk�1

i¼0

kxi
tiþkxk

Tm�
X

ti

� ��

: (3)

The optimal folding path according to Criterion A for BHGw is

shown in Figure 4 (bottom). This refolding path needs to pass

through 26 LMs and has a saddle height of –51.7 kcal/mol. In con-

trast, the refolding path in BHG
�

shown Figure 4 (top) goes through

25 LMs with a slightly larger saddle height of –49.3 kcal/mol.

To illustrate the refolding paths more explicitly, we use the helix

representations introduced by PseudoViewer (Han et al., 2002).

In this representation, only the outermost base pair in each helix of

the structure is drawn with its terminated nucleotides indices anno-

tated. For example, the metastable structure of SV11 includes five

helices, denoted by h59
1 ; h21

5 , h47
24; h88

65 and h110
90 . The subscripts and

superscripts refer the start and end locations of the outermost base

pair of the corresponding helix. The helix h59
1 embraces two other

helices h21
5 and h47

24 to form a multi-loop. In the BHGw, the refolding
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Fig. 3. Folding kinetics comparison between BHG
�

(top) and BHGw (bottom) of the preQ1 riboswitch (Bsu, left), the Ribosomal RNA from E.coli (PDB_00702, mid-

dle), and the signal recognition particle RNA (SRP_00094, right). The process was started in the open chain structure and run until convergence to the thermo-

dynamic equilibrium distribution except the case of PDB_00702 on BHG
�

where the equilibrium was still not reached until 1018 arbitrary time units. Dotted

vertical line indicates when the simulation reaches its equilibrium. The LMs that appear in both kinetics plots are marked with same color, otherwise pseudoknot-

free and pseudoknotted LMs are marked with black and red, respectively. The sums of the structure probabilities of pseudoknot-free and pseudoknotted LMs on

BHGw are marked with blue and red dashed lines, respectively (Color version of this figure is available at Bioinformatics online.)
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path visits 10 K-type and four H-type pseudoknotted LMs. After a

K-type saddle structure S1 (–51.7 kcal/mol), the molecule forms two

additional base pairs G28–C84 and C29–G83 in order to compen-

sate the energy cost of decomposing h88
65. Subsequently, the decom-

position helices h59
1 and h54

6 in the H-type LM H1 leaves the rest of

the path pseudoknot-free. The pseudoknot-free refolding path in

BHG
�

made some local adjustments inside helix h109
5 in order to

compensate the energy cost of decomposing helices h19
8 and h106

94 in

S2 to form an intermediate ‘valley point’ N1 which pushed the re-

folding fluctuation around its peak point.

For Criterion B, we consider two cases, with the upper time limit

set to either T¼0 and T ¼ 1011 given that the actual refolding time

is around 1010. When T¼0, any ti that an RNA molecule stays in a

particular state si has to be 0 as well in order to maximize the likeli-

hood. An interesting observation is that in this case Criterion B is

equivalent to minimizing the accumulated activation energy. The

optimal path in BHGw and BHG
�

stays the same. It goes through a

total of 19 LMs with log-likelihood –154.00, accumulated activa-

tion energy is 94.91 kcal/mol, and peak energy –38.6 kcal/mol. This

optimal path does not go through any pseudoknotted LM.

Comparing to the optimal paths according to Criterion A (with log-

likelihood value –178.24 and accumulated activation energy

109.85 kcal/mol in BHG
�
; –191.44 and 118 kcal/mol in BHGw), the

molecule is inclined to have the overall shape of the MFE structure

in a more ‘ambitious’ way rather than making detours through the

landscape for lowering down the peak energy. When T ¼ 1011, the

optimal folding paths in BHGw and BHG
�

are the same. It goes

through 21 LMs with accumulated activation energy 109.85 kcal/

mol and all of the LMs are pseudoknot-free. Further details can be

found in SM Part H.

Finally, we compare the BHGw-based folding kinetics simulation to

the simulation based on BHG
�
. As shown in Figure 5, the BHGw-based

simulation reached its equilibrium earlier than the BHG
�

case. The

metastable state is populated from around t ¼ 103 to 1012 in the

BHG
�
-based simulation and from t¼10 to 1010 in the BHGw case. Our

simulation based on BHGw suggested that there exists another long-

lived metastable structure Meta_pk with a K-type pseudoknot.

Meta_pk has energy –64.0kcal/mol and has nearly the same life time as

Meta (–63.6kcal/mol). In particular, the period of time during which

the MFE structure gains population from the decay of Meta is

nearly the same as the case of Meta_pk. This is because Meta_pk

and Meta are separated by the same energy barrier from the MFE

structure.

4 Concluding remarks

We have demonstrated here that it is computationally feasible to com-

pute BHGs for secondary structures with a broad class of pseudo-

knots. The basin hopping graphs BHGw and BHG
�

are comparable

for RNAs with pseudoknot-free ground states. Therefore, they can be

used to investigate the effects of pseudoknots in the folding process.

We observe that for the majority of such RNAs the inclusion of pseu-

doknots makes little difference for the time to reach equilibrium.

However, there are RNAs where pseudoknots substantially speed up

the folding process by lowering the energy barrier. On the other hand,

pseudoknotted structures may also appear as kinetic trap states and

prevent efficient folding.

Our observations suggest that pseudoknotted structures should

be included in the analysis even when main states of an RNA switch

are pseudoknot free. Pseudoknots do, however, incur significant

computational cost, both because pseudoknot prediction methods

are expensive (Oðn6Þ in case of gfold) and even more so, because

the size of landscape grows. Pseudoknotted folding intermediates

that lower the energy barrier are almost always H-type or K-type.

This suggests that the more complex L-type and M-type pseudo-

knots could be neglected, while the ability to predict kissing hair-

pins is essential for a realistic description of RNA folding

landscapes. Unfortunately, most current methods for pseudoknot

prediction focus solely on the prediction of ground-state structures,

while our approach requires the ability to sample structures

from the Boltzmann ensemble. Apart from this requirement,

any other method could be used as a drop-in replacement for

gfold.

Fig. 4. Folding energy profile of the optimized refolding paths of SV11 in

BHG
�

(top) and BHGw (bottom) from metastable state (Meta) to ground-state

structure (MFE) according to Criterion A, i.e. the path with the least peak and

accumulated energies. In which, only the LMs and saddles along the original

refolding paths are shown in the folding energy profile for the sake of clarity.

Helix representations of representative LMs and saddles are labeled along

the refolding path. These helix representations are drawn by PseudoViewer

(Han et al., 2002). Only the outermost base pair in each helix of the structure

is drawn with its terminating nucleotide indices annotated (Color version of

this figure is available at Bioinformatics online.)
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