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Abstract

The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during
gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development.
Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association
with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from
gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient
maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and
altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is
involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a
marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory
responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219
and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic
changes included genes related to development, axonal guidance and neuropathology. These findings indicate that
prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These
observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and
neurological disease.
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Introduction

The gestational state is a period of particular vulnerability for

both the mother and her offspring. Experience of distress during

pregnancy may critically determine maternal health and alter

offspring brain physiology and behaviour with life-long conse-

quences [1,2]. Gestational stress disrupts post-partum maternal

care, which impedes brain and behavioural development of the

offspring [3,4]. It was proposed that the effects of maternal care

are possibly transmitted across generations through non-genomic

mechanisms [3]. Mechanisms of transfer include altered gesta-

tional endocrine milieu, maternal behaviour and transgenerational

epigenetic programming [5–9]. Moreover, gestational stress

directly influences fetal brain development and programming of

hypothalamic-pituitary-adrenal (HPA) axis function [10,11] to

induce life-long changes in stress responsiveness [12] and possibly

enhanced vulnerability to psychiatric conditions, including de-

pression and bipolar affective disorder [13–16] and schizophrenia

[17–20]. The prefrontal cortex in particular is relevant to mental

health disorders, which may be precipitated or exaggerated by

stress, pregnancy and childbirth [21–23].

Behavioural and physiological changes in stressed mothers and

their offspring may be linked to altered gene expression in the

brain, which is epigenetically regulated by experience. Epigenetic

changes, including expression of microRNA (miRNA) enable

rapid adjustments in gene expression without altering nucleotide

sequences. Altered miRNA expression was suggested to prime

neuroplasticity and physiological processes in response to early

environment [8,24] and the experience of stress [7,25]. miRNA

may be a critical component to mediate the effects of prenatal

stress and maternal care on offspring development [26,27].

Notably, miRNA expression is altered in many common

psychiatric and neurological disorders, such as bipolar disorder,

schizophrenia, autism, depression, and inflammatory conditions

[28–33]. Most of these conditions share a suspected etiology that

includes both the influence of adverse perinatal origins as well as a

transcriptomic component, suggesting that epigenetic regulation of

gene expression may represent a central common feature in

individual disease etiology [34].

Here we provide a link between gestational adverse experience

and epigenetic re-programming of the transcriptome by means of

miRNA in the brains of gravid dams and their offspring. Maternal
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stress altered maternal antepartum behaviour and brain miRNA

expression patterns in the frontal cortex, a region involved in

maternal care, decision-making and stress responses. These

changes translated to altered offspring miRNA signatures related

to disease. Our observations allow proposing a mechanism by

which gestational experience modulates gene expression with

possibly life-long phenotypical consequences in the offspring.

Materials and Methods

1. Experimental Design
Female rats stressed during late gestation and their non-stressed

pregnant counterparts [Stress (n = 9) vs. Non-stress (n = 6) groups]

were analyzed regarding their antepartum behaviour. Three

additional dams per Stress and Non-stress groups were sacrificed the

day of parturition (1 to 5 hours after delivery) and the frontal

cortex was dissected for analysis of the microRNAome (miR-

NAome). One male pup from each of these six dams was used for

miRNA expression analysis (n = 3 for each Prenatal stress and Non-

stress groups). This study focused on frontal cortex of dams, due to

its correlation with cognitive and stress related traits, and whole

brains of male newborn offspring. To investigate epigenetic effects

of maternal stress on the offspring, brains of male prenatally

stressed (Prenatal stress group) and non-stressed (Non-stress group)

newborn rats were collected for analysis of miRNAome and

transcriptome.

2. Animals
Twenty-one timed-pregnant nulliparous female Long-Evans

rats, bred and raised at the local vivarium, were used. Females

were paired with a male for one hour per day until mating

occurred. Pregnancy of the rats was confirmed by weight gain

eleven days later. Pregnant rats were housed individually from

gestational day 19 until delivery and recorded by an infrared video

surveillance system (CCTV Cameras, Panasonic, USA).

3. Ethics Statement
All procedures were performed in accordance with the

guidelines of the Canadian Council for Animal Care and

approved by the University of Lethbridge Animal Welfare

Committee (#0803).

4. Stress Procedures
Gestational. Timed-pregnant rats were stressed twice daily

from gestational day 12 to day 18. Two stressors, restraint of the

body for 20 min [35–37] and forced swimming in water at room

temperature for 5 min [38–39] were applied daily. Restraint

occurred in the morning and forced swimming in the afternoon

hours.

5. Analysis of Antepartum Maternal Behaviour
Maternal behaviour was scored in gravid dams from 19–18

hours prior to delivery of the first pup. Tail chasing behaviour in

the dams was scored as an indicator of maternal preparatory

activity and care [40,9]. The amount of time spent engaged in

chasing (seconds) and manipulating the tail and the total number

of rotations were measured as described previously [9].

6. Tissue Collection
Brain. Between 1 to 5 hours after parturition, dams and their

offspring received a lethal dose of pentobarbital (Euthansol

100 mg/kg; CDMV Inc., Québec, Canada). Rats were rapidly

decapitated and frontal cortex of mothers and whole brains of

newborns were dissected and flash-frozen for mRNA and miRNA

analysis.

7. miRNA and mRNA Expression Analysis
7.1. RNA extraction. Total RNA was extracted from dams

and newborn rat brains using TRI Reagent Solution (Applied

Biosystems, Foster City, CA) according to the manufacturer’s

protocol.

Samples from Stress dams and from Prenatal stress newborn rats

were compared with non-stressed controls (dams and newborns

from Non-stress group) for investigation of the effects of gestational

stress in dams, and prenatal stress in newborns on brain

miRNAome and transcriptome.

7.2. miRNA microarrays. miRNA expression was analyzed

using microarray technology performed by LC Sciences (Houston,

TX) as described previously [41,42]. The data were analyzed by

first subtracting the background and then normalizing the signals

using a LOWESS filter (Locally-weighted Regression) [43]. The

putative gene targets for miRNAs differentially expressed by stress

treatment were searched by computational analysis (TargetScan,

Whitehead Institute for Biomedical Research, MIT, Cambridge,

MA), which provided a list of predicted gene targets and related

biological processes.

7.3. Quantitative real time PCR (qRT-PCR). In order to

validate miRNAs modulated by gestational stress in dams, and

prenatal stress in newborns determined by microarrays, we

performed qRT-PCR analysis of eight differentially regulated

miRNAs [44]. The same samples used for microarray analyses

were also used for qRT-PCR validation (n = 3 per group, three

replicates per sample). The following miRNAs were analyzed (59

to 39): mirR-181 and miR-186 (dams); miR-103, miR-151, miR-

323, miR-145, miR-425, miR-98 (newborns). U6 snRNA was used

as a reference control for calculation of the expression ratio. The

generation of cDNAs from the total RNA samples was performed

using M-MuLV Reverse Transcriptase, NEB#M0253S (New

England Biolab, Ipswich, MA; see Table 1 for RT primers). qRT-

PCR reactions were conducted with Bio-Rad CFX96TM Real-

Time PCR Systems, using SsoFastTM EvaGreenH Supermix (Bio-

Rad, Mississauga, ON) reaction premix added to the cDNAs

templates and specific primers, according to the manufacturer’s

protocol (see Table 1 for primer reference). A total volume of 12 ml

was used, with 2.5 ml of cDNA template, 400 nM forward primer,

400 nM reverse primer, and 6 ml of SsoFastTM EvaGreenH
Supermix (Bio-Rad, Mississauga, ON). Optimal dilutions and

temperatures were adapted for each miRNA qRT-PCR reaction.

7.4. Gene microarray expression analysis. Prenatal stress

effects on global gene expression were assessed by microarray

technology. Samples used for miRNAome analyses were also used

for transcriptome investigation (n = 3 per group). Total RNA was

purified using the RNeasy total RNA clean up protocol (Qiagen,

Manchester, UK). RNA samples were tested using Bioanalyzer

Eukaryote Total RNA Nano Chip (Agilent, Mississauga, ON). The

microarray protocol used here allows the simultaneous analysis of

global mRNA expression profiles. Microarray analyses (probe

synthesis, hybridization, and scanning) was performed using a

standard Illumina platform protocol [45].

8. Statistical Analyses
Statistical analyses of maternal behaviour were performed using

Statview software version 5.0 (SAS Institute, 1998). Behavioural

data were standardized by square root transformation to fit a

Gaussian curve histogram of normal distribution. Analysis of

variance (ANOVA) and unpaired student t-tests were used for

between-group comparisons. A p-value of less than 0.05 was

Stress-Induced miRNA Signatures of Disease
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chosen as significance level. All data are presented as mean 6

standard error of the mean (SEM). Statistical analysis of miRNA

and mRNA microarray data was performed using t-test between

groups. T-values were calculated for each miRNA or mRNA, with

p-values below a critical p-value (0.01) selected for cluster analysis.

The clustering analyses used a hierarchical method and average

linkage and Euclidean distance metric [46]. The relative miRNA

levels were quantified using Bio Rad CFX Manager in the

validation qRT-PCR.

Results

Gestational Stress Disrupts Antepartum Maternal
Behaviour Along With miRNA Profiles

Antepartum maternal tail chasing behaviour was scored frame-

by-frame from cage-site videotapes. During the observation

period, Stress dams spent significantly less time than Non-stress

dams engaged in tail chasing behaviours, such as horizontal

rotations (F(1,13) = 5.35, p,0.05; Figure 1). Furthermore, gesta-

tional stress reduced the number of rotations, although to a non-

significant degree (F(1,13) = 4.43, p = 0.055).

Antepartum stress-induced behavioural alterations were accom-

panied by altered miRNA expression in the frontal cortex of dams.

Since miRNAs in animals primarily inhibit translation of target

mRNAs, decreases in miRNA levels should result in increased

mRNA translation while increases in miRNA levels result in

inhibition of translation (Figure 2A). A total of 342 miRNAs were

differentially expressed in response to gestational stress (Stress vs. Non-

stress groups). Overall, 195 miRNAs were downregulated and 147

miRNAs were upregulated. Gestational stress downregulated

abundance of miR-329, miR-380, miR-20a, and miR-500 (all

p#0.05; Figure 2B-C). Stress also led to critical decreases in let-7c,

miR-23b, miR-181, and miR186 amounts. Conversely, stress

upregulated miR-24-1. The putative gene targets for these miRNAs

were related to neuropathologies, neurotransmission, hormonal

regulation, neurotrophic factors, stress response, oxidative stress and

metabolism (Figure 2C). miR-181 and miR-186 were chosen for

verification using qRT-PCR analysis. Downregulation of both

miRNAs by gestational stress was confirmed (Figure 2D).

Prenatal Stress Modulates Brain miRNAome and
Transcriptome in Newborn Rats

Analysis of the newborn brain miRNAome (Prenatal stress Vs.

Non-stress groups Figure 3) shows a total of 336 miRNAs

differentially expressed in response to prenatal stress, including

131 miRNAs whose abundance was downregulated and 205

miRNAs that were upregulated. The miRNAs differentially

regulated by prenatal stress includes miR-23a (up), miR-129-2

(up), miR-361 (down), let-7f (up), miR-17-5p (down), miR-98 (up),

miR-425 (down), miR-345-5p (down), miR-9 (up), miR216-5p

(up), miR-667 (up), and miR-505 (down) (Figure 3A). Moreover,

significant changes in expression due to prenatal stress were found

in miR-103 (down), miR-151 (down), and miR-219-2-3p (up). The

putative gene targets for these miRNAs includes genes related to

miRNA biogenesis, apoptosis, brain pathologies, neurotransmis-

sion, neurodevelopment, hormonal regulation, neurotrophic

factors, brain angiogenesis, cell signaling, stress response, and

metabolism (Figure 3B).

From the miRNAs regulated by prenatal stress (Stress Vs. Non-

stress groups), as observed by microarray analyses, the following

candidates were selected for verification by qRT-PCR analysis:

miR-151, miR-145, miR-425 (all down) and miR-103, miR-323,

miR-98 (up) (Figure 3C).

Global gene expression analysis revealed that 39 genes were

downregulated by prenatal stress in the brains of newborn rats (more

than 2 fold change; Abhd14a, Argbp2, Cd47, RGD1559704,

LOC310926, Klf10, Nsmce2, RGD1309216, Gramd1b, Itpr1, Tst, Pfkm,

Vps11, Echs1, Zswim5, RGD1309388, Tmem176b, Cib1, Sfxn5, Cln8,

Table 1. Primers for qRT-PCR miRNA validation.

miRNA Reverse Transcription Primer Forward-primer Reverse-primer

181 CACGGAACCCCGCCGACCGTGACCCAC CCGCCGAACATTCATTGC GACCGTGACCCACCGAC

186 GCTCAGACAGAAGTCACACTGAGCAGCCCA CCCGCCGCAAAGAATTCTC TCACACTGAGCAGCCCAAAAG

103 CACCGTTCCCCGCCGTCGGTGTCATAGC CCCGCCAAGCCCTTACC GCCGTCGGTGATGCTTTTTTGG

151 CACCGTTCCCCGCCGTCGGTGACTAGA CCGCCTCGAGGAGCTCA CCGTCGGTGACTAGACTGT

323 CACCGTTCCCCGCCGTCGGTGAGAGGT CCCGCCCACATTACACGG CCGTCGGTGAGAGGTCGA

145 CACCGTTCCCCGCCGTCGGTGAGGGAT CCCGCCGTCCAGTTTTCC CCGTCGGTGAGGGATTCCT

425 GACCGTTCCCCGCCGTCGGTCTCAACG GGGCGAATGACACGATCAC CGTCGGTCTCAACGGGAG

98 GCTCAGACAGAAGTCACACTGAGCAACAAT CCGCGCGTGAGGTAGTAA CCGTCACACTGAGCAACAATACAA

U6 snRNA
(control)

CACCGTTCCCCGCCGUCGGTGCTTCTC TGCTTCGGCAGCACATATAC AGGGGCCATGCTAATCTTCT

doi:10.1371/journal.pone.0056967.t001

Figure 1. Gestational stress disrupts antepartum maternal
behaviour. Time spent engaged in tail chasing behaviours and the
number of rotations performed at 19–18 hours prior to delivery (all data
transformed to square root). Gestational stress decreased the time
spent in tail chasing activities and the number of rotations, indicating
reduced maternal preparatory activity (n = 6 non-stress controls, n = 9
gestational stress). *p#0.05, mean 6 SEM.
doi:10.1371/journal.pone.0056967.g001
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Gucy1b3, Flii, Txnl4b, Ldha, RGD1561179, Zfp216, Ptplb, Galntl4,

Pdia5, Herc1, RGD1305557, RGD1303003, RGD1305514, Aph1a,

Visa, Clpb, RGD1563963, Snx1, Gstm1) and 47 genes were upregulated

(more than 2 fold change; P4hb, RGD1560212, RGD735065,

LOC498346, Rps3a, LOC497732, Wbp11, Taf9b, RGD1560975,

Lpar1, Rnf7, LOC500829, Chp, LOC300760, Pgrmc1, LOC500398,

LOC688712, Cd2bp2, RGD1561219, RGD1565840, RGD1560186,

LOC497745, LOC497720, LOC500344, Mcts1, RGD1564956,

LOC498644, Rala, Sfrs6, Mrlcb, Ptn, Sfrs5, Hdac2, LOC500533,

LOC501553, Dazap1, Fem1b, RGD1563431, Cct4, Rbbp7,

RGD1308165, Acsl4, Ppp1r14b, LOC498449, Usmg5, RGD1560729).

Biological processes affected by these genes include DNA methyla-

tion, neurodevelopment, neurotransmission, immune response,

growth factor, cell differentiation, neuronal differentiation, axon

guidance, apoptosis, mRNA surveillance, translation, brain specific

membraneprotein,proteinprocessing, stressresponse,development,

cell cycle, detoxification, neuropathology, structural maintenance,

transcription, cell signaling and metabolism (Figure 4A). Clustering

analysis of gene expression revealed clusters of animals from Prenatal

stress and Non-stress groups, except for one animal from the Non-stress

group (Figure 4B).

Among genes modulated by prenatal stress with function in

metabolic processes, the gene Ptplb was downregulated. Ptplb is a

putative target for miR-103, which was upregulated by prenatal

stress (Figure 4C). Furthermore, Dazap1 was upregulated by

prenatal stress. Dazap1 is a gene related to mRNA surveillance, i.e.

regulation of gene expression, which is a putative target for miR-

219.

Discussion

The developmental origins of health and disease have become a

current topic of interest. Although it is widely accepted that the

Figure 2. Gestational stress induces differential miRNA expression in frontal cortex. A, Schematic overview of miRNA biogenesis
pathways. B, Heat map representation of differentially regulated miRNAs, as observed by microarray analysis. C, Table of target genes for miRNAs
modulated by gestational stress (miR-329, miR-380, miR-20a, and miR-500; p#0.05), and their physiological implications. D, Expression ratio group
averages of miRNAs as observed by qRT-PCR analysis (p#0.05). Note that prenatal stress downregulated miR-181 and miR-186 expression in the
frontal cortex. miRNA analyses were performed in dams that showed representative behavioural characteristics (n = 3 per group, three repeats per
sample). All data are presented as mean 6 SEM.
doi:10.1371/journal.pone.0056967.g002

Figure 3. Prenatal stress modulates the brain miRNAome in male newborn offspring. A, Heat map representation of differentially
regulated miRNA as observed by microarray analyses. B, Table of putative target genes for modulated miRNAs (miR-103, miR-151, and miR-219-2-3p;
p#0.05) and their physiological functions. C, Expression ratio group averages of miRNAs as observed by qRT-PCR analysis (p#0.05). Whole brains of
newborns born to dams shown in Figures 1 and 2 (n = 3 per group, three repeats per sample; 1 pup per dam) were used. All data are presented as
mean 6 SEM.
doi:10.1371/journal.pone.0056967.g003
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Figure 4. Prenatal stress alters the brain transcriptome in male newborn offspring. A, Differential global gene expression in the brains of
prenatally stressed newborn rats. Ptplb and Dazap1 are targets for miR-103 and miR-219, respectively. B, Clustering analysis of gene expression
showed clusters of stressed and non-stress animals, except for one non-stressed animal. C, Prenatal stress elevated expression of miR-103, which
coincides downregulation of its potential target Ptplb (mean 6 SEM). Whole brains of newborns born to dams shown in Figures 1 and 2 were
analysed (n = 3 per group, three repeats per sample; 1 pup per dam).
doi:10.1371/journal.pone.0056967.g004
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perinatal period represents a stage of particular vulnerability for

the developing brain, the causal mechanisms and long-term

consequences of perinatal programming are poorly understood.

Here we show that epigenetic regulation through miRNA

represents a critical step in stress-induced gene expression and is

accompanied by characteristic maternal behavioural traits and

signature analogues of human psychiatric and neurological

disease.

The developing brain is particularly vulnerable to adverse

intrauterine conditions and responds to altered endocrine milieu

with re-programming of the hypothalamic-pituitary-adrenal

(HPA) axis and associated behavioural and physiological responses

[47,48]. These endocrine changes may have important implica-

tions for the vulnerability to mental disorders. Stress from

gestational days 12 to 18 in rats corresponds to the second

trimester of pregnancy in humans, which is thought to be the most

sensitive period to influence offspring brain morphology [49] and

determine mental health in later life [50,51]. Our findings indicate

that maternal stress may affect critical periods of fetal neurode-

velopment through dynamic regulation of miRNA in both the

mother and her offspring.

Gestational Stress Disrupts Antepartum Maternal
Behaviour Along with Epigenetic Re-programming

Antepartum maternal behaviour, such as tail chasing and

rotational behaviours, may be reflective of preparatory activities.

Preparatory activities include nest building, which increase during

the last 24 hours preceding parturition [52]. Since a similar time

course was found for tail chasing behaviour [9], the present

findings suggest that preparatory activities are sensitive to maternal

stress. The lack of activities observed in stressed dams may reflect a

lack of motivation, a central component of depression-like

behaviour linked to stressful experiences [53,54]. If antepartum

activities are somewhat predictive of postpartum maternal care

[55,26,3], even a moderate behavioural change in maternal

behaviour may potentially have significant consequences for

offspring development.

Behavioural findings in stressed dams were accompanied by

altered epigenetic profiles in the frontal cortex, including

downregulation of miR-181b. The miR-181 family is particularly

enriched in the brain and is involved in autism spectrum disorders

[56], schizophrenia [57], Alzheimer disease [58], where they are

mainly found to be upregulated. Downregulation of miR-181

contributes to accelerated HIV-associated dementia in opiate

abusers [59]. At the cellular level, miR-181 regulates apoptosis

factors such as bcl-2 in astrocytes. Downregulation of miR-181

was shown to have protective effects against apoptosis and

mitochondrial dysfunction [60]. Gestational stress also downreg-

ulated miR-186 in the maternal frontal cortex, which is in contrast

to the upregulation found in frontal cortex, hippocampus, and

cerebellum in male rats [25]. The present findings do not allow

drawing a causal relationship between the behavioural phenotype

and epigenetic changes, however, altered miRNA expression in

the maternal frontal cortex may have relevance to pregnancy-

related mental and emotional changes in stressed mothers.

Prenatal Stress Alters miRNA Signatures in the Offspring
Prenatal stress modified expression of genes that are central to

brain development and plasticity, including apoptosis, neurotrans-

mission, neurotrophic factors, and cell signaling. One particularly

interesting finding is the upregulation of miR-103 and downreg-

ulation of its putative gene target Ptplb in brains. miR-103 is

enriched in the cortex [61] and its expression increases during

neurodevelopment, particularly cell differentiation [62,63] and

translation [64]. In the mature brain, however, upregulation of

miR-103 may suppress BDNF synthesis in humans [65] and

promote neuropathological processes in a mouse model of

Alzheimer’s disease [66]. Accordingly, perinatal adversity may

increase the risk of cognitive decline [67,68] and elevate the

vulnerability of cholinergic neurons [69]. Altered miR-103

expression in the developing brain may therefore contribute to

cognitive changes in adulthood. The putative gene target of miR-

103, Ptplb, is essential for biosynthesis of tyrosine phosphatase-like

member b, which is involved in a wide range of neuronal

functions, including synapse formation [70], disorders involving

the frontal cortex such as Alzheimer’s disease [71,72] and

schizophrenia [73]. miR-103-mediated inhibition of Ptplb transla-

tion may contribute to alterations in behavioural and neuronal

plasticity in prenatally stressed offspring.

Another duo, miR-219 and its putative gene target Dazap1 were

upregulated by prenatal stress in newborns, suggesting parallel

regulatory interference in gene expression. Notably, miR-219 may

be implicated in the pathology of schizophrenia and bipolar

affective disorders [30], both of which are closely linked to

prenatal stress [20,18] and altered HPA axis activity [74,14,16].

miR-219 modulates excitatory synaptic plasticity through N-

methyl-D-aspartate (NMDA) glutamate receptors [28,75]. Disrup-

tion in NMDA receptor function through miR-219 regulation

results in aberrant hyperlocomotor behaviour in mice [28]. Thus,

stress through regulation of miR-219 may interfere with develop-

mental neuronal plasticity and behaviour.

Further changes in miRNA profiles included miR-323, which

modulates host-pathogen interactions, such as those involved in

HIV-1 [76] and H1N1 Influenza A [31]. miR-323 binds to the

PB1 virus gene and may assist in the defense against viral

replication [31] and thus have protective functions against stress-

induced vulnerability to pathogens [77,78]. By contrast, recent

evidence points towards miR-323 as a positive regulator of Wnt/

cadherin signaling to upregulate pro-inflammatory mechanisms

and potentiate cell migration, proliferation and adhesion in the

pathogenesis of rheumatoid arthritis [79,80]. On the other hand,

prenatal stress also upregulated miR-98 expression, which

modulates immune responses through cytokine pathways [81],

and was shown to downregulate the production of the proin-

flammatory cytokine IL-10 in macrophages [82]. Both miR-323

and miR-98 upregulation in brains of prenatally stressed offspring

may indicate an altered pro-inflammatory state in the brain. By

contrast, it is generally assumed that prenatal stress increases the

vulnerability to immune disorders [83], which may also apply to

the brain [84]. However, in line with potentially protective effects

of miR-323 upregulation, mouse studies have also found that

maternal stress may enhance anti-viral immunity, for example by

promoting the protection against herpes simplex virus [85,86]. It is

possible that these miRNA changes partially mediate a defensive

response against acute infections in newborns.

Altered responses to immune challenges during early develop-

ment were also suggested for the pathogenesis of multiple sclerosis

(MS) [29]. While miR-145 has a regulatory role in embryonic

neuronal differentiation in rats [87], it is also differentially

expressed in MS-afflicted human patients, thus providing a

potential epigenetic marker of this condition [29]. The current

findings show that prenatal stress downregulates brain miR-145, as

opposed to its upregulation in human blood cells in MS [29]. Since

heredity represents a proposed risk factor for MS [88], early

adverse experiences may translate environmental influences into

epigenetic signatures to affect neuronal plasticity and the

predisposition for neurological disease in later life [89,90].

Stress-Induced miRNA Signatures of Disease
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In spite of continuous epigenetic re-programming throughout a

lifetime [91–93], early epigenetic imprints may persist into later

life [94–96]. For instance, epigenetic modification in somatic cells

may perpetuate throughout life by stable mitosis [5,96]. The

frontal cortex in particular may be relatively resistant to epigenetic

re-programming by lifespan environmental influences compared

to other brain areas, as indicated by human developmental cortex

maps [97]. Thus, perinatal programming by persistent patterns in

miRNA regulation may contribute to psychiatric and neurological

conditions in later life.

Integrating Maternal and Fetal Physiological and
Epigenomic Features

The effects of prenatal stress have been well characterized with

respect to critical periods in early development [98,99,90]. The

nature and duration of maternal stress likely determine the

physiological and epigenomic responses in the offspring, however,

the gestational timing of the stressor may represent a particularly

crucial influence on brain development and maturation [100]. It is

not yet clear exactly how the maternal endocrine response to stress

programs the epigenome of their offspring. It is known that

excessive glucocorticoid levels can cross the protective enzymatic

barrier of the placenta to reach the fetal brain [101]. Here,

elevated levels of glucocorticoids may, through dynamic regulation

of miRNA expression, alter the expression of critical genes

involved in sexually dimorphic brain organization [90]. Further-

more, it has been recently shown that psychological stress in

adulthood influences central miRNA expression [25]. These direct

effects of stress on the brain mircoRNAome may at least in part

contribute to an epigenomic imprint in the mother’s brain and

contribute to cortical plasticity and neuromorphological remodel-

ing that is characteristic for the post-partum brain [102].

Conclusions
Here we provide evidence for a possible link between gestational

adverse experience and epigenetic re-programming via altered

miRNA expression in the brains of gravid dams and their

offspring. Mild gestational stress disrupted behaviour in the

parturient dam and altered miRNAs in the frontal cortex, a

region involved in maternal care, decision-making, and stress

responses, and epigenetic regulators of gene expression in the

newborn offspring. The present findings propose a mechanism by

which gestational experience modulates gene expression with

possible phenotypic consequences. Because miRNAs have been

recognized as important biomarkers of disease states in humans,

their dynamic regulation by stress proposes a promising thera-

peutic avenue for intervention of disease predisposition in at-risk

pregnancies.
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