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Genomic research led the way in open science, a tradition continued
by genome-wide association studies (GWAS)—through the sharing
of materials, results, and data. Coordinated quality control proce-
dures also contributed to robust findings. However, recent years have
seen declines in GWAS transparency. Here, we assess some shifts
away from open science practices with the aim of stimulating a dis-
cussion of these issues.

The Human Genome Project (HGP) led the way in open science—in particular, data sharing.

In 1996, HGP scientists established the “Bermuda Principles,” which specified that DNA

sequence data should be released in publicly accessible databases within 24 hours of genera-

tion. The following year, data quality standards were developed—the “Bermuda Sequence-

Quality Standards.” TheseAU : PleasenotethattextfootnotesarenotpermittedinPLOSarticles:Hence; thefootnote}seehttps : ==web:ornl:gov=sci=techresources=HumanGenome=research=bermuda:shtml}hasbeenincorporatedintothesentence}TheseBermudaagreements:::}Bermuda agreements (see https://web.ornl.gov/sci/techresources/

Human_Genome/research/bermuda.shtml) were key to the multinational collaborative work

behind the HGP’s remarkable successes, producing a global knowledge resource that has stim-

ulated major scientific advances. Following completion of the HGP, these open science princi-

ples were applied to other genomics projects. Scientists and funders recognized the value of

data sharing, coordination, and transparency in advancing knowledge, scientific credibility,

and improvements in human health. Many data sharing policies reflect the ethos of these prin-

ciples, and many areas of human genomics continue lead the way in open science.

Genome-wide association studies (GWAS) continued these open science trends. The

GWAS era arose following the widespread recognition of low statistical power and question-

able methodological practices in candidate gene association studies, which were plagued by

low reproducibility. The need to collaborate at scale to achieve the large sample sizes required

to detect small effect sizes, while correcting for multiple testing, necessitated coordinated data

analysis plans and, in turn, harmonized datasets and code. These were shared within consortia,

making it a small step to sharing materials, results, and data publicly (albeit typically summary

results, rather than individual level data). Another benefit of this collaborative approach (par-

ticularly when handling complex datasets) was a focus on coordinated quality control proce-

dures. For these reasons, human genomics in general, and GWAS, in particular, are often held
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up as an exemplar of reproducible science. DoesAU : PleaseconfirmthatthestatementDoestheGWASfieldstillliveuptothesestandards; orisitslippingback?isasectionheadingorisapartofaparagraph:the GWAS field still live up to these standards,

or is it slipping back?

GWAS is now a mainstream technique, and increasingly only one partAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif partinthesentenceGWASisnowamainstreamtechnique; andincreasinglyonlyone:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:of a study, rather

than the study itself. Studies that include a GWAS now often include functional work, analysis

of causal pathways, polygenic risk score analyses, and so on. But this greater breadth risks com-

ing at a cost; often the details of the GWAS itself are relegated to a supplement, which review-

ers may scrutinize less carefully [1], while the need to recruit reviewers to evaluate these other

elements comes at the expense of having multiple experts inspect the GWAS itself, if this is no

longer the sole focus.

There is evidence that this has been accompanied by inconsistency in standards. We have

seen imputation quality scores as high as r2 > .9 to an imputation accuracy score of< .1 [2].

GWAS may employ different thresholds across cohorts and analyses within the same study.

While what is acceptable will depend on the specific nature of the study, these different thresh-

olds may have a substantial impact on results. However, because imputed SNPs that pass the

threshold are not treated any differently from measured SNPs, and imputation quality scores

are not included in GWAS, we have no way of knowing whether this is a problem. Different

software packages and bioinformatic pipelines are employed, with assumptions that may not

be articulated. Even commonly adopted minimum thresholds for what constitutes “sufficient

LD” for the purposes of identifying SNP “independence” (e.g., r2 <. 1) vary across studies, as

well different analyses within studies.

Employing different thresholds may be warranted, but methodological decisions should be

clearly documented and justified. In our view, simply relying on honesty, and assuming no

mistakes, is not the best way forward in modern science, where the incentives to produce note-

worthy findings can be substantial. Transparency can serve a quality control function [3]. The

extraordinary complexity and density of many current studies including a GWAS means

methodological details can be relegated to extensive supplements. If these are not scrutinised

fully, this may impact on the robustness and reproducibility of GWAS results, with down-

stream effects such as overinterpretation of noise (e.g., post-GWAS analyses, such as gene pre-

diction, tissue specific expression). Further, many bioinformatic pipelines use existing

associations and functional annotations to link to new findings.

Alongside this increase in complexity, there has also been a shift away from open science

practices. Efforts to achieve ever-greater sample sizes, coupled with the finite number of high-

quality large cohorts with genetic information available, have encouraged researchers to

increasingly partner with private companies that can offer large amounts of data. These com-

panies have a direct interest in using GWAS results for profit and thus have a motivation to

contribute data. But the results are commercially sensitive. One consequence is that these pri-

vate-public research partnerships proceed largely on the terms of the private companies. These

terms commonly include no access to individual data (analyzed with “in house pipelines”), no

sharing of data, and sharing of only partial results.

Many recently published GWAS using 23andMe data include partial results, no code, and

no data [e.g., 4,5]. This is despite the fact that most of these studies are meta-analyses, and the

data consist of summary statistics, rather than the primary, individual-level data, and therefore

do not include sensitive, individually identifiable information. Furthermore, such closed data

practices often contravene explicit journal and funding agency data sharing policies. The result

is that researchers’ ability to replicate and build on these studies is limited.

Commercial datasets are also often highly unrepresentative. The problem of lack of repre-

sentativeness is not unique to commercial datasets—for example, UK Biobank achieved only

an approximately 5% recruitment rate, with evidence of “healthy volunteer” selection bias into

that study [6]. But selection into commercial datasets can be particularly pronounced. The
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widely used 23andMe data is composed primarily of individuals from the USA who can afford

to investigate their DNA. Participants therefore tend to be European-ancestry, more highly

educated, more affluent, and in better health. Furthermore, these data can make up a consider-

able proportion of the total sample in a GWAS—in some cases over 50% of the total sample

[5]. These highly selected samples may bias results [7]. This concern is especially acute for

socially patterned phenotypes such educational attainment, income, health behaviours, and

mental health (which are often minimally phenotyped via brief participant self-report). The

quest for ever-larger sample sizes seems to have come at the expense of the transparency and

data sharing that characterized the field in the past. Collaborations between academia and

industry can be powerful, and consortium efforts have been critical to the success of GWAS

efforts, but we should always ask: At what cost? The question of whether this trade-off is a net

positive deserves attention. We would encourage an open discussion of the costs and benefits

of these trade-offs by the research community.

Despite having led the way in open science and reproducibility, GWAS has become more

opaque. Perhaps the method is being taken for granted, given its track record of generating

reproducible findings; but reproducible science requires enforcing existing standards as well as

continued review and refinement [8]. The lesson is that no methodology stands still, and as

particularly complex methodologies evolve—whether it be GWAS, fMRI, etc.—we should con-

tinue to examine how these methodologies are applied, and how robust the findings they gen-

erate are. If GWAS wants to remain a paragon of open science, it cannot be open only when

convenient. Otherwise, hard-won gains in openness and reproducibility can be gradually

eroded often at a significant cost to scientific credibility.
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