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ABSTRACT

Pancreatic adenocarcinoma (PAAD), the most common subtype of pancreatic cancer,
is a highly lethal disease. In this study, we integrated the expression profiles of splicing
factors (SFs) of PAAD from RNA-sequencing data to provide a comprehensive view
of the clinical significance of SFs. A prognostic index (PI) based on SFs was developed
using the least absolute shrinkage and selection operator (LASSO) COX analysis. The
PI exhibited excellent performance in predicting the status of overall survival of PAAD
patients. We also used the percent spliced in (PSI) value obtained from SpliceSeq
software to quantify different types of alternative splicing (AS). The prognostic value
of AS events was explored using univariate COX and LASSO COX analyses; AS-based
PIs were also proposed. The integration of prognosis-associated SFs and AS events
suggested the potential regulatory mechanisms of splicing processes in PAAD. This
study defined the markedly clinical significance of SFs and provided novel insight into
their potential regulatory mechanisms.

Subjects Bioinformatics, Evidence Based Medicine, Oncology, Medical Genetics
Keywords Splicing factors, Pancreatic adenocarcinoma, RNA-sequencing, Overall survival

INTRODUCTION

Pancreatic cancer, the seventh most common cause of cancer-related death worldwide, is
a highly lethal disease (Bray et al., 2018; Liang et al., 2018; Wang et al., 2018). According to
epidemiological estimates in the United States, approximately 56,770 new pancreatic cancer
cases were diagnosed and 45,750 people died from the disease in 2019 (Siegel, Miller ¢

Jemal, 2019). Pancreatic adenocarcinoma (PAAD) is the predominant subtype of pancreatic
cancer and remains a health priority (Chen et al., 2019; Kamisawa et al., 2016). Current

treatments for PAAD include surgery, chemotherapy, radiation therapy, and palliative care;
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surgery is regarded as the only option for cure. However, most PAAD patients experience
no symptoms in the early stages, which precludes surgical removal (Strobel et al., 2019).
Hence, molecular biomarkers that can effectively monitor the onset and prognosis of PAAD
are indispensable. In addition, the complex mechanisms underlying the development of
PAAD remains poorly understood.

Splicing is an important process in vivo and is responsible for transcript diversity (Dvinge
¢ Bradley, 2015; Kim et al., 2018). Splicing factors (SFs) are a powerful manipulator in
modulating RNA processing and maintaining cellular homeostasis (Dvinge et al., 2016).
More importantly, intricate splicing events are orchestrated by a limited number of SFs.
Many studies have found links between the turbulences of SFs and the onset and progression
of cancers (Cieply & Carstens, 2015; Shilo, Siegfried ¢ Karni, 2015; Silipo, Gautrey ¢ Tyson-
Capper, 2015). In PAAD, SFs also exhibit potential effective functions in many ways.
Adesso et al. (2013) found that silencing SRSF1, a member of the arginine/serine-rich
splicing factor protein family, could facilitate apoptosis induced by gemcitabine via the
MNK/eIF4E pathway (Adesso et al., 2013). This finding offers an alternative way to enhance
gemcitabine efficiency in PAAD. However, studies with a focus on the functions of SFs in
PAAD are still scarce. A comprehensive analysis to determine the clinical value of SFs in
PAAD is urgently needed.

Here, we systematically analyzed the clinical significance of SFs in PAAD and provided
clinically practicable molecular biomarkers. More importantly, a prognostic index (PI)
based on the expression profiles of SFs was proposed, which offers excellent survival
prediction. Moreover, we also explored the clinical significance of alternative splicing (AS)
events. The PI based on AS events also demonstrated a satisfactory prognosis prediction
performance. In addition, the SF-AS regulatory network also provides novel insight into
the molecular function of SFs in PAAD.

METHODS

Data acquisition

A catalog of 404 SF genes was obtained from a previous study (Seiler et al., 2018).

The fragments per kilobase of transcript per million mapped reads (FPKM) data

of PAAD patients were downloaded from the Cancer Genome Atlas (TCGA, https:
//cancergenome.nih.gov/) database using the TCGAbiolinks R software package (Colaprico
et al., 2016). The corresponding clinical annotation had also been downloaded and
extracted from the TCGA database. Gene name annotation was performed using an
ensemble database (GRCh38.95). Next, the FPKM expression data were quantified to
“transcripts per million” (TPM) data and normalized to the log2 (TPM+1) data type.
Then, normalized TPM data was used for subsequent analysis.

Survival analysis

The R package survival outputs were used for univariate COX analysis of selected prognosis-
associated SFs. To obtain more accurate results, only PAAD patients with an overall
survival (OS) greater than 90 days were included in the survival analysis. Then, we further
conducted gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

Rong et al. (2020), PeerdJ, DOI 10.7717/peerj.8380 2118


https://peerj.com
https://cancergenome.nih.gov/)
https://cancergenome.nih.gov/)
http://dx.doi.org/10.7717/peerj.8380

Peer

pathway functional enrichment analysis to reveal the potential molecular functions of
prognosis-related SFs. The GO analysis mainly includes biological processes (BPs), cellular
components (CCs), and molecular function (MF). The gene functional enrichment analysis
was conducted using the “clusterProfiler” package in R software (Yu et al., 2012).

Survival-associated alternative splicing events

SFs performed their molecular function mainly by regulating the AS events process
(Papasaikas & Valcdreel, 2016). We further systematically analyzed the prognostic value of
alterations in AS events in PAAD and the associations between SFs and AS events. Transcript
and splicing event details of cross-tumors of TCGA RNA-seq data were downloaded from
the TCGA SpliceSeq database (https://bioinformatics.mdanderson.org/TCGASpliceSeq/)
(Gao et al., 2019; Lin et al., 2019; Lin et al., 2018; Ryan et al., 2016; Zhang et al., 2018). The
SpliceSeq database quantified the seven AS events, including Alternate Acceptor Site (AA),
Alternate Donor Site (AD), Alternate Promoter (AP), Alternate Terminator (AT), Exon
Skip (ES), Mutually Exclusive Exons (ME), and Retained Intron (RI), by calculating a
percent-splice-in (PSI) value. The PSIs ranged from 0-1. A PSI value of an ES event of
0.8 indicates that the exon is contained in approximately 80% of the transcripts in the
sample. We used splice event filters according to the following conditions: (1) Percentage
of samples with a PSI > 75% and (2) a minimum PSI standard deviation > 0.1. The
missing value was filled using the k-Nearest Neighbor (KNN) method. The KNN was
conducted with the Impute package in R software. Next, we integrated the PSI values of
AS events and the survival data of PAAD and conducted a univariate COX analysis to
identify prognosis-associated AS events. AS events with a P-value < 0.005 were identified
as prognosis-associated AS events.

Construction of a Pl

To develop a PI based on the expression profiles of SFs genes, a least absolute shrinkage
and selection operator (LASSO) was conducted. Any SFs genes with P-values < 0.005
were identified as most the significant prognosis-related genes. Then, the selected most
significant prognosis-related SFs were further screened and confirmed by the LASSO
regression. The classifier was trained using 10-fold cross-validation to determine the
optimal parameter configuration. The PI was established with the following formula: PI =
expression level of SF 1 * B1 + expression of SF 2 * 82 + ...expression of SF nx § n. We
generated a risk score for each patient based on the PI. Then, PAAD patients were placed
into groups of two according to the median value of PI (Qin et al., 2019).Furthermore,
we used another gene expression dataset that were publicly available and reported clinical
outcome information to be used as validation cohort. Gene expression matrix of pancreatic
tumors patients in GSE62452 dataset was downloaded from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/).

Similarly, the top 20 AS values that were closely related to the prognosis (except the
number of ME <20) were subjected to a LASSO COX analysis to develop a PI based on AA,
AD, AP, AT, ES, ME, and RI, respectively. Then, a final PI was generated by submitting the
top 20 AS events for a LASSO COX analysis. The time-dependent incident dynamic ROCs
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with area under the curve (AUC) values were calculated to estimate the performance of
each model (Blanche, Dartigues & Jacqmin-Gadda, 2013).

SF-AS regulatory network

To construct an SF-AS regulatory network and learn more about the PI we proposed, we
analyzed the relationships between SFs genes included in the PI and OS associated AS
events. Co-expression relationships were identified by Pearson correlation analysis, and
the threshold was set to correlation coefficient r > |0.6| with a P-value <0.05.

RESULTS

Identification of prognosis-associated SFs
After removing those with an OS of less than 90 days, 166 total PAAD patients were
included in the present study and were comprised of 90 (54.2%) male and 76 (45.8%)
female patients. By integrating 404 SF gene expression profiles and the survival data, we
conducted a univariate COX analysis and found 93 SFs genes were correlated with the OS
of PAAD patients (P < 0.05). The top 20 most significant SFs are listed in Fig. 1.

Gene functional enrichment analysis revealed that prognosis-related SFs genes were
classified into 61 BPs, 21 CCs, 24 MF, and 3 KEGG pathways. For BPs, the three most

» <

significant categories were “RNA splicing,” “mRNA processing,” and “RNA splicing
via transesterification reactions with bulged adenosine as nucleophile” (Fig. 2A). For
CCs, the three most significant terms were “spliceosomal complex,” “small nuclear
ribonucleoprotein complex,” and “spliceosomal snRNP complex” (Fig. 2B). For MF,
these genes were mainly involved in “snRNA binding,” “mRNA binding,” and “pre-
mRNA binding” (Fig. 2C). Furthermore, we found these SFs genes mainly participated in

“spliceosome,” “mRNA surveillance pathway,” and “RNA transport pathways” (Fig. 2D).

Development of a Pl based on SFs

We suspected that a gene set could exhibit more accurate survival prediction performance
than a single gene. Therefore, we constructed an SF-based PI according to the results
of the LASSO COX analysis (Fig. 3). This analysis was conducted using the most
significant SFs (P < 0.005). Finally, 12 SFs were included in the PI, including DDX21,
GPATCH3, IGF2BP3, MYEF2, NRIP2, PTBP3, RBM10, RBM14, RBM5, SRPK1, XAB2,
and YBX3. The constructed PI based on the 12 SFs = [DDX21 * 0.204800595 +
GPATCH3 * (—0.075547356) + IGF2BP3 *0.060551219 + MYEF2 * (—0.16140842)

+ NRIP2 * (—0.274848438) + PTBP3 *0.217746846 + RBM10 * (—0.096000129) +
RBM14 * (—0.147396111) + RBMS5 * (—0.289524669) + SRPK1 *0.031528808 + XAB2
*(—0.051783325) + YBX3 * 0.30845434]. Each patient was generated a PI (Fig. 4A). We
found that the patients could be separated into two groups with distinct clinical outcomes
based on the median PI (Fig. 4B). The heatmap also showed that the included SFs were
differentially expressed between the high- and low-risk groups (Fig. 4C). K-M plots were
generated to reveal the survival significance of genes included in the prognostic signature
(Fig. 5). Based on the SF-based PI median value, PAAD patients could be separated into two
groups with distinct clinical outcomes (Fig. 6A). The AUC was 0.734 in 3 year (Fig. 6B). In
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Figure 1 The top 20 most significant survival-associated splicing factors.
Full-size Gal DOI: 10.7717/peer;j.8380/fig-1

the validation cohort, patients in high-risk group suffered poorer survival near to statistical
significance (Fig. 6C). The AUC was 0.681 in 3 year (Fig. 6D).

Identification of prognosis-associated AS events

We obtained 10,354 AS events for the survival analysis, including 656 AA, 705 AD, 3181
AP, 1394 AT, 3494 ES, 62 ME, and 862 RI. We found that the 26 AA, 35AD, 297 AP, 122
AT, 230 ES, 6 ME, and 70 RI events were most significantly correlated with the OS of
PAAD patients (P < 0.005). LASSO COX analyses were conducted based on the top 20
most significant OS-associated SFs. Seven PIs based on AA, AD, AP, AT, ES, ME, and RI
were finally constructed (Fig. 7). According to the final PI based on AS events, a PI was
generated for each patient (Fig. 8A). We found that the patients could be separated into two
groups with distinct clinical outcomes based on the median PI (Fig. 85). The heatmap also
showed that the included AS events were differentially expressed between the high- and
low-risk groups (Fig. 8C). The time-dependent ROC of PI based on AS events indicated
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Figure 2 Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis of survival associated splicing factors. (A) “RNA splicing,” “mRNA processing,” and “RNA splic-
ing via transesterification reactions with bulged adenosine as a nucleophile” are the three most significant
biological process terms. (B) “Spliceosomal complex,” “small nuclear ribonucleoprotein complex,” and
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some,” “mRNA surveillance pathway,” and “RNA transport.”
Full-size Gl DOI: 10.7717/peer;j.8380/fig-2

that the final PI possessed the highest AUC (Fig. 9A). The AUCs of SF-based PI, AS-based
PI, and TNM are also displayed (Fig. 9B).

SF-AS regulatory network

AS events are mainly regulated by just a few SFs. Therefore, we decided to explore the
prospective regulatory mechanism between SFs and AS events in PAAD. A Pearson
correlation analysis was performed and suggested that 33 favorable AS events (blue dots)
and 6 risky AS events (red dots) were closely related to the 4 SFs (green dots) (Fig. 10).

DISCUSSION

We performed a survival analysis focused on the clinical significance of SFs in PAAD
based on one of the largest available cancer genomics datasets to develop an excellent
prognostic risk score. Although systematic analyses of somatic mutations, copy numbers,
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gene expression patterns, and associated AS events have been reported (Neelamraju et
al., 2018; Sebestyén et al., 2016), many important issues in the field remain unresolved,
especially the unique clinical value of SFs in PAAD. Moreover, the AS events related to SFs
could also provide novel insight into the molecular function of SFs in PAAD.

PAAD is one of the most lethal cancers and causes a high morbidity. Hence, exploration
of the impact of multiple molecular biomarkers is crucial for a prognosis evaluation.
Previously, several studies have proposed prognostic signatures for survival prediction.
Previously, several studies have proposed prognostic signatures for survival prediction. For
example, Yu, Feng & Cang (2018) integrated the miRNA-expression profiles and clinical
information of 168 PAAD patients in the TCGA database and developed a two-microRNA
signature for the diagnosis and prognosis assessment. Similarly, Shi er al. (2018) proposed
a three-IncRNA signature for potential survival prediction, and this signature served as an
independent prognostic predictor in PAAD. ROC of the 3-IncRNA signature was 0.716,
which is slightly lower than the present study. Researchers have also provided a five-
IncRNAs signature that could act as a potential prognostic indicator for PAAD patients by
mining the TCGA database (Song et al., 2018). The AUC for the six-IncRNA biomarkers
prognostic model was 0.727 at 5 years of OS. These findings provide alternative clinically
selectable indicators for PAAD surveillance. The prognostic signature we proposed have
well performance when compared with previous molecular index. However, the prognostic
signatures proposed based on the global alterations of genes could only provide limited
information. In the present study, we proposed a risk score that was mainly focused on
the expression profiles of SFs in PAAD. Because the roles of SFs in PAAD have not been
fully explored, more studies are needed to reveal their clinical significance. New findings
about the relationships between SFs and AS events could offer a broader insight into the
molecular process of PAAD.
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Figure 5 Kaplan—Meier survival plots showed the clinical significance of the splicing factors included
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Full-size & DOI: 10.7717/peer;j.8380/fig-5

We finally proposed a prognostic signature based on 12 SFs. Interestingly, some of
these 12 SFs have been reported in PAAD. Schaeffer et al. (2010) concluded that IGF2BP3
was upregulated in PAAD, and its overexpression indicated poor survival based upon an
immunohistochemical analysis of 127 PAAD patients. This result was consistent with our
findings. Subsequent analyses revealed that IGF2BP3 could promote cell invasiveness and
the metastasis of pancreatic cancer (Taniuchi et al., 2014). RBM5 has also been proven to be
downregulated in pancreatic cancer, and reduced RBMS5 expression has a close association
with poor clinicopathological features (Perng et al., 2013). Furthermore, Hayes et al. (2006)
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reported that knockdown of the expression levels of SRPK1 in pancreatic tumor cells could
decrease the proliferative capacity and increase the apoptotic potential of pancreatic tumor
cells. These results suggest that SRPK1 could be an effective therapeutic target for pancreatic
cancer. Previous reports about the SFs we proposed provide some evidence about their
crucial functions. Although previous studies have mentioned their clinical significance and
molecular function, a comprehensive exploration is still needed.

The prognosis anticipating value of AS events was widely explored recently for its
limitless potential for clinical applications. Several studies have attempted to investigate
the prognostic value of AS events in several types of cancer. For example, some researchers
have explored the prognostic value of AS events in lung cancer (Li et al., 2017). This
groundbreaking research pointed out the well-known value of AS events. Subsequently,
researchers found that AS exhibited an effective prognosis prediction value in thyroid cancer
(Lin et al., 2019), gastrointestinal pan-adenocarcinomas (Lin ef al., 2018), and diffuse large
B-cell lymphoma (Zhang et al., 2018). Algorithmically, the established prognostic models
were based on the PSI value. This value is a useful method for quantifying AS events
and demonstrating its clinical value. To the best of our knowledge, we are the first
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Figure 7 Kaplan—Meier survival plots showed the stratification of the prognostic index based on alternative splicing events. (A) Acceptor Site,
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and (H) all types of AS events.
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group to integrate the clinical parameters and PSI values of AS events. In this study, we
also constructed an SF-AS potential regulatory network, which provides the underlying
mechanisms of SFs in PAAD. Indeed, many survival associated splicing events has been
validated. For example, previous study has reported that VEGFA/76336/ES significantly
associated poor survival in pancreatic cancer (Zhang et al., 2017). Furthermore, many SFs
have been validated important in splicing regulation and regulate the processes of tumors.
RBMS5 could promote exon 4 skipping of AID pre-mRNA (Jin et al., 2012). YBX3 was found
to be related to spliceosomes in large-scale spliceosome capture and mass spectrometry
analyses (Rappsilber et al., 2002).

As the present study was based on an in silico analysis, there are several inevitable
limitations that should be mentioned. First, no other independent study, especially a
prospective study, has validated the prognostic signatures we proposed. Second, the
clinical parameters related to the prognosis of PAAD have not been fully investigated.

CONCLUSIONS

In conclusion, we systematically explored the clinical significance of SFs in PAAD patients.
More importantly, a prognostic signature based on the prognosis-associated SFs was
constructed to separate PAAD patients into two groups with distinct clinical outcomes.
These findings could provide more information about the clinical value of SFs. The SF-AS
regulatory network provided information regarding the molecular functions of SFs.
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