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Abstract. Glioblastoma (GBM) is the most common type 
of malignant tumor of the central nervous system. The 
prognosis of patients with GBM is very poor, with a survival 
time of ~15  months. GBM is highly heterogeneous and 
highly aggressive. Surgical removal of intracranial tumors 
does provide a good advantage for patients as there is a high 
rate of recurrence. The understanding of this type of cancer 
needs to be strengthened, and the aim of the present study 
was to identify gene signatures present in GBM and uncover 
their potential mechanisms. The gene expression profiles 
of GSE15824 and GSE51062 were downloaded from the 
Gene Expression Omnibus database. Normalization of the 
data from primary GBM samples and normal samples in the 
two databases was conducted using R software. Then, joint 
analysis of the data was performed. Gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed, and the protein‑protein 
interaction (PPI) network of the differentially expressed 
genes (DEGs) was constructed using Cytoscape software. 
Identification of prognostic biomarkers was conducted 
using UALCAN. In total, 9,341 DEGs were identified in the 
GBM samples, including 9,175 upregulated genes and 166 
downregulated genes. The top 1,000 upregulated DEGs and 
all of the downregulated DEGs were selected for GO, KEGG 

and prognostic biomarker analyses. The GO results showed 
that the upregulated DEGs were significantly enriched in 
biological processes (BP), including immune response, cell 
division and cell proliferation, and the downregulated DEGs 
were also significantly enriched in BP, including cell growth, 
intracellular signal transduction and signal transduction by 
protein phosphorylation. KEGG pathway analysis showed that 
the upregulated DEGs were enriched in circadian entrainment, 
cytokine‑cytokine receptor interaction and maturity onset 
diabetes of the young, while the downregulated DEGs were 
enriched in the TGF‑β signaling pathway, MAPK signaling 
pathway and pathways in cancer. All of the downregulated 
genes and the top 1,000 upregulated genes were selected to 
establish the PPI network, and the sub‑networks revealed 
that these genes were involved in significant pathways, 
including olfactory transduction, neuroactive ligand‑receptor 
interaction and viral carcinogenesis. In total, seven genes 
were identified as good prognostic biomarkers. In conclusion, 
the identified DEGs and hub genes contribute to the 
understanding of the molecular mechanisms underlying the 
development of GBM and they may be used as diagnostic 
and prognostic biomarkers and molecular targets for the 
treatment of patients with GBM in the future.

Introduction

Glioma is the most common type of tumor in the central 
nervous system. According to the literature (1,2), the incidence 
of gliomas is ~12 per 100,000 people and the proportion of 
intracranial tumors that are gliomas is ~35‑60%, which is a 
serious harm to human health. As stated in the pathological 
classification of the WHO (2007) (3), the degree of differ-
entiation of tumor cells can be divided into four levels, with 
the higher the grade of the tumor, the worse the prognosis 
of the patient with GBM. Level IV of the WHO classifica-
tion has a very poor prognosis. According to statistics, 
each year ~77,000 new cases of patients with glioblastoma 
(GBM) are diagnosed in the United States and Europe, but 
the follow‑up 5‑year survival rate is <3% (4). Compared with 
other pathological types of glioma, the survival of patients 
with GBM is also calculated weekly and the majority of 
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patients with GBM die due to tumor recurrence. It is therefore 
imperative to find a new solution in order to treat patients 
with GBM.

Due to the popularization and development of supercom-
puter technology, high‑throughput platforms for the analysis 
of gene expression are growing. Microarray analysis and 
next‑generation sequencing are increasingly valued as essential 
tools in the field of medical oncology, with great clinical appli-
cations such as molecular classification of cancers, molecular 
diagnosis, prognosis prediction, patient stratification, tumor 
response prediction and new drug targets discovery (5‑7). A 
number of tumor‑related databases have been established, 
such as Gene Expression Omnibus (GEO) (8) and TCGA (9). 
Further, the uses of bioinformatics analysis are changing 
constantly. The 2016 edition of the WHO pathological grading 
criteria was the first to include guidelines for the molecular 
markers of glioma, indicating that genetic molecular diagnosis 
and gene analysis of the disease play an increasingly important 
role (10).

In the present study, original data (GSE15824 and 
GSE51062) were downloaded from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/). A combined analysis 
was conducted using limma package  (11) in R software 
(version  3.3.2). In total, 74  GBM samples and 5  normal 
samples were selected to identify differentially expressed 
genes (DEGs). Subsequently, the DEGs were screened using 
Morpheus online software (https://software.broadinstitute.
org/morpheus/), followed by Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses. By analyzing the biological functions 
and pathways of the DEGs, the present study provides insight 
into the development of GBM at the molecular level and iden-
tifies candidate biomarkers for the future treatment, diagnosis 
and prognosis of patients with GBM.

Materials and methods

Microarray data. GSE15824 and GSE51062 were down-
loaded from the GEO database. Both datasets were based 
on the Affymetrix GPL570 platform (Affymetrix Human 
Genome U133 Plus 2.0 Array). In total, 5 normal samples and 
22 primary GBM samples from GSE15824 and 52 primary 
GBM samples from GSE51062 were selected.

Data quality control. Affy package (12) R software was used 
to perform quality control of all of the microarray CEL files 
and RNA degradation plots were drawn at the same time. 
Good uniformity of the curve due to the quality of the RNA 
extraction with a small level of error laid the foundation for the 
merging operation of the two datasets.

Identification of DEGs. Analysis of gene expression was 
conducted using limma package (11) in R software. The Affy 
package (12) Robust Multichip Average (13) algorithm was 
used to identify DEGs with a fold‑change ≥2 and a P‑value 
cutoff of <0.05 was defined as statistically significant. A 
heatmap of the DEGs was produced using Morpheus online 
software and it showed the top 10 upregulated and downregu-
lated genes, respectively. All significant DEGs were shown in 
a volcano plot generated using R software.

GO and pathway enrichment analyses of DEGs. GO analysis 
is a common and useful method for annotating genes and gene 
products and for identifying characteristic biological attributes 
of high‑throughput genome or transcriptome data  (14,15). 
KEGG (http://www.genome.jp/) is a well‑known database 
for systematic analysis of gene functions in biological path-
ways, which links genomic information with higher‑order 
functional information (16). The DEGs were mapped to the 
relevant biological annotation using the DAVID online data-
base (https://david.ncifcrf.gov/) (17). DAVID is an essential 
online tool for high‑throughput gene functional analysis, 
which provides the functionality to perform simultaneous 
GO and KEGG analysis. P<0.05 was considered to indicate a 
statistically significant difference.

Integration of protein‑protein interaction (PPI) network and 
module analysis. Search Tool for the Retrieval of Interacting 
Genes (18) (STRING, version 10.0, http://string‑db.org/) was 
used to conduct PPI network and module analysis. STRING 
(version 10.0) includes 9.6 million proteins from 2,031 organ-
isms. These proteins have 184 million interactions. The top 
1,000 upregulated DEGs and all of the downregulated DEGs 
were uploaded to the search tool. Only experimentally‑validated 
interactions with a combined score >0.4 were selected as 
significant. The whole giant network was then inputted into 
Cytoscape  (19) software (version 3.4) to evaluate primary 
modules of the PPI sub‑network using the plug‑in Molecular 
Complex Detection (MCODE). The criteria were set as default. 
GO analysis and KEGG pathway enrichment analyses were 
performed for DEGs in the modules using DAVID. P<0.05 
was considered to indicate a statistically significant difference.

Identification of prognostic biomarker. UALCAN  (20) 
(http://ualcan.path.uab.edu) was used to identify prognostic 
biomarkers in the top 100 regulated DEGs. UALCAN was used 
to construct an algorithm based on the TCGA level 3 RNA‑seq 
database. All data were divided into 31 types according to the 
type of cancer. The top 100 upregulated and downregulated 
DEGs, respectively, were uploaded to the UALCAN GBM 
database. P<0.05 was considered to indicate a statistically 
significant difference. The influence of genes and sex as an 
influencing factor on the prognosis of disease were retrieved. 
Genes with insufficient data were automatically eliminated.

Results

Microarray chip quality control. Affy package in R software 
was used to conduct quality control of all of the microarray 
CEL files. The RNA degradation plot shows that the two data-
sets exhibit a good consistency in the slope of the line. All of 
the samples have a lower numerical value in the 5' end, which 
is shown in Fig. 1.

Identification of DEGs. A total 74 primary GBM samples and 
five normal samples were analyzed. By using R software and 
the Morpheus online tool, 9,341 DEGs were identified in the 
GBM samples, which included 9,175 upregulated genes and 
166 downregulated genes. A heatmap of the top 10 upregu-
lated and downregulated DEGs, respectively, was produced 
using the Morpheus online tool. A volcano plot of all of the 
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DEGs was generated using ggplot2 package and R software. 
The heatmap and volcano plot are shown in Figs. 2 and 3, 
respectively.

GO term enrichment analysis. The online software DAVID 
was used to identify overrepresented GO categories and 
KEGG pathways. The top 1,000 upregulated DEGs and all of 
the downregulated DEGs were uploaded to the gene list sepa-
rately. GO analysis showed that the upregulated DEGs were 
significantly enriched in biological processes (BP), including 

defense response, nervous system development and cell devel-
opment. The downregulated DEGs were also significantly 
enriched in BP, including regulation of signaling, positive 
regulation of transport and regulation of cell communica-
tion. As for molecular function, the upregulated DEGs were 
enriched in molecular transducer activity, receptor activity 
and transmembrane receptor activity and the downregulated 
DEGs were enriched in cytokine receptor binding, metal ion 
binding and growth factor activity. In addition, with regards 
to cell components, the upregulated DEGs were enriched in 
intrinsic component of plasma membrane, integral component 
of plasma membrane and extracellular space, and the down-
regulated DEGs were enriched in regulation of signaling, 
positive regulation of transport and regulation of cell commu-
nication. The results are shown in full in Fig. 4.

KEGG pathway analysis. The enrichment of the top 
1,000 upregulated DEGs and all of the downregulated DEGs 
was identified using KEGG analysis separately. The top 
1,000 upregulated DEGs were enriched in circadian entrain-
ment, cytokine‑cytokine receptor interaction and maturity 
onset diabetes of the young, while all of the downregulated 
DEGs were enriched in TGF‑β signaling pathway, MAPK 
signaling pathway and pathways in cancer. The results are 
shown in full in Table I.

Module screening from the PPI network. All of the down-
regulated DEGs and the top 1,000 upregulated DEGs were 
uploaded to STRING to draw the PPI network (data not 
shown). Cytoscape was used to evaluate primary modules 
of the PPI sub‑network using the plug‑in MCODE. A total 
of 1,222 nodes and 5,223 edges were analyzed in Cytoscape 
and the top two sub‑networks are displayed in Fig. 5. There 
are 42 genes involved in sub‑network 1, 13 genes involved in 
sub‑network 2 and 47 genes involved in sub‑network 3. GO 
and KEGG analyses were conducted separately for genes 
in the three top‑score sub‑networks. All of the results are 
shown in Tables II and III. In addition, the top 10 hub genes 
were identified using STRING software and were as follows: 
AURKB, RACGAP1, MCM2, MCM5, TGFBR1, SMAD3, 
RPN1, RPN2, VEGFC and FLT4.

Identification of prognostic biomarkers. After verification, the 
top four genes related to survival were identified as prognostic 
biomarkers of GBM and were as follows: RANBP17, ZNF734, 
NLRP2 and GPR1. In addition, the top four prognostic genes 
affected by sex were also identified and were as follows: 
CCDC81, NLRP2, SH3RF1 and TM7SF4. All of the results 
are shown in Figs. 6 and 7.

Discussion

Given the heterogeneity of GBM, which includes a variety 
of gene expression patterns and imaging‑based phenotypes, 
understanding the molecular mechanism of GBM is of critical 
importance for the diagnosis and treatment of patients with 
GBM (21). As high‑throughput sequencing and microarray 
analyses provide data on thousands of expressed genes in the 
human genome simultaneously, these techniques have been 
widely used to predict the potential therapeutic targets for 

Figure 1. RNA degredation plot of GEO dataset. (A) RNA degredation plot 
of GSE15824; (B) RNA degredation plot of GSE51062; (C) RNA degredation 
plot of GSE51062 and GSE15824. GEO, Gene Expression Omnibus.



ZHOU et al:  BIOINFORMATICS ANALYSES OF CANDIDATE BIOMARKERS FOR GLIOBLASTOMA4188

GBM. In the present study, data from two datasets, GSE15824 
and GSE51062, was extracted to identify the DEGs between 
GBM and normal brain control samples. The results showed 
that there are 9,175 upregulated and 166 downregulated DEGs 
between the GBM and normal brain control samples by using 
bioinformatics analysis. According to the function annotation 
results of the data, these DEGs were mainly involved in the 
defense response, cell development, regulation of signaling 
and of cell communication. By analyzing the PPI network, 
a number of key genes were identified that may provide new 
approaches for therapeutic studies of GBM.

In the present study, microarray data of 74 GBM samples 
and 5 normal brain control samples were downloaded from 
the GEO datasets under the accession numbers GSE15824 and 

GSE51062. Using a series of essential packages in R software, 
all raw CEL data from the two datasets was extracted and micro-
array chip quality control was conducted. It is worth noting that 
there were many more upregulated than downregulated genes. 
In order to understand the interactions of the DEGs, GO and 
KEGG pathway analyses were performed. GO term analysis of 
the top 1,000 upregulated genes and all of the downregulated 
genes showed that the upregulated DEGs were mainly involved 
defense response, nervous system development and cell develop-
ment, and the downregulated DEGs were involved in regulation 
of signaling, positive regulation of transport and regulation of 
cell communication. Genes that control tumor progression and 
enhancement of tumor defense were upregulated and genes 
that control tumor signaling and cell communication were 

Figure 2. Volcano plot of all significant DEGs, including 9,175 upregulated genes and 166 downregulated genes. TRUE means genes alternation over the 
threshold by default set. FALSE means genes alternation under the threshold by default set. The default set of threshold was foldchange ≥2, P≤0.05. DEGs. 
differentially expressed genes.

Figure 3. Heatmap of top 10 upregulated DEGs and top 10 downregulated DEGs. Red, upregulation; Blue, downregulation. The value of expression intensity 
are based on the gene expression level analysis by R software. DEGs. differentially expressed genes.
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Figure 4. Top 10 GO analysis of top 1,000 upregulated and all downregulated DEGs associated with GBM. (A) Top 10 BP of upregulated DEGs; (B) Top 10 CC 
of upregulated DEGs; (C) Top 10 MF of upregulated DEGs; (D) Top 10 BP of downregulated DEGs; (E) Top 10 CC of downregulated DEGs; (F) Top 10 MF of 
downregulated DEGs. GO, Gene ontology; DEGs. differentially expressed genes; BP, biological processes; CC, cellular component; MF, molecular function.
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downregulated, which shows genome alteration consistent with 
the clinical manifestations. As observed in clinical practice, 
many patients with low‑grade gliomas develop a high‑grade 
glioma after recurrence. Genes controlling tumor progression 
may be good biomarkers for postoperative recurrence moni-
toring. A previous study has indicated that MGMT methylation 
status has great importance in tumor prognosis, especially in 
patients who have undergone the first surgery (22). Although 
MGMT methylation status was not reflected in the 2016 edition 

of the WHO pathological grading criteria, it is still an influential 
gene biomarker for the prognosis of patients with GBM.

KEGG analysis of the upregulated genes in the present 
study identified that they are mainly involved in cytokine 
relevant pathways and ligand‑receptor relevant pathways, 
including the pathway of neuroactive ligand‑receptor interaction, 
cytokine‑cytokine receptor interaction and Jak‑STAT signaling 
pathway. The downregulated genes were mainly involved in 
pathways of classical tumor signaling, including TGF‑β signaling 

Table I. KEGG pathway analysis of DEGs associated with GBM.

A, Upregulated

		  Gene	
Pathway ID	 Name	 count	 %	 P‑value	 Genes

hsa04713	 Circadian entrainment	 18	 1.20	 4.60E‑04	 ADCY1, ADCYAP1R1, GRIA3, KCNJ3, 
					     KCNJ5, RPS6KA5, GNGT1, FOS, GRIA2, 
					     RYR3, RYR1, RYR2, GUCY1A3, GUCY1B3, 
					     ADCY10, RASD1, GNG7, MTNR1A
hsa04060	 Cytokine‑cytokine	 31	 2.07	 0.0013	 OSMR, BMPR2, TNFSF15, CXCL11, PF4V1,
	 receptor interaction				    IFNA2, IFNA1, IL23A, IFNA6, CXCR4, 
					     IL10RB, TNFRSF19, IFNA8, IFNK,
					     IL13RA1, THPO, IL3, IL18RAP, IL5, FLT4, 
					     TGFBR1, IL9, IL26, TNFSF8, CCR8, 
					     TNFSF11, PRLR, PPBP, PDGFRB, IL12B, 
					     IL22RA2
hsa04950	 Maturity onset diabetes	 8	 0.54	 0.0021	 ONECUT1, FOXA3, IAPP, SLC2A2, PAX4, 
	 of the young				    HNF4G, NR5A2, NKX2‑2
hsa04080	 Neuroactive ligand‑receptor	 34	 2.28	 0.0035	 OPRM1, GLRA1, DRD3, TACR1,
	 interaction				    ADCYAP1R1, GABBR1, GNRHR, SCTR,
					     AGTR2, S1PR1, GRID2, TAAR1, TAAR2, 
					     GABRD, GABRA4, RXFP3, RXFP2, GRIA3, 
					     NPY1R, NTSR2, FSHR, P2RX7, P2RY10, 
					     ADRB2, GABRR1, PRLR, CHRM3, GRIA2, 
					     P2RX3, CHRNB4, ADRA1B, ADRA1A,
					     GHSR, MTNR1A
hsa04630	 Jak‑STAT signaling	 19	 1.27	 0.0185	 PIK3CG, IL3, IL5, OSMR, IL9, IFNA2,
	 pathway				    IFNA1, IL23A, PRLR, IFNA6, IL10RB,
					     IFNA8, IL12B, IFNK, IL13RA1, MYC,
					     THPO, IL22RA2, IL13RA2

B, Downregulated

		  Gene	
Pathway ID	 Name	 count	 %	 P‑value	 Genes

hsa04350	 TGF‑β signaling pathway	 4	 2.70	 0.0181	 BMP4, INHBA, NOG, GDF5
hsa04010	 MAPK signaling pathway	 6	 4.05	 0.0262	 CACNA2D1, BDNF, NTF3, RASGRF2, 
					     PPP3CB, CHUK
hsa05200	 Pathways in cancer	 7	 4.73	 0.0445	 BMP4, VEGFC, CCND1, GNAI1, HHIP, 
					     FZD5, CHUK
hsa05217	 Basal cell carcinoma	 3	 2.03	 0.0515	 BMP4, HHIP, FZD5
hsa04068	 FoxO signaling pathway	 4	 2.70	 0.0591	 CCND1, PLK2, IRS1, CHUK

GBM, glioblastoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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pathway, MAPK signaling pathway, pathways in cancer, basal 
cell carcinoma and FoxO signaling pathway (23‑28). It is note-
worthy that a number of the downregulated genes (BMP4, FZD5 
and HHIP) in the GBM samples are involved in the basal cell 
carcinoma pathway, which may be because GBM originates 
from the source of nerve epithelium. These three genes may 
exert some of the same effects in both basal cell carcinoma and 
GBM. On the other hand, it is also notable that the majority of the 
downregulated genes are not involved in KEGG pathways and 
therefore exist in a scattered form.

The PPI network of the DEGs was constructed using the 
plug‑in MCODE in Cytoscape and the top degree hub genes 
were listed as follows: AURKB, RACGAP1, MCM2, MCM5, 
TGFBR1, SMAD3, RPN1, RPN2, VEGFC and FLT4. These 
genes were identified by the degree of connection of every 
gene according to the connectivity measured by the prior 

analysis with STRING. All of the hub genes are upregu-
lated except VEGFC. AURKB was identified as one of the 
hub genes which exhibits the highest degree of connectivity. 
AURKB encodes Aurora B, which is an important kinase that 
regulates cell mitosis. A recent study claims that Aurora B 
activity is an important modulator of the taxane response in 
non‑small cell lung cancer cells (29). A 2012 study of GBM 
showed that inhibition of Aurora kinases enhances chemo-
sensitivity to temozolomide and causes radiosensitization in 
GBM cells (30). RACGAP1 encodes Rac GTPase activating 
protein 1, a component of the centralspindlin complex that 
serves as a microtubule‑dependent and Rho‑mediated signal 
required for myosin contractile ring formation during cell 
cycle cytokinesis. RACGAP1 plays key roles in the control of 
cell growth and differentiation of hematopoietic cells through 
mechanisms other than regulating Rac GTPase activity. A 

Figure 5. Top 2 primary modules of PPI sub‑network by plug‑in MCODE in Cytoscape software. (A) module 1; (B) module 2. PPI, protein‑protein interaction; 
MCODE, Molecular Complex Detection.
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previous study showed a strong connection in the expression 
of AURKA and RACGAP1 (31). However, there is a lack of 
data regarding whether AURKB has a strong connection with 
the expression of RACGAP1. MCM2 and MCM5 regulate cell 
proliferation. A study in 2017 showed that MCM2 can be used 
as an alternative to Ki‑67 for measuring breast cancer cell 
proliferation (32). MCM5 also has a regulatory effect in cell 
proliferation (33). There is little research regarding MCM2 
and MCM5 in GBM. As for TGFBR1, a study in 2016 showed 
that mi‑181c inhibits cell invasion, migration and mesen-
chymal transition by downregulating TGFBR1 (34). SAMD3 

is also a miR‑regulated target in GBM (35). As shown in the 
present study, these six genes are all involved in the cell cycle. 
TGFBR1, SMAD3, VEGFC and FLT4 are involved in the regu-
lation of epithelial cell proliferation. VEGFC has been shown 
to have an important role in GBM angiogenesis (36). FLT4 has 
been found to be differentially expressed in angiosarcoma of 
the breast and lymphatic filariasis (37,38). However, to the best 
of our knowledge, there are no studies concerning FLT4 in 
GBM. Previous studies have shown that little is known about 
these two genes (VEGFC, FLT4). RPN1 has been demon-
strated to function in proteasome‑mediated proteolysis (39). 

Table II. GO analysis of top 3 primary modules of PPI sub‑network genes.

Sub‑network 	 Category	 Term/gene function	 Gene count	 %	 P‑value

Module 1	 GOTERM_BP_FAT	 GO:0007186~G‑protein coupled	 41	 97.62	 3.95E‑44
		  receptor signaling pathway
	 GOTERM_BP_FAT	 GO:0007606~sensory perception	 21	  50	 1.25E‑19
		  of chemical stimulus
	 GOTERM_BP_FAT	 GO:0050907~detection of chemical	 20	 47.62	 4.32E‑19
		  stimulus involved in sensory perception
	 GOTERM_MF_FAT	 GO:0004930~G‑protein coupled receptor activity	 31	 73.81	 7.39E‑29
	 GOTERM_MF_FAT	 GO:0004871~signal transducer activity	 35	 83.33	 6.72E‑26
	 GOTERM_MF_FAT	 GO:0004888~transmembrane signaling	 31	 73.81	 6.75E‑24
		  receptor activity
	 GOTERM_CC_FAT	 GO:0098552~side of membrane	   8	 19.05	 4.08E‑06
	 GOTERM_CC_FAT	 GO:0005834~heterotrimeric G‑protein complex	   4	 9.52	 1.84E‑05
	 GOTERM_CC_FAT	 GO:0031226~intrinsic component of	 12	 28.57	 2.00E‑05
		  plasma membrane
Module 2	 GOTERM_BP_FAT	 GO:0007200~phospholipase C‑activating	   7	 58.33	 4.05E‑11
		  G‑protein coupled receptor signaling pathway
	 GOTERM_BP_FAT	 GO:0007186~G‑protein coupled receptor	 11	 91.67	 6.50E‑11
		  signaling pathway
	 GOTERM_BP_FAT	 GO:0006940~regulation of smooth	   5	 41.67	 5.28E‑08
		  muscle contraction
	 GOTERM_MF_FAT	 GO:0004930~G‑protein coupled receptor activity	   9	 75	 1.69E‑08
	 GOTERM_MF_FAT	 GO:0004888~transmembrane signaling	   9	 75	 3.48E‑07
		  receptor activity
	 GOTERM_MF_FAT	 GO:0099600~transmembrane receptor activity	   9	 75	 4.76E‑07
	 GOTERM_CC_FAT	 GO:0005887~integral component of	   8	 66.67	 5.03E‑05
		  plasma membrane
	 GOTERM_CC_FAT	 GO:0031226~intrinsic component	   8	 66.67	 6.55E‑05
		  of plasma membrane
	 GOTERM_CC_FAT	 GO:0043005~neuron projection	   4	 33.34	 0.038
Module 3	 GOTERM_BP_FAT	 GO:0006323~DNA packaging	 13	 28.26	 1.31E‑13
	 GOTERM_BP_FAT	 GO:0006334~nucleosome assembly	 11	 23.91	 5.31E‑12
	 GOTERM_BP_FAT	 GO:0071103~DNA conformation change	 13	 28.26	 6.24E‑12
	 GOTERM_MF_FAT	 GO:0046982~protein heterodimerization activity	 12	 26.09	 5.17E‑08
	 GOTERM_MF_FAT	 GO:0046983~protein dimerization activity	 15	 32.61	 2.25E‑06
	 GOTERM_MF_FAT	 GO:0042393~histone binding	   6	 13.04	 1.75E‑04
	 GOTERM_CC_FAT	 GO:0098687~chromosomal region	 13	 28.26	 1.53E‑10
	 GOTERM_CC_FAT	 GO:0005694~chromosome	 18	 39.13	 2.91E‑10
	 GOTERM_CC_FAT	 GO:0000786~nucleosome	   9	 19.57	 6.45E‑10

GO, Gene Ontology; PPI, protein‑protein interaction; BP, biological processes; CC, cellular component; MF, molecular function.
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RPN2 has been shown as a promising biomarker in colorectal 
cancer (40). Both of these genes have not been studied clearly 
in GBM; therefore, they are two potential biomarkers which 
merit further studies.

KEGG analysis of the whole PPI network in the present 
study shows that the development of GBM is associated 
with the TGF‑β signaling pathway, MAPK signaling 
pathway, pathways in cancer, basal cell carcinoma, FoxO 
signaling pathway, neuroactive ligand‑receptor interaction, 
Jak‑STAT signaling pathway, circadian entrainment and 
cytokine‑cytokine receptor interaction. In addition, certain 
genes were also involved in the Wnt pathway, cell cycle and 
cell proliferation.

As shown in the survival curve, RANBP17, ZNF734, 
NLRP2, GPR1, CCDC81, SH3RF1 and TM7SF4 are good 
prognostic biomarkers for GBM. It is noteworthy that the 
expression of a number of the genes not only affects survival 
time, but also shows sex differences in the GBM samples. 
According to a recent study  (41), the female sex plays an 

important role in the survival of one subtype of GBM. This 
may mean that sex plays an important role in cancer. The 
prognosis of patients of different sexes varies greatly. To date, 
the international diagnostic and treatment criteria for glioma 
does not include sex differences. The present study reveals that 
different expression levels of key genes and sex may provide 
more information with regards to treating patients with GBM.

In conclusion, the large‑scale data analysis of the present 
study provides a comprehensive bioinformatics analysis of 
DEGs that may be involved in the progress of GBM. Joint 
analysis of two databases helped to overcome the shortcom-
ings of insufficient samples, and existing data was reused 
to conduct a novel analysis. This study provides a set of 
important targets for future investigation into the molecular 
mechanisms and prognostic biomarkers involved in GBM. 
However, follow‑up molecular biological experiments and 
verification with many more clinical samples are required to 
confirm the functions of the identified genes in patients with 
different subtypes of GBM.

Table III. KEGG pathway analysis of top 3 primary modules of PPI sub‑network genes. 

Sub‑network 	 Pathway ID	 Name	 Gene count	 %	 P‑value	 Genes

Module 1	 hsa04740	 Olfactory transduction	 17	 40.48	 2.86E‑11	 OR5H1, OR2A4, OR5P2, 
						      OR1A2, OR5K1, OR1J4, 
						      OR7E24, OR2M4, OR2L2, 
						      OR1G1, OR6B1, OR2F1, 
						      OR3A1, OR8D1, OR51B4, 
						      OR2C3, OR7A10
	 hsa04062	 Chemokine signaling	 7	 16.67	 3.49E‑04	 GNGT1, CCR8, ADCY1, 
		  pathway				    PPBP, GNAI1, CXCR4, 
						      CXCL11
	 hsa05032	 Morphine addiction	 4	 9.52	 0.01	 OPRM1, GNGT1, ADCY1, 
						      GNAI1
Module 2	 hsa04080	 Neuroactive ligand‑receptor	 8	 66.67	 1.55E‑10	 P2RY10, CHRM3, TACR1, 
		  interaction				    ADRA1B, ADRA1A, 
						      GNRHR, GHSR, NTSR2
	 hsa04020	 Calcium signaling	 4	 33.34	 5.54E‑04	 CHRM3, TACR1, ADRA1B, 
		  pathway				    ADRA1A
	 hsa04970	 Salivary secretion	 3	 25	 0.003	 CHRM3, ADRA1B, ADRA1A
Module 3	 hsa05203	 Viral carcinogenesis	 12	 26.09	 2.68E‑09	 HIST1H2BA, MAD1L1, 
						      HIST1H4L, HDAC3, KAT2B,
						      HIST1H4A, HIST1H4B,
						      HIST1H2BH, ACTN1, 
						      HIST1H4F, ACTN2, HIST1H4C
	 hsa05322	 Systemic lupus	 10	 21.74	 1.36E‑08	 HIST1H2BA, HIST1H4L, 
		  erythematosus				    HIST1H4A, HIST1H4B, 
						      HIST1H2BH, H2AFY2, 
						      ACTN1, HIST1H4F,
						      ACTN2, HIST1H4C
	 hsa05034	 Alcoholism	 9	 15.57	 2.06E‑06	 HIST1H2BA, HIST1H4L, 
						      HDAC3, HIST1H4A, 
						      HIST1H4B, HIST1H2BH, 
						      H2AFY2, HIST1H4F,
						      HIST1H4C

KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein‑protein interaction.
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Figure 6. Top 4 genes related to survival of GBM patients. (A) RANBP17; (B) ZNF734; (C) NLRP2; (D) GPR1. GBM, glioblastoma.

Figure 7. Top 4 prognostic genes affected by gender. (A) CCDC81; (B) NLRP2; (C) SH3RF1; (D) TM7SF4.
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