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Abstract Pathological obesity and its complications are associated with an increased propensity 
for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 
(KSR2) locus develop severe early- onset obesity and type 2 diabetes. Both conditions are pheno-
copied in mice with Ksr2 deleted, but whether this affects bone health remains unknown. Here we 
studied the bones of global Ksr2 null mice and found that Ksr2 negatively regulates femoral, but not 
vertebral, bone mass in two genetic backgrounds, while the paralogous gene, Ksr1, was dispensable 
for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte 
differentiation at the expense of osteoblasts in the bone marrow. Compared with Ksr2’s known role 
as a regulator of feeding by its function in the hypothalamus, pair- feeding and osteoblast- specific 
conditional deletion of Ksr2 reveals that Ksr2 can regulate bone formation autonomously. Despite 
the gains in appendicular bone mass observed in the absence of Ksr2, bone strength, as well as 
fracture healing response, remains compromised in these mice. This study highlights the interrela-
tionship between adiposity and bone health and provides mechanistic insights into how Ksr2, an 
adiposity and diabetic gene, regulates bone metabolism.

Editor's evaluation
This study represents an important advance in connecting bone biology and metabolic functions. It 
implicates Ksr2 as a key regulator of the switch between adipocytes and osteoblasts that arise from 
a common precursor. Besides being an actionable target for obesity and osteoporosis, the study 
reaffirms and provides mechanistic data relating to the human genetic findings on KSR2 variants in 
metabolic regulation.

Introduction
Obesity is a major public health problem in the United States, afflicting nearly 40% of adults, and has 
become a prevalent and destructive health disorder linked to some of the major metabolic diseases, 
including cardiovascular diseases, type 2 diabetes (T2D), and cancer (Devlin and Rosen, 2015; 
Pagnotti et al., 2019; Shanbhogue et al., 2016; Walsh and Vilaca, 2017). Although obesity may 
be considered beneficial to bone health, since increased body weight is associated with higher bone 
mineral density (BMD), the relationship between excess body fat and bone health is complex, given 
that obesity has been identified as a risk factor for certain fractures (Greco et al., 2015; Ma et al., 
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2018; Veldhuis- Vlug and Rosen, 2018). The increasing prevalence of obesity and T2D dictates the 
need for appropriate in vivo animal models to study the mechanisms of action of obesity and T2D on 
bone metabolism.

The effect of obesity and T2D on bone is an active area of investigation. Studies with several animal 
models and approaches have contributed to our current understanding of this relationship. Mouse 
models, in particular, have provided invaluable information through controlled genetic, biochemical, 
cellular, and molecular approaches to understand the pathological relationship between excess body 
fat and bone fragility. Most diet- induced obesity studies have reported reduced BMD and trabecular 
bone mass (Bonnet et al., 2014; Doucette et al., 2015; Inzana et al., 2013; Scheller et al., 2016). 
By contrast, monogenetic models of obesity have provided a broader range of bone phenotypes, 
including no change, loss, or gain in bone mass or BMD (Ahn et al., 2006; Baldock et al., 2007; 
Braun et al., 2012; Steppan et al., 2000; Wang et al., 2007a). There are several explanations for the 
diversity in skeletal phenotypes in these models, including differences in expression of targeted genes 
in other tissues besides bone, as well as varied effects of endocrine factors produced in other affected 
tissues such as the brain, fat, and skeletal muscle. Nevertheless, monogenetic studies have informed 
the molecular underpinnings of feeding regulation at the hypothalamus, which has fortuitously led to 
the development of pharmaceuticals to treat a particular population of individuals genetically predis-
posed to diabetes (Yeo et al., 2021). Although the RANKL monoclonal antibody, denosumab, has 
been used to treat bone disorders in osteoporotic T2D patients with reduced BMD (Abe et al., 2019), 
whether these agents can also benefit the population with gains in BMD, which are paradoxically also 
fragile (Burghardt et al., 2010; Ma et al., 2012), remains to be investigated. Also, it is worthwhile 
to further identify/study animal models with genetic mutations that phenocopy the human condi-
tion to study these interventions. The advent of the genomic era has expanded the list of individual 
genes associated with obesity and T2D (Loos and Yeo, 2022), yet their effects on bone remain vastly 
understudied.

Recently, the scaffold proteins kinase suppressor of ras (KSR1 and KSR2) were identified as media-
tors of energy consumption, utilization, and adipogenic regulation (Brommage et al., 2008; Costanzo- 
Garvey et al., 2009; Kortum et al., 2005; Pearce et al., 2013; Revelli et al., 2011). Although these 
two genes function as paralogs, we previously found that only Ksr2 knockout (KO) mice become 

eLife digest Our bones are living tissues which constantly reshape and renew themselves. This 
ability relies on stem cells present in the marrow cavity, which can mature into the various types of 
cells needed to produce new bone material, marrow fat, or other components.

Obesity and associated conditions such as type 2 diabetes are often linked to harmful changes 
in the skeleton. In particular, these metabolic conditions are associated with weight- bearing bones 
becoming more prone to facture and healing poorly. Mice genetically modified to model obesity and 
diabetes could help researchers to study exactly how these conditions – and the genetic changes that 
underlie them – impact bone health.

Gomez et al. aimed to address this question by focusing on KSR2, a gene involved in energy 
consumption and feeding behavior. Children who carry certain KSR2 mutations are prone to obesity 
and type 2 diabetes; mice lacking the gene also develop these conditions due to uncontrolled eating.

Closely examining mutant mice in which Ksr2 had been deactivated in every cell revealed that 
the weight- bearing bones of these animals were also more likely to break, and the fractures then 
healed more slowly. This was the case even though these bones had higher mass and less marrow 
fat compared to healthy mice. Non- weight bearing bones (such as the spine) did not exhibit these 
changes.

Further experiments revealed that, when expressed normally in the skeleton, Ksr2 skews the stem 
cell maturation process towards marrow fat cells instead of bone- creating cells. This suggests a new 
role for Ksr2, which therefore seems to independently regulate both feeding behavior and bone 
health. In addition, the work by Gomez et al. demonstrate that Ksr2 mutant mice could be a useful 
model to better understand how obesity and diabetes affect human bones, and to potentially develop 
new therapies.

https://doi.org/10.7554/eLife.82810
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obese and diabetic (Brommage et al., 2008; Costanzo- Garvey et al., 2009; Kortum et al., 2005; 
Pearce et al., 2013; Revelli et al., 2011), suggesting that these paralogs have non- redundant roles, 
although Ksr1 does have a role in adipogenesis (Kortum et al., 2005). Several mutations at the KSR2 
loci in humans have been associated with severe early- onset obesity (Pearce et al., 2013), and studies 
in Ksr2 KO mice have revealed a centrally regulated mechanism by Ksr2 expression and function in 
the hypothalamus that results in hyperphagia, changes in metabolic rate, and consequently, obesity 
and T2D (Costanzo- Garvey et al., 2009; Guo et al., 2017; Henry et al., 2014; Pearce et al., 2013; 
Revelli et al., 2011). Although there are hundreds of mouse genes reported to lead to obesity when 
disrupted, Ksr2 gene deletion is associated with a profound obese phenotype and lethality at a young 
age (Brommage et al., 2008; Revelli et al., 2011). In this study, we set out to investigate whether 
the deletion of Ksr2, an obesity and T2D gene, bears any effect on bone health, and if so, to evaluate 
the mechanisms by which KSR2 affects bone metabolism. Our studies show that loss of KSR2 function 
increases long bone trabecular bone mass while reducing marrow adiposity and that KSR2 acts as a 
molecular switch that controls the differentiation of bone resident mesenchymal stem cells into osteo-
blast or adipocyte differentiation via an mTOR- dependent mechanism.

Results
Ksr2 negatively regulates femoral bone mass
To evaluate whether deletion of Ksr2 affects skeletal morphology, femurs of Ksr2 KO (exon 13 deleted) 
and wild- type (WT) control mice in the C57BL/6J- Tyrc- Brd × 129SvEvBrd hybrid background (Figure 1A) 
were subjected to micro- computed tomography (microCT) scanning. Distal femoral metaphyseal 
bones of Ksr2 KO (Ksr2-/-) female mice exhibited increased trabecular bone mass at both 11 and 
15 weeks of age (Figure 1B). Quantification of trabecular parameters at the distal femur secondary 
spongiosa shows that by 11 weeks bone volume fraction (BV/TV), and trabecular thickness (Tb.Th) 
were significantly increased in female KO mice (Figure 1C and G), while structure model index (SMI), 
a measure of rod to plate- like trabecular morphology (Hildebrand and Rüegsegger, 1997), was 
significantly reduced (Figure 1E), overall implying that structural morphological changes elicited by 
the absence of Ksr2 promote gains in bone mass. Although mean trabecular connectivity density 
(CONN.D) and trabecular number (Tb.N) were also increased in KO mice at 11 weeks (Figure 1D and 
F), these differences were not significant until 15 weeks, as was the reduction in trabecular spacing 
(Figure 1H).

New woven bone is actively formed and mineralized at the primary spongiosa while the woven 
bone is remodeled into mechanically stronger lamellar bone at the secondary spongiosa. To determine 
whether new bone formation at the primary spongiosa is altered in the Ksr2 KO mice, we measured 
trabecular bone parameters at the primary spongiosa, limited to within 300 μm of the distal- most 
femoral metaphyseal bone from the growth plate (Figure 1I–M) and found significant increases in 
trabecular bone volume. Ksr2 deleted males also exhibited significantly greater BV/TV, Conn. Den, 
Tb.N, and Tb.Th but reduced Tb.Sp and SMI compared to littermate control mice (Figure 2A–G). 
Thus, loss of the Ksr2 gene promotes trabecular bone density in both genders of mice.

By further characterization of femoral bones, we found increased mid- shaft femoral cortical bones 
in Ksr2 nulls. While total tissue volume, indicative of bone size, remained unchanged in the KO mice in 
both genders (Figures 1N–P and 2H–K), a significant increase in bone volume fraction was observed, 
although gains in BMD were more prominent in females. Nonetheless, this evaluation reveals that 
obese Ksr2 null mice present increased gains in trabecular and cortical mass of femoral bones.

Ksr1 is dispensable for the development of femoral trabecular bone 
mass
Ksr1, the only paralog of Ksr2, is highly expressed in skeletal muscle (Costanzo- Garvey et al., 2009), 
which interacts with and affects bone physiology (Lara- Castillo and Johnson, 2020). Ksr1 was also 
expressed in osteoblasts (data not shown). To determine whether Ksr1 might also contribute to limb 
bone mass accretion, we evaluated metaphyseal femoral bones of 16- week- old Ksr1 KO mice and their 
wild- type littermate controls by microCT. In contrast with the striking differences found in trabecular 
bone parameters in Ksr2 KO mice at this age, trabecular bone measurements were nearly identical 

https://doi.org/10.7554/eLife.82810
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Figure 1. Ksr2 regulates bone mass in females. (A) Schematic of Ksr2 knocked out in the C57BL/6J- Tyrc- Brd × 129SvEvBrd hybrid strain with exon 13 deleted 
(X), and accompanying ventral view of genotyped mice at 4 months of age exhibiting differences in weight gain. (B) Representative 3D micro- computed 
tomography (microCT) reconstruction images of the secondary spongiosa at the distal femoral metaphysis in wild- type (Ksr2+/+, WT) or knockout (Ksr2-

/-, KO) females at 11 and 15 weeks, revealing a prominent increase in trabecular bone in KOs. Scale bar: 100 μm. (C–H) MicroCT measurements from 
the trabecular bone as represented in panel (B) (n = 6–10/group), BV/TV, bone volume/tissue volume; CONN.D, connectivity density; SMI, structural 
model index; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing. (I) Representative 3D reconstruction of microCT images 
of primary spongiosa in WT or KO mice at 15 weeks of age revealing increased bone density in KO mice. Scale bar: 100 μm. (J–M) Quantification of 
microCT parameters measured in panel (I) (n = 6–10/group). (N) Representative 3D reconstruction of microCT images of cortical bone at the femoral 
mid- diaphysis (scale bar: 100 μM), where the TV total volume (O) is not affected, while BV/TV and volumetric bone mineral density (vBMD) (P, Q) are 
increased in KO mice. Statistics analyzed by unpaired two- tailed Student’s t- test, and graphed lines represent the mean ± SEM, *p<0.05, **p<0.005.

The online version of this article includes the following source data for figure 1:

Source data 1. Micro- computed tomography (microCT) measurements of female trabecular bone.

Source data 2. Micro- computed tomography (microCT) measurements of female primary spongiosa.

Source data 3. Micro- computed tomography (microCT) measurements of female cortical bone.

https://doi.org/10.7554/eLife.82810
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between Ksr1 KO and WT mice, irrespective of gender (Figure 2L and M). These results suggest that 
the KSR1 protein is highly unlikely to synergize with KSR2 in regulating femoral bone growth.

Validation of bone phenotype by Ksr2 deletion in a different genetic 
background
Since genetic background can influence biological effects in mice (Ackert- Bicknell et al., 2009; Bonnet 
et al., 2014), we evaluated whether Ksr2 deleted in the DBA/1LacJ strain, which also becomes obese 
(Costanzo- Garvey et  al., 2009), might also exhibit alterations in skeletal phenotype. Deletion of 
exon 4 in this genetic background did not significantly affect the anus to nose body length, although a 

Figure 2. Ksr2 negatively regulates femoral bone in males, while Ksr1 deletion does not affect trabecular bone in either gender. (A) Representative 
3D micro- computed tomography (microCT) reconstruction images of the distal femoral metaphysis in wild- type (WT) or knockout (KO) male mice at 
16 weeks of age revealing increased trabecular bone in KOs. Scale bar: 100 μm. (B–G) MicroCT measurements from the trabecular bone as represented 
in panel (A) (n = 5–9 mice per group). BV/TV, bone volume/tissue volume; CONN.D, connectivity density; SMI, structural model index; Tb.N, trabecular 
number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing. (H) Representative 3D microCT reconstruction images of cortical bones at the femoral 
mid- diaphysis revealing that Ksr2 deletion does not affect TV total volume (I) of cortical bone in males, while BV/TV (J) and volumetric bone mineral 
density (vBMD) (K) are increased in Ksr2 KO mice (n = 5–6/group). Scale bar: 100 μm. (L–Q) Quantification of microCT data from the distal femoral 
metaphysis of WT and Ksr1 knockout mice at 16 weeks of age, showing minimal changes in trabecular bone parameters between genotypes in either 
gender. Statistics analyzed by two- tailed Student’s t- test, and graphed lines represent the mean ± SEM, *p<0.05, **p<0.005.

The online version of this article includes the following source data for figure 2:

Source data 1. Micro- computed tomography (microCT) measurements of male trabecular bone.

Source data 2. Micro- computed tomography (microCT) measurements of male cortical bone.

Source data 3. Micro- computed tomography (microCT) measurements of Ksr1 knockout mice.

https://doi.org/10.7554/eLife.82810
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substantial gain in body weight and percent body fat was observed by 8 weeks of age (Figure 3A–D). 
Concordant with Ksr2 deletion in the C57BL/6J- Tyrc- Brd × 129SvEvBrd hybrid background, dual- energy 
X- ray absorptiometry (DXA) measurements of pooled genders revealed substantial increases in total 
body BMD (Figure 3E) and, in particular, in femoral BMD (Figure 3G), while femur length remained 
unchanged relative to WT siblings (Figure 3F). Additionally, no changes were observed in the verte-
bral trabecular bone (Figure 3—figure supplement 1).

Histological evaluation of longitudinal distal metaphyseal femur bone sections by alizarin red also 
revealed increased amounts of calcified bone in Ksr2 KO mice as the ratio of bone area over total 
area was increased, while osteoid area over bone area was decreased (Figure 3H–J, Figure 3—figure 
supplement 2). Moreover, qualitative comparisons of bone markers, integrin bone sialoprotein (IBSP) 
and secreted phosphoprotein 1 (SPP1), by immunofluorescence suggest an increased areal expansion 
of both markers throughout the metaphysis in KO mice (Figure 3Q and R). Overall, this data provides 
further supporting evidence that Ksr2 negatively regulates appendicular bone formation, with confir-
mation in a different genetic background.

Gains in bone mass in Ksr2 nulls are a product of increased osteoblast 
activity
Next, we began to address how the deletion of Ksr2 results in increased bone mass. To determine 
whether increased bone formation is the cause of increased bone mass in Ksr2 KO mice, we performed 
histomorphometric analysis by pulsed calcein injections in 8- week- old mice. This resulted in increased 
calcein labeling in KO mice, with quantitative gains detected in bone formation rate and mineral 
apposition rate (Figure 3K–M). By contrast, the percentage of bone- resorbing acid phosphatase 5, 
tartrate- resistant (ACP5+) osteoclasts scored per bone surface, did not change (Figure 3N). More-
over, serum levels of osteoblast bone deposition (procollagen type 1 N- terminal propeptide [P1NP]) 
were elevated in KO mice, while those of osteoclast activity (carboxy- terminal cross- linked telopep-
tide of type 1 collagen [CTX1]) were not changed (Figure 3O and P).

Bulk comparisons between osteoblast and osteoclast markers were then compared by real- time- 
quantitative PCR (RT- qPCR) from the metaphysis of Ksr2 KO relative to WT littermates at 12 weeks 
of age. mRNA expression levels of osteoblast markers, Alpl and Bglap2, showed increased, though 
insignificant, expression in KO mice, while Spp1 and Sp7 were significantly increased. By contrast, 
markers of differentiated osteoclasts, Acp5 and Ctsk, remained unchanged (Figure 3S). Combined, 
these results posit that Ksr2 affects osteoblast function, and does not apparently affect osteoclasts.

Ksr2 gains bone at the expense of adipocyte differentiation
As Ksr2 KO mice are obese, exhibiting increased visceral and subcutaneous adiposity (Figure 4A), 
we determined whether genetic disruption of Ksr2 influences adipocyte gene expression in white 
and brown adipose tissues in 28- week- old mice. mRNA levels of key transcription factors, Pparg and 
Cebpa, were unchanged in both fat depots in Ksr2 KO mice (Figure 4B) at this age. By contrast, the 
adipokine leptin (Lep) was increased, while complement factor D (Cfd) was decreased in both white 
and brown fat of Ksr2 KO mice (Figure 4C). This suggests that KSR2 exerts opposite effects on leptin 
and complement factor D/adipsin expression in fat tissues, which is consistent with changes observed 
in other models of obesity in mice (Cianflone et al., 2003; Kwon et al., 2012).

Bone marrow stem/stromal cells (BMSCs) represent common precursors for adipocytes and osteo-
blasts, and marrow adipose tissue (MAT) volume is known to be inversely correlated with trabecular 
bone mass (Ko et  al., 2021; Pierce et  al., 2019; Tencerova et  al., 2018; Yue et  al., 2016). To 
determine whether MAT volume is affected in the Ksr2 KO mice, we evaluated the levels of osmium 
tetroxide retaining MAT in femurs of 28- week- old mice by microCT (Figure 4D). MAT volume was 
significantly reduced in all three compartments (proximal and distal metaphysis, and diaphysis) in the 
tibia of Ksr2 KO mice compared with controls (Figure 4E). Consistent with these data, there was a 
significant reduction in adipocytes in the distal femoral metaphysis of Ksr2 KO mice (Figure 4 F and 
G).

To determine the potential regulatory molecules that contribute to changes in MAT in Ksr2 KO mice, 
we compared mRNA expression of adipocyte markers at the trabecular compartment in distal femurs 
of Ksr2 KO and control mice. Neither markers associated with white adipocytes (Fabp4, Slc7a10) 
or brown adipocytes (Ucp1, Prdm16) were different in Ksr2 KO femurs, while of the adipogenic 

https://doi.org/10.7554/eLife.82810
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Figure 3. Ksr2 deletion in a different genetic background, histomorphometry, and histology validates that Ksr2 negatively regulates bone formation. 
(A) Schematic of Ksr2 knocked out in the DBA/1LacJ strain with exon 4 deleted (X). (B) No differences were noted in body length at 8 weeks of age, 
while gains in body weight (C) and body fat percentage (D) are noted in knockouts (KOs). Bone mineral density (BMD) is increased in total body (E) and 
femurs (G) of KO mice, while femur length is not changed (F) (n = 7–12 mice/group; genders combined) (D–G reflect dual- energy X- ray absorptiometry 
measurements). (H) Representative alizarin red images at the distal femoral epiphysis show increased area of mineral staining in KO mice at 11 weeks 
of age. Scale bar: 100 μm. (I, J) Quantification of alizarin stain reveals an increase in bone area/total area (BA/TA) and a decrease in osteoid area/
bone area (OA/BA). (K) Representative histomorphometric images of fluorescent calcein label reveal increased staining in KO mice. Scale bar: 100 μm. 
(L–N) Quantification of histomorphometric parameters measured, showing increased bone formation rate/bone surface (BFR/BS) and mineral apposition 
rate (MAR), yet no changes in the number of osteoclasts per bone surface (Oc.S/BS) (n = 4–7 mice/group). (O, P) Serum levels of bone formation marker 
(PINP) and bone resorption marker (Ctx- 1) in 8- week- old female Ksr2 mutant and wild- type mice (n = 5–7 mice/group). (Q, R) Immunofluorescence 
staining at distal femoral metaphysis for (IBSP, synonym BSP2) or (SPP1, synonym OPN) (both red), counterstained with DAPI (cyan) reveals broader 
expression of both bone markers in KO mice; growth plate- osteoblast boundary positioned at the top. p.sp, primary spongiosa; ss, secondary 
spongiosa. Scale bar: 100 μm. (S) RT- qPCR reveals increased expression of osteoblast markers (Alpl, Bglap2, Spp1, and Sp7), while osteoclast markers 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.82810


 Research article      Genetics and Genomics

Gomez et al. eLife 2022;11:e82810. DOI: https://doi.org/10.7554/eLife.82810  8 of 27

regulatory transcription factors evaluated, Pparg was mildly but significantly reduced, and Cebpa was 
not changed. However, key adipokines (Lep, Cfd) were decreased (Figure 4H). Since Wnt signaling 
is critically involved in regulating adipocyte differentiation, we also measured mRNA levels of several 
Wnt- related genes, but only found a decrease in Wnt8b, and an increase in Ccnd1, a Wnt target gene, 
in the bones of Ksr2 KO mice (Figure 4I). Thus, changes in adipokine gene expression in both body 
and MAT adipocytes are altered when Ksr2 is deleted globally.

Loss of Ksr2 delays femoral fracture healing and results in more fragile 
bones
The pathological obese/T2D condition predisposes bones to compromised fracture healing and 
increased fracture risks. Since the absence of Ksr2 results in increased appendicular bone deposition, 
we evaluated whether this increased rate of bone formation would prove beneficial in Ksr2 KO mice. 
Healing response was compared between WT and KO mice at 16 weeks of age following stabilized 
closed femoral fractures (Figure 5A). X- ray analysis 3 weeks after fracture showed improved bony 
union of the callus in WT mice and increased callus size in KO mice (Figure 5B).

MicroCT measurements also showed increased total volume in the fracture callus of KO mice 
(Figure  5C and D). When the callus was segmented into low and high densities for analysis, an 
increase in low- density woven bone volume was observed in Ksr2 KO fracture callus but no changes 
were observed in high- density cortical bone volume (Figure 5E and F). Consequently, the low- density 
callus BV/TV in the Ksr2 KO fractures was not significantly different from WT, while the high- density 
BV/TV callus was reduced in Ksr2 KO mice (Figure 5E and F). Therefore, KO mice exhibited a larger 
fracture callus with increased low- density woven bone and reduced high- density cortical bone, consis-
tent with delayed fracture callus development.

Histological evaluation also revealed increased Safranin O- stained cartilage in Ksr2 KO mice but 
no difference in TRAP+ osteoclasts compared to WT mice (Figure 5G–J), suggesting that the differ-
ences observed between WT and KO were not caused by differences in bone resorption, but rather 
by delayed endochondral ossification. Proteins associated with hypertrophic chondrocytes, COL10A1 
and IBSP (Gomez et al., 2022), were also increased in Ksr2 KO mice, while SP7 was reduced, indi-
cating that the delay in bone formation occurred during the ossification of the hypertrophic cartilage 
(Figure 5K–N). Combined, these results show that although deletion of Ksr2 leads to obesity with 
increased bone mass, fracture healing is compromised despite the increased bone accretion observed 
in unfractured bones.

Since increased trabecular bone mass associated with obesity/T2D in humans is paradoxically asso-
ciated with an increased risk of fracture (Greco et al., 2015; Ma et al., 2018; Moseley, 2012; Oei 
et al., 2013), femoral bones of WT and KO mice were tested for resistance to fracture by a three- point 
bending test. A lighter load was required to break KO bones, which displayed reduced stiffness, yet 
no change in elasticity (Figure 5O–Q). Therefore, as with humans, the femoral bones of Ksr2 KO mice 
likely have structural integrity deficits that are more prone to fracture.

(Acp5, Ctsk) remain unchanged in femurs of KO mice. Statistics analyzed by two- tailed Student’s t- test, and graphed lines represent the mean ± SEM, 
*p<0.05, **p<0.005.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. X- ray measurements of Ksr2 knockouts in DBA/1LacJ.

Source data 2. Distal femur–alizarin red quantification.

Source data 3. Histomorphometric measurements of Ksr2 knockout mice.

Source data 4. Serum ELISA measurements of Ksr2 knockout mice.

Source data 5. RT- qPCR data of 12- week- old Ksr2 knockout femurs versus wild- type.

Figure supplement 1. Vertebral trabecular bone is not affected by Ksr2.

Figure supplement 1—source data 1. Micro- computed tomography (microCT) measurements of lumbar vertebrae.

Figure supplement 2. Osteoid area is regulated by Ksr2.

Figure 3 continued

https://doi.org/10.7554/eLife.82810
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Figure 4. Obesity in Ksr2 null mice paradoxically presents reduced bone marrow adiposity. (A) Representative 
image of mice at 28 weeks of age dissected to reveal differences in visceral adipose tissue (VAT) between wild- 
type (WT) and Ksr2 knockouts (KOs). (B, C) RT- qPCR assessing changes in regulators of adipogenesis (B) or 
adipokine genes (C), in white or brown fat of Ksr2 KO mice relative to WT at 28 weeks of age (n = 3–4/group). 
(D) Representative 3D micro- computed tomography (microCT) reconstruction images of osmium tetroxide- labeled 
femurs, revealing reductions in bone marrow adipose tissue in Ksr2 KO mice at 28 weeks of age. Scale bar: 1 mm. 
(E) Quantification of adipocyte volume (AV) occupied by marrow adipose tissue in femurs of mice as depicted in 
panel (D), at proximal (prox), middle (mid), and distal (dist) thirds of the femur with position defined in reference 
to the spinal cord (n = 6–8/group). (F) Representative hematoxylin and eosin- stained longitudinal distal femur 
sections of 8- week- old mice in which adipocytes (arrows) were compared at the secondary spongiosa, revealing 
reductions in KO mice. Scale bar: 100 μm. (G) Quantification of sections as represented in panel (F) (n = 5–7/
group). RT- qPCR comparisons in adipogenic (H) and Wnt- related (I) genes from the secondary spongiosa of femurs 
as shown in (F) (n = 3–5/group). Statistics analyzed by two- tailed Student’s t- test, and lines plotted reflect the mean 
± SEM, *p<0.05, **p<0.005, ***p<0.0005.

The online version of this article includes the following source data for figure 4:

Source data 1. RT- qPCR data of 28- week- old Ksr2 knockout versus wild- type (adipose tissue).

Source data 2. Quantification of osmium tetroxide- labeled micro- computed tomography (microCT) of tibia.

Source data 3. Quantification of adipocytes from H&E- stained femurs metaphysis.

Source data 4. RT- qPCR data of 12- week- old Ksr2 knockout versus wild- type femur (adipocyte markers).

Source data 5. RT- qPCR data of 12- week- old Ksr2 knockout versus wild- type femur (Wnt markers).

https://doi.org/10.7554/eLife.82810
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Figure 5. Delayed fracture healing but increased fragility in Ksr2 knockout mice. (A) Schematic of strategy. (B) Representative X- ray images of bones 
that underwent closed mid- femoral fracture in wild- type (WT) and Ksr2-/- knockout (KO) mice on the day of surgery (day 0) and day 21 post- fracture (fx). 
Yellow arrows point to induced fracture, while calluses are outlined by dotted yellow lines. Scale bar: 1 mm. (C) Representative 3D micro- computed 
tomography (microCT) reconstruction images of fracture calluses at 3 weeks post- fx. Color- coded differences in bone density are indicated in the 
legend. (D–F) Quantification of microCT data for total volume (TV), bone volume (BV), and BV/TV (n = 8–10/group). (G) Representative Safranin O- 
stained chondrocytes in WT and Ksr2-/- bones at 3 weeks post- fx showing increased cartilage in KO mice and corresponding quantification (H) (n = 
6–7/group). (I) Representative TRAP- stained osteoclasts in calluses at 3 weeks post- fx., showing no difference between genotypes, with corresponding 
quantification of osteoclasts/bone surface within callus (H) (n = 7–8/group). All histology sections were counterstained with fast green dye. Scale 
bars: 1 mm at low magnification (mag), top rows; or 100 μm at high magnification, bottom rows. (K) Representative immunofluorescence images for 

Figure 5 continued on next page
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Ksr2 is sufficient to inhibit osteoblast but not osteoclast differentiation
While Ksr2 was known to be highly expressed in the brain, its expression in bone was unknown. 
By immunofluorescence using longitudinal sections of distal femoral bone sections from 3- week- old 
WT mice, positive KSR2 staining was observed at the epiphyseal secondary ossification center, and 
the metaphyseal region encompassing the primary and secondary spongiosa, coinciding with SPP1 
(Figure 6A). To further explore whether Ksr2 is expressed in osteoblasts and/or osteoclasts, we eval-
uated whether Ksr2 mRNA is expressed during osteoblast or osteoclast differentiation from primary 
pre- osteoblasts or macrophages isolated from WT calvarial or femoral bones, respectively. The fidelity 
of differentiation in each condition was reflected by temporal upregulation of Alpl mRNA in osteo-
blasts or Acp5 mRNA in osteoclasts, relative to vehicle- treated controls (Figure 6B and C). In osteo-
blasts, Ksr2 exhibits a biphasic response, being inhibited on day 3 and transiently upregulated on 
day 14, before returning to basal levels on day 21, while Ksr1 levels hovered around the baseline 
(Figure 6B). By comparison, Ksr2 was only upregulated at the end of differentiation in osteoclasts 
(Figure 6C). Combined, this data shows that KSR2 is expressed in osteoblasts in vivo, and during 
osteoblast and osteoclast differentiation ex vivo.

Therefore, we assessed whether Ksr2 has any effect on the differentiation of either of these two 
lineages by a gain- of- function approach. BMSCs or macrophages isolated from femurs of 3- week- old 
WT mice were transduced with lentiviral vectors encoding either the KSR2 open- reading frame, or 
GFP as controls, and evaluated for differences in differentiation potential. BMSCs harboring GFP 
or overexpressed (OE) KSR2 (10–30- fold) underwent osteoblast differentiation in the presence of 
ascorbic acid (AA) or vehicle for 7 days. Alizarin red staining shows reduced differentiation in KSR2 OE 
cultures compared to GFP controls (Figure 6D). Ksr2 OE also reduced the expression of osteoblast 
differentiation markers Alpl, Ibsp, and Spp1, as well as Runx2 and Sp7, while Ccnd1 was not changed 
(Figure 6E and F), suggesting KSR2 exerts direct effects on osteoblast differentiation.

Macrophage differentiation toward the osteoclast lineage was achieved in both GFP and KSR2 OE 
cells as noted by the presence of TRAP- stained multinuclear osteoclasts in both populations on day 
6 (Figure 6G), and their quantification resulted in minimal differences (Figure 6H). Also, we found no 
changes in Acp5 or Ctsk between these cells, while Ksr2 continued to be overexpressed (Figure 6I). 
Thus, this gain- of- function strategy suggests that KSR2 negatively regulates osteoblast differentiation 
from BMSCs but is likely dispensable for osteoclast differentiation.

Ksr2 regulates bone formation autonomously
To formally address whether central hypothalamic KSR2- mediated obesity might also regulate distal 
limb bone formation nonautonomously, we took a two- pronged approach. In the first approach, Ksr2 
KO mice were split into two groups, one was allowed to feed ad libitum (Ad lib), while the other 
group was pair- fed according to amounts eaten by WT mice for 12 consecutive weeks starting at 
4 weeks after birth. As reported previously (Revelli et al.), Ksr2 KO mice consumed twice as much 
food on average compared to WT mice. Also, serum leptin levels were increased several fold in the 
Ksr2 KO mice, which was rescued by pair- feeding according to amount of food eaten by WT control 
mice (Revelli et al., 2011). However, serum leptin levels were not measured in this study. Ad lib- fed 
KO mice again showed significant gains in BW, percent body fat, and femoral BMD relative to WTs, 
while pair- fed KO mice neither gained weight nor body fat but retained the increased femoral BMD 

COL10A1, IBSP, SP7/OSX of fracture callus at 3 weeks post- fx. Dashed lines within the insets delineate the callus area quantified. Scale bar: 1 mm at low- 
magnification insets; 100 μm at high magnification. (L–N) Quantitation of fracture callus. (O–Q) Three- point bending test shows femurs of Ksr2-/- KO mice 
tolerate less load to fracture with reduced stiffness, while elasticity remains unchanged. N, Newton; GPa, GigaPascal (n = 6–7/group mixed genders; two 
males per group). Statistics were analyzed by two- tailed Student’s t- test, and graphed lines represent the mean ± SEM, * p<0.05.

The online version of this article includes the following source data for figure 5:

Source data 1. Micro- computed tomography (microCT) measurements of fracture callus after 3 weeks.

Source data 2. Quantification of Safranin O and ACP5/TRAP of fracture callus after 3 weeks.

Source data 3. Quantification of immunofluorescence images of fracture callus after 3 weeks.

Source data 4. Quantification of three- point bending tests.

Figure 5 continued
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Figure 6. KSR2 is expressed in bone, and ex vivo gain- of- function studies demonstrate Ksr2 represses osteoblast 
differentiation but is dispensable for osteoclast differentiation. (A) Representative immunofluorescence for KSR2 
(green) and OPN (red) expression in longitudinal sections of distal femur epiphysis from 3- week- old wild- type (WT) 
mice, counterstained with DAPI (blue). ep, epiphyseal bone; gp, growth plate; ss, secondary spongiosa. Scale bar: 
100 μm. (B) Ex vivo time- course RT- qPCR characterization of Alpl, Ksr2, and Ksr1 mRNA expression on calvaria pre- 
osteoblasts isolated from WT mice following induction with osteoblast differentiation conditions relative to vehicle 
treatment (n = 3–4 independent experiments). (C) Ex vivo time- course RT- qPCR characterization of Acp5 and Ksr2 
on primary macrophage cells isolated from femoral bones of WT mice following osteoclast differentiation relative 
to vehicle treatment (n = 3–4 independent experiments). (D) Representative images of alizarin red- stained primary 
bone marrow stromal cells with forced expression of either GFP or KSR2 after 7 days of treatment with either 
vehicle or ascorbic acid (AA). Scale bar: 10 mm. (E) RT- qPCR for Alpl on day 3 or (F) various osteoblast markers on 
day 7 (n = 4 independent experiments). (G) Representative images of multinuclear osteoclasts stained with ACP5/
TRAP following 6 days of osteoclast differentiation from macrophages isolated from femurs and transduced with 
either GFP or KSR2. Scale bar: 100 μm (H) Quantification of multinuclear osteoclasts (Ocs) counted/well as shown 
in panel (G). (I) RT- qPCR for Ksr2, or osteoclast markers Acp5, Ctsk in osteoclasts on day 6 of differentiation as 
represented in panel (G). Statistics analyzed by two- tailed Student’s t- test, and graphed lines represent the mean ± 
SEM, *p<0.05, **p<0.005, ***p<0.0005.

The online version of this article includes the following source data for figure 6:

Figure 6 continued on next page

https://doi.org/10.7554/eLife.82810
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(Figure 7A–C). Consistent with these data, trabecular bone volume fraction measured by microCT 
was significantly higher in Ksr2 KO mice than WT controls after pair- feeding (Figure 7D).

In the second approach, Ksr2 was conditionally deleted in osteoblasts via Sp7/Osterix- Cre mice, 
which have been successfully used for disrupting gene function in osteoblast lineage cells (Buettmann 
et al., 2019; Ko et al., 2021). Since the Osx- Cre transgenic mice exhibit a mild skeletal phenotype 
(Huang and Olsen, 2015), we used Osx- Cre+ Ksr2 floxed heterozygous mice as controls (Figure 7E). 
While neither body weight nor percent fat was different between Osx- Cre+ Ksr2 floxed heterozygous 
(control) and homozygous (conditional KO [cKO]) mice, femoral BMD was significantly increased in the 
Ksr2 cKO mice compared to control mice (Figure 7F–H). In sync, microCT analyses of distal femoral 
metaphyseal secondary spongiosa of cKO mice exhibited similar osteal gains relative to controls, as 
observed between global KO and WT mice (Figure 7I–O). Therefore, this data indicates that gains in 
bone mass can be regulated autonomously by KSR2 expressed in bone, independent of the centrally 
regulated effects of Ksr2 in the hypothalamus.

Ksr2 affects osteoblast differentiation through mTOR signaling
Mechanistically, Ksr2 has been shown to regulate changes in visceral fat by multiple mechanisms in 
the hypothalamus including AMPK and mTOR signaling (Figure 8I; Costanzo- Garvey et al., 2009; 
Pearce et al., 2013; Revelli et al., 2011). In the ST2 mouse stromal cell line, KSR2 OE inhibited Alpl 
expression in both normal and high glucose media as well as in the presence or absence of insulin 
treatment (Figure 8A).

In ST2 cells transduced with GFP control vector, both insulin and IGF- 1 promoted a marked increase 
in the activated form of phosphorylated (pRPS6) relative to total RPS6 compared with vehicle- treated 
control cells, as expected. By contrast, pRPS6 activation was significantly reduced in KSR2 OE ST2 
cells (Figure 8B and C). AMPK phosphorylation was unaffected by Ksr2 OE in ST2 cells (data not 
shown). mTOR is known to promote osteoblast differentiation in ST2 cells (Chen et al., 2014b), and 
treatment of these cells under osteoblast differentiation conditions with the classic mTOR inhibitor, 
rapamycin, significantly blocked differentiation measured by ALPL staining (Figure 8D). To further 
determine whether Ksr2 signals through mTOR in stromal cells during osteoblast differentiation, ST2 
cells were knocked down with Ksr2 shRNA or a nonspecific control shRNA, and osteoblast differen-
tiation was tested with either rapamycin or vehicle control and evaluated after 48 hr for expression 
of Ibsp, Sp7, or Vegfa by RT- qPCR. Increased expression of bone formation markers by lentiviral Ksr2 
shRNA- treated cultures is abolished by rapamycin treatment (Figure 8E). These results indicate that 
Ksr2 regulates osteoblast differentiation via mTOR activation.

To determine the downstream targets of KSR2/mTOR, we measured expression levels of Notch 
and hypoxia signaling genes (Bjedov and Rallis, 2020; Frey et al., 2014; Huang et al., 2015) in 
ST2 cells overexpressing KSR2 or GFP. We found that Ksr2 OE reduced the expression of hypoxia 
signaling targets (Vegfa, Slc2a1, Pgk1) but did not affect Notch targets (Hey1, Hey2), (Figure 8F and 
G). Accordingly, crucial hypoxia markers (Hif1a, Vegfa) were increased in the bones of 12- week- old 
Ksr2 KO mice, but Notch targets were not changed (Figure 8H).

Discussion
The impact of obesity on bone health is an area of significant concern. While obesity is known to 
exert complex effects on bone mass and skeletal fragility, the mechanisms by which obesity influ-
ences bone metabolism are not well understood. In this study, we used a Ksr2 KO genetic mouse 
model to investigate the relationship between obesity and bone health. We found that the distal 

Source data 1. RT- qPCR data of ex vivo osteoblast differentiation time course.

Source data 2. RT- qPCR data of ex vivo osteoclast differentiation time course.

Source data 3. RT- qPCR data for osteoblast differentiation from bone marrow stem/stromal cells (BMSCs).

Source data 4. RT- qPCR data for osteoblast differentiation from bone marrow stem/stromal cells (BMSCs).

Source data 5. Quantification of osteoclasts differentiated from primary macrophages.

Source data 6. RT- qPCR data for osteoclast differentiation from primary macrophages.

Figure 6 continued
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Figure 7. Ksr2 regulates femoral trabecular bone autonomously. (A–C) Pair- feeding experiments reveal that gains 
in mineral density are acquired independently of eating- induced weight gains in knockout (KO) mice fed at will 
(Ad lib) or pair- fed according to the amount eaten by wild- type (WT) mice. Panels (A–C) are represented as a 
percentage relative to WT. BW, body weight; Fe BMD, femur bone mineral density; BV/TV, bone volume/total 
volume (n = 3–6/group). (D) BV/TV from femoral metaphysis of WT and KO at end of pair- feeding. (E) Conditional 
knockout strategy. (F–H) Differences between control (Ksr2fl/+) and conditional knockout, cKO (Ksr2fl/fl), mice in 
percent body fat (F), body weight (G), and femur bone mineral density (H) (n = 3–4/group). (Note: B, C, G, H reflect 
dual- energy X- ray absorptiometry measurements.) (I) Representative 3D micro- computed tomography (microCT) 
reconstruction images of distal femoral metaphysis in control and cKO mice at 12 weeks of age, revealing 
increased trabecular bone in cKO mice. Scale bar: 100 μm. (J–O) MicroCT measurements from the trabecular bone 
as represented in panel (I) (n = 7 mice per group; mixed genders). CONN.D, connectivity density; SMI, structural 
model index; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing. Statistics were 
analyzed by two- tailed Student’s t- test, and graphed lines represent the mean ± SEM, *p<0.05, **p<0.005 for 
comparisons between groups labeled on the x- axis. In panels (A–C), significance between Ksr2 KO and WT for a 
given condition is represented by #p<0.05 or ##p<0.005.

The online version of this article includes the following source data for figure 7:

Source data 1. X- ray measurements of Ksr2 knockout mice after pair- feeding experiments and micro- computed 
tomography (microCT) of femur metaphysis in pair- fed mice.

Source data 2. X- ray measurements of osteoblast- specific Ksr2- conditional knockout mice.

Source data 3. Micro- computed tomography (microCT) measurements of distal femoral metaphysis from 
osteoblast- specific Ksr2- conditional knockout mice.

https://doi.org/10.7554/eLife.82810
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femoral metaphyseal trabecular bone was considerably denser in Ksr2 KO compared to littermate WT 
controls in two genetic backgrounds, while deletion of Ksr1 did not affect trabecular bone mass. At 
the cellular level, we found by histomorphometric analysis, ex vivo, and in vitro studies via Ksr2 gain 
and loss of function that KSR2 is a negative regulator of trabecular bone formation that may act by 
controlling differentiation of mesenchymal stem cells to the osteoblast or adipocyte fate. By contrast, 

Figure 8. KSR2 promotes osteoblast differentiation through mTOR signaling affecting Hif1a and Vegfa, but not Notch signaling in the process. (A) RT- 
qPCR for Alp from ST2 stromal cells overexpressing KSR2 or GFP by lentivirus (LV) on day 3 in normal glucose (NG) or high glucose (HG) without (-) or 
with (+) insulin. (B) Western blot for ST2 cells overexpressing GFP or KSR2 after 30 min in vehicle control, 100 μg/ml Insulin, or 100 ng/ml IGF- 1, for the 
mTOR response target phosphorylated p- RPS6, total RPS6, or loading control, β-actin; 1,2,3 indicate biological replicates. (C) Quantification of WB 
comparing p- RPS6/RPS6 ratios. Within- group (*), between- group (#) comparisons (n = 3/group). (D) Representative image of ALP activity for ST2 stromal 
cells in osteoblast differentiation conditions on day 7 treated with vehicle (top row) or 10 nM rapamycin (bottom row). Scale bar: 10 mm. (E) RT- qPCR 
quantification of ST2 cells transduced with empty vector control (Con) or Ksr2 shRNA and treated with either vehicle or 10 nM rapamycin following 48 hr 
of osteoblast differentiation (n = 4/group). (F, G) RT- qPCR from ST2 stromal cells with KSR2 overexpression following 72 hr of osteoblast differentiation, 
plotted as a function of level detected in GFP controls (n = 4/group). (H) RT- qPCR on genes related with hypoxia or Notch signaling on RNA extracted 
from whole femurs of 12- week- old wild- type (WT) or Ksr2 knockout (KO) mice. Values represent fold change for KO relative to WT (set to 1, dashed line). 
(I) Model diagram summarizing results where high levels of KSR2 lead to low levels of mTOR activity, resulting in low bone density, while the absence of 
KSR2 results in high levels of mTOR activity, resulting in high bone density. All statistics analyzed by two- tailed Student’s t- test, graphed lines represent 
mean ± SEM. #p<0.05, *p<0.05, **p<0.005, $p<10–6.

The online version of this article includes the following source data for figure 8:

Source data 1. RT- qPCR data for ST2 stromal cells following osteoblast differentiation in low glucose or high glucose and either no insulin or with 
insulin.

Source data 2. Images of Western blot film used in Figure 8B.

Source data 3. Original Western blot scan of RPS6.

Source data 4. Original Western blot scan of β-actin.

Source data 5. Quantification of Western blot data.

Source data 6. RT- qPCR data for ST2 stromal cells with Ksr2 shRNA vs. control shRNA, following osteoblast differentiation in the absence or presence 
of rapamycin.

Source data 7. RT- qPCR data for ST2 stromal cells with Ksr2 OE vs. GFP, following osteoblast differentiation in the absence or presence of rapamycin.

Source data 8. RT- qPCR data of 12- week- old Ksr2 knockout versus wild- type femur (hypoxia and Notch pathway- related genes).

https://doi.org/10.7554/eLife.82810
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KSR2 did not significantly affect osteoclast formation or functions. Moreover, our data from Ksr2 KO 
mice that were pair- fed similar to WT mice and osteoblast- specific Ksr2 cKO mice revealed that Ksr2 
controls osteoblast differentiation autonomously. At the molecular level, our findings demonstrate 
that Ksr2 negatively regulates osteoblast differentiation by repressing mTOR activity (Figure 8I). Since 
global Ksr2 KO mice exhibited delayed fracture healing with an arrest at endochondral ossification, as 
observed in obese humans with T2D, and since KSR2 genetic polymorphisms are linked to obesity, an 
understanding of the cellular and molecular pathways of KSR2 regulation of mesenchymal stem cell 
fate may have important ramifications in promoting bone health in obese individuals.

Genetic differences between mouse strains are known to affect their susceptibility to gain excess 
weight, with the C57BL/6J strain being more vulnerable, and therefore used more often than 
DBA/1LacJ to study diet- induced weight gain (Garofalo et al., 2003; Linder, 2006). Also, the impact 
of genetic background on gene deletion phenotypes is well established (Doetschman, 2009; Linder, 
2006). In accord, we noticed that Ksr2 KO mice in the DBA background lived longer than those 
in the C57 background (data not shown). Since Ksr2 deletion results in weight gain and increased 
femoral bone mass in both strains, it is highly likely that Ksr2 also regulates bone formation in other 
genetic backgrounds. This warrants further investigation in other mammals and, in particular, humans. 
Furthermore, our data show that disruption of the Ksr2 gene had no significant effect on trabecular 
bone mass in the vertebrae. These data are consistent with what is known in the literature that the 
heritability of BMD varies across skeletal sites (Kemp et al., 2014; Rowe et al., 2018) and differences 
in mechanisms that regulate bone accretion in long bones versus vertebrae.

Other monogenetic models that lead to obesity/T2D defects have also investigated bone pheno-
types. In particular, knockouts of different genes in the leptin- melanocortin feedback loop that signals 
satiety in the hypothalamus generally result in obesity, but although the neural circuits are unidirec-
tional, both anabolic and catabolic effects have been observed in bone. For instance, while leptin 
KO mice result in reduced femur length and BMD (Steppan et al., 2000; Wang et al., 2007a), they 
have increased vertebral bone mass (Ducy et  al., 2000), consistent with the idea that genes can 
have distinct effects in different anatomical regions. By contrast, Mc4r and Npy1r knockouts result 
in increased femoral BMD (Ahn et al., 2006; Baldock et al., 2007; Braun et al., 2012), while Mc3r 
knockouts have reduced femur length and BMD (Lee et al., 2016). Many of these genes, such as 
Npy1R and Mc4r, are expressed in both hypothalamic neurons and osteoblasts (Baldock et al., 2007; 
Zhong et  al., 2005), which may be partly responsible for the complex skeletal phenotypes seen 
in these mice. Similarly, Ksr2 is expressed in the hypothalamus, and in this study, we found that it 
is also expressed and functional in cells of the osteoblastic lineage. Although our pair- feeding and 
conditional knockout studies define a role for KSR2 function in bone that can be dissociated from its 
hypothalamic function, Ksr2 global knockout and likely humans with KSR2 genetic polymorphisms 
have malfunctions of both hypothalamic KSR2 regulated food intake as well as bone KSR2 regulated 
osteoblast formation. In future studies, we will address whether Ksr2 plays similar or different roles 
in other skeletal sites and whether conditional hypothalamic deletion of Ksr2 has any effect on bone 
physiology.

An alternative means to study the effect of obesity on bone is provided by diet- induced obesity 
models. Generally, these mice result in excess body fat, with reduced trabecular bone mass at the 
expense of increased MAT (Bonnet et  al., 2014; Scheller et  al., 2016; Tencerova et  al., 2018). 
This would suggest excess body adipocytes, which secrete adipokines that are known to influence 
different aspects of bone maintenance by regulating the differentiation or function of BMSCs, osteo-
blasts, or osteoclasts. Consistent with the idea that adipocyte- derived factors regulate osteoblast 
and osteoclast functions are the findings that bone mass is increased under conditions of generalized 
reduction in adipose tissue, as in the case of congenital lipodystrophy (Zou et al., 2019). However, 
the local secretion of adiponectin, an adipokine, in MAT appears to provide a stronger influence in this 
model (Zhong et al., 2020). Consistently, we did detect a decrease in adiponectin expression in the 
femurs of Ksr2 KO mice (data not shown). Nevertheless, this indicates that adipocytes can influence 
bone homeostasis by both systemic and local signals.

Leptin is another well- known adipokine secreted by adipocytes that is increased in obese animals 
and is known to regulate bone formation. However, a significant role for adipocyte- derived leptin in 
mediating the gains in trabecular bone mass in Ksr2 KO mice does not seem likely. We previously 
found that leptin is increased in serum of Ksr2 KO mice, but leptin resistance was not causative of 
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weight gains in these mice (Costanzo- Garvey et al., 2009; Revelli et al., 2011). Here we show that 
leptin mRNA is increased in body fat depots but believe this is also not responsible for increased bone 
mass. Our data shows that pair- fed Ksr2 KO mice and osteoblast- specific conditional Ksr2 KO mice 
do not gain excess adipocytes, yet still resulted in gains in trabecular bone. Since leptin is produced 
by fat, which did not change in either of these conditions, these results suggest that gains in systemic 
leptin produced by excess fat may not be a causative factor in bone mass accretion when Ksr2 is 
deleted. Moreover, while we did see a reduction in leptin mRNA expression in femurs, in isolation this 
might be expected to reduce bone mass, given that in vitro and in vivo reports indicate that leptin is 
anabolic to limb bones (Astudillo et al., 2008; Gordeladze et al., 2002; Steppan et al., 2000; Wang 
et al., 2007a). While it has been reported that leptin mRNA is higher in visceral adipose tissue than 
BMAT (Liu et al., 2011), in the absence of KSR2, it is reduced even further, yet this does not result in 
bone loss.

Interestingly, MAT is significantly reduced in the long bones of Ksr2 KO mice compared to WT mice 
as revealed by osmium tetroxide microCT evaluation, as well as histological analyses of adipocyte 
numbers. By contrast, MAT has been shown to be increased in mice with disruption of leptin, leptin 
receptor, as well as mice fed with high- fat diets, all three models that show reduced femoral trabecular 
bone mass (Hamrick et al., 2004; Tencerova et al., 2018; Yue et al., 2016). These findings, together 
with the known fact that mesenchymal stem cells represent common precursors of both osteoblasts 
and adipocytes, raise the possibility that KSR2 might modulate the switch between osteoblast and 
adipocyte differentiation produced by mesenchymal stem cells, and, thereby, bone formation and 
MAT. Further studies are required to determine the cause- and- effect relationship between changes 
in Ksr2 expression and regulation of mesenchymal stem cell differentiation. In this regard, a recent 
study demonstrated that complement factor D/adipsin from bone marrow adipocytes regulates bone 
marrow stromal cell fate determination through activation of the complement system (Aaron et al., 
2021). We, therefore, examined whether the expression of adipsin was altered in the bones of Ksr2 
KO mice and found reduced expression of adipsin in both body fat and femoral adipocytes. The issue 
of whether KSR2 regulates adipsin expression directly or indirectly via other factors remains to be 
established. While Aaron et al. demonstrated that adipsin is a downstream target of PPARG, Pparg 
transcription was only mildly reduced in Ksr2 KO bones, thus raising the possibility that KSR2 might 
regulate adipsin expression independently of PPARG. BMSC fate decision is regulated by multiple 
factors, including many known, and potentially unknown, growth factors and hormones (Chen et al., 
2016). Interestingly, non- endocrinological neural regulation mechanisms also contribute to MAT 
formation (Zhang et al., 2021). Also, factors secreted by osteoblasts such as osteopontin have been 
shown to locally regulate bone MAT (Chen et al., 2014a). Therefore, KSR2 might modulate BMSC 
fate by regulation of adipsin expression, as well as the response to signaling by other factors, which 
await further investigation.

Other factors that might affect bone physiology in obese and T2D conditions are inflammatory 
cytokines. While adipocytes are known to contribute to increased levels of pro- inflammatory cytokines 
such as TNF, Il6, Il17, and Tnfsf11/RANKL (Benova and Tencerova, 2020; Kawai et al., 2021) during 
certain pathological states that can promote increased osteoclastogenesis and resorptive activity, we 
did not see changes in bone resorption in Ksr2 KO mice. However, increased levels of these inflam-
matory cytokines could be responsible for the altered fracture healing in Ksr2 KO mice. Diet- induced 
obesity models have reported reduced callus bone volume and increased marrow adiposity, possibly 
due to a faster rate of callus resorption (Brown et al., 2014), producing bones with microstructural 
deficits in collagen matrix and increased advanced glycation end products (Khajuria et al., 2020). 
Although some studies find smaller callus in obesity/T2D fracture callus (Brown et al., 2014), others 
have also observed increased callus size in the fracture callus of DIO- obesity/T2D model fractures, 
with increased hypertrophic chondrocytes, and delayed fracture healing, similar to the results reported 
here (Marin et al., 2021). It is possible that fractures using an intramedullary pin are not as stabilized 
in the Ksr2 KO mice as that of WTs because of increased body weight, thus leading to a larger less 
dense callus, a phenomenon frequently seen in non- stabilized human fractures. Further time- course 
studies are needed to determine the cause for the delayed remodeling of fracture callus in the Ksr2 
KO mice, and whether the healed bones in Ksr2 KO mice are mechanically weaker than the healed 
bones of control mice. Regardless, the diabetic state results in a deranged inflammatory condition 
that is believed to affect the vascular system by the production of advanced glycation end products 
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and multiple factors that may delay fracture healing (Marin et al., 2018), and we show here that loss 
of Ksr2 may not be sufficient to impart improved fracture healing for diabetics. In the future, we will 
determine whether increased general adiposity is the cause of delayed fracture healing in global Ksr2 
KO mice by evaluating whether fracture healing is affected in mice with conditional disruption of Ksr2 
in osteoblasts. Nevertheless, bones of Ksr2 KO mice were less resistant to fracture, in agreement with 
the observation in obese/T2D humans that present with increased bone mass and fracture suscepti-
bility (Greco et al., 2015; Ma et al., 2018; Moseley, 2012; Oei et al., 2013).

mTOR regulation of osteoblast formation remains controversial as both positive and negative asso-
ciations have been reported (Chen et al., 2014b; Martin et al., 2010; Martin et al., 2015; Xian et al., 
2012; Yeo et  al., 2021). Our in vitro results show that forced expression of KSR2 reduces mTOR 
signaling, while knockdown of Ksr2 promotes induction of osteogenic factors, but not when mTOR 
signaling is inhibited by rapamycin. Moreover, both in vitro and in vivo results suggest that KSR2 
and mTOR affect hypoxia but not Notch signaling genes. The anabolic effects of hypoxia signaling 
on bone mass and vasculature are well established (Mohan and Kesavan, 2022; Shen et al., 2009; 
Wan et  al., 2010; Wang et  al., 2007b; Wolf et  al., 2022). Thus, whether the increased hypoxia 
signaling pathway observed in bones of Ksr2 KO mice contributes to the increased trabecular bone 
mass remains to be established. Thus, this work implicates mTOR as a positive effector of osteoblast 
differentiation that can be regulated by KSR2 (Figure 8I). Future studies are needed to determine how 
KSR2 regulates mTOR signaling biochemically, whether KSR2 regulates BMSC fate decision via mTOR 
in either the mTORC1 or mTORC2 complex, which is reportedly one means of affecting BMSC fate 
regulation (Martin et al., 2015; Sen et al., 2014), and whether osteoblast- specific deletion of mTOR 
in Ksr2 KO mice will reverse the bone gains in Ksr2 KO mice. Studies have shown that KSR2 is a scaf-
fold protein that interacts with RAF and MEK to facilitate activation of ERK/MAPK module (Roy et al., 
2002). In addition, a recent study demonstrated that KSR1 and KSR2 when expressed at high levels 
can activate the MAPK pathway- independent of RAS (Paniagua et al., 2022). Based on the published 
data that ERK effects on osteoblasts are mediated via mTOR signaling (Kim et al., 2022), it is possible 
that KSR2 effects on bone are via MAPK- mediated regulation of mTOR signaling. Our future studies 
will investigate this possibility.

In summary, our investigation of bones in Ksr2 knockout genetic mouse models resulted in the 
identification of a novel animal model in which the obesity/T2D condition coincides with increased 
appendicular bone mass. Since KSR2 genetic polymorphisms are linked to obesity/T2D in humans, our 
full understanding of how KSR2 differentially regulates general tissue adiposity versus bone marrow 
adiposity could lead to the identification of novel therapeutic strategies to promote bone health in 
humans with obesity/T2D.

Methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody
Anti- COL10A1 (rabbit 
polyclonal) Abcam

Cat# ab58632; 
RRID:AB_879742 IF (1:100)

Antibody Anti- IBSP (rabbit polyclonal)
Dr. Reny Franceschi, University of 
Michigan IF (1:100) rabbit serum

Antibody Anti- SPP1 (rabbit polyclonal) Kerafast Cat# ENH094- FP IF (1:300)

Antibody
Anti- SP7/OSX (rabbit 
polyclonal) Abcam

Cat# ab22552; 
RRID:AB_2194492 IF (1:100)

Antibody Anti- KSR2 (rabbit polyclonal) Novus Biologicals
Cat# nbp1- 83553; 
RRID:AB_11034779 IF (1:100)

Antibody
Anti- goat IgG (H+L) (horse 
polyclonal) Vector Laboratories

Cat# DI- 3088; 
RRID:AB_2336400 IF (1×)

Antibody
Anti- rabbit IgG (horse 
polyclonal) Vector Laboratories

Cat# DI- 1794; 
RRID:AB_2336784 IF (1×)
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Other DAPI stain Invitrogen
Cat# D1306; 
RRID:AB_2629482 (1 µg/ml)

Antibody
Anti- S6 ribosomal protein 
(rabbit monoclonal) Cell Signaling Technology Cat# 2217; RRID:AB_331355 WB (1:1000)

Antibody
Anti- phospho S6 ribosomal 
protein (rabbit polyclonal) Cell Signaling Technology Cat# 2215; RRID:AB331682 WB (1:1000)

Antibody
Anti-β-actin (mouse 
monoclonal) Sigma- Aldrich Cat# A1978; RRID:AB476692 WB (1:1000)

Antibody
Anti- rabbit IgG HRP (goat 
polyclonal) Sigma- Aldrich Cat# A9169; RRID:AB_258434 WB (1:15,000)

Antibody
Anti- mouse IgG HRP (rabbit 
polyclonal) Novus Biologicals

Cat# NB720- H; 
RRID:AB_524513 WB (1:15,000)

Other PINP- ELISA kit Immunodiagnostic Systems Cat# AC- 33F1

Other CTX- 1- ELISA kit Immunodiagnostic Systems Cat# AC- 06F1

Cell line (Mus musculus) ST2 ATCC Cat# PTA- 10431

Recombinant DNA 
reagent

pRRLin- CPPT- SFFV- E2A- GFP- 
wpre Addgene 12252; RRID:Addgene_12252

Recombinant DNA 
reagent pCDNA3.1 KSR2 Addgene 25968; RRID:Addgene_25968

Other shRNA for Ksr2 (Mus musculus) MilliporeSigma TRCN0000378606
Refseq target: 
NM_001114545

Other shRNA control (Mus musculus) MilliporeSigma SHC002V

 Continued

Mice
Femoral bones of mice in the C57BL/6J- Tyrc- Brd × 129SvEvBrd hybrid background were transferred 
from Lexicon Pharmaceuticals to the Veteran’s Affairs Loma Linda Healthcare System (VALLHS) 
and analyzed at VALLHS. Ksr2+/- mice in the DBA/1LacJ were transferred from the University of 
Nebraska to the VALLHS and maintained by inbreeding for experimentation and further analysis. 
Ksr2- floxed mice were generated by insertion of LoxP sites flanking exon3 of Ksr2 as described 
(Guo et al., 2017), and mated to Sp7/Osx- Cre mice (a kind gift from Dr. Andrew P. McMahon, 
University of Southern California, USA) for osteoblast- specific deletion of Ksr2. Ksr1+/- mice were 
a kind gift from Dr. Andrey S. Shaw at Washington University School of Medicine (St. Louis, USA) 
and were bred to purity in the C57BL/6J background for bone analysis. Mice genotyping was done 
by conventional tail snip PCR with DNA primers. All animals were housed at the animal facility of 
VALLHS (Loma Linda, CA) according to approved standards with controlled temperature (22°C) 
and illumination (14‐hr light, 10‐hr dark). Mice were fed a standard chow diet. The approved anes-
thetic (isoflurane) was used for anesthesia, and CO2 exposure was used for euthanasia followed by 
cervical dislocation.

Pair-feeding
Pair- feeding studies were performed as described (Pearce et al., 2013; Revelli et al., 2011). Mice 
were fed a standard chow diet throughout the experiment.

Fractures
At 16 weeks of age, Ksr2 KO and WT mice of mixed genders were subjected to stabilized closed 
femoral fracture by a modification of the three- point bending approach (Rundle et al., 2008). Fracture 
tissues were harvested at 3 weeks post- fracture for further analysis when bony callus union is expected 
in this model and after which fracture callus remodeling should normally complete healing.
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MicroCT
Femur lengths and trabecular and cortical bone parameters were measured on a VIVA CT40 (Scanco 
Medical, Bruttisellen, Switzerland) microCT system. Bones were fixed in 10% formalin overnight, 
washed, and imaged in 1× PBS with 55–70 kVp volts at a voxel size of 10.5 μm. Images were recon-
structed using the 2D and 3D image software provided by the Scanco VIVA- CT 40 instrument (Scanco 
USA, Wayne, PA). For analysis of the spine, bones were sampled at the fourth lumbar (L4) vertebrae. 
Osmium tetroxide experiments were performed for the measurement of MAT as described (Lindsey 
et al., 2019a).

Dual X-ray absroptiometry
Total body BMD, percent body fat, femoral BMD, and X- ray fracture images were analyzed on a 
Faxitron Radiography system (Hologic, Bedford, MA). Images were acquired with 20 kV X- ray energy 
for 10 s.

Three-point bending strength test
Three- point bending strength test was performed as previously described (Mohan et  al., 2000). 
Tibiae were fixed in 10% formalin for 3–5 days at 4°C and stored frozen in gauze moistened in PBS 
with 0.01% sodium azide, prior to thawing in PBS at 4°C. Samples were tested by three- point bending 
with the Instron DynaMight testing system (Model 8840; Instron, Canton, MA).

Bone histomorphometry
Seven- week- old mice were injected with calcein (20 mg/kg) at 8 days and 2 days before histomorpho-
metric measurements on week 8 as described (Xing et al., 2013). Calcein retaining trabeculae and 
tartrate- resistant acid phosphatase (TRAP)- labeled trabecular surfaces were measured in a blinded 
fashion with OsteoMeasure (OsteoMetrics, Decatur, GA) software.

Histology
Mouse femurs were fixed in 10% formalin overnight, washed in PBS, decalcified in 10% EDTA (pH 
7.4) at 4°C for 7 days while shaking, and embedded in paraffin for sectioning. Longitudinal sections 
of distal femurs were stained with alizarin red, and hematoxylin and eosin using standard procedures. 
Fracture calli were stained with Safranin O or acid phosphatase 5, tartrate- resistant/TRAP (Sigma- 
Aldrich) followed by fast green counterstain. TRAP (S387A, Sigma- Aldrich), alizarin red (A5533, Sigma- 
Aldrich), and alkaline phosphatase, ALP (N6125 and F3381, Sigma- Aldrich) staining of cell cultures 
were performed by standard procedures.

Immunofluorescence
Longitudinal paraffin- embedded sections were processed as described (Gomez et al., 2022) following 
1 hr antigen retrieval with 2 mg/ml hyaluronidase (Sigma- Aldrich) at 37°C. Sections were blocked in 
2.5% normal horse serum and incubated overnight with primary antibodies for COL10A1 at 1:100 
(ab58632, Abcam), IBSP at 1:100 (gift from Dr. Renny Franceschi, University of Michigan), SPP1 at 1:300 
(ENH094- FP, Kerafast), SP7/OSX at 1:100 (ab22552, Abcam), and KSR2 at 1:100 (nbp1- 83553, Novus 
Biologicals). Protein expression was detected by species- specific secondary antibodies (Vector Labo-
ratories, DI- 3088, and DI- 1794), followed by DAPI (D1306, Invitrogen) counterstain before imaging.

Microscopy
Epifluorescence images were obtained on a Leica Digital Microscope DMI6000B with Leica Applicate 
Suite X software or an Olympus FV3000 confocal microscope via FV31S- SW software. Colorimetric 
histological images were obtained with an Olympus DP72 camera attached to an Olympus DP72 
camera through DP2- BSW software.

ELISA
Serum levels of P1NP, and collagen type 1 C- terminal telopeptide (Ctx- 1) EIA kits, all from Immuno-
diagnostic Systems (Gaithersburg, MD) were obtained according to the manufacturer’s instructions.

https://doi.org/10.7554/eLife.82810
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Western blot
Immunoblots were processed by standard procedures. Cells were lysed in RIPA buffer with 1 mM DTT, 
1× protease inhibitor, and 1× phosphatase inhibitor cocktail (Sigma- Aldrich). Protein lysate concen-
trations were determined with a BCA protein assay (Thermo Scientific) and 10 μg of each lysate was 
boiled in 4× SDS dye, then loaded on 10% SDS- PAGE gels for immunoblotting on PVDF membranes. 
Membranes were blocked in 4% BSA in 1× TBS and probed with S6 ribosomal protein 1:1000 (2217, 
Cell Signaling Technologies), phosphor- S6 ribosomal protein 1:1000 (2215, Cell Signaling Technologies), 
or β-actin 1:5000 (A1978, Sigma- Aldrich). Primary antibodies were detected with goat anti- rabbit IgG- 
HRP (A9169, Sigma) or rabbit anti- mouse IgG- HRP (NB720- H, Novus Biologicals) at 1:15,000. Blots were 
detected with Immobilon Chemiluminescent HRP substrate (P90720, MilliporeSigma) and exposed on 
autoradiography film (1968- 3057, USA Scientific). Scanned images were quantified on ImageJ software.

Real-time quantitative PCR
RNA was extracted from adipocyte depots, bones, or cultured cells with TRI reagent (Molecular 
Research Center INC, TR118) according to the manufacturer’s instructions and purified on silica 
columns with E.Z.N.A. Total RNA Kit I (R6834- 02, Omega Bio- tek). Total RNA was reverse transcribed 
to cDNA with Oligo(dT)12–18 and Superscript IV Reverse transcriptase (18091050, Invitrogen). Real- 
time PCR reactions were processed on a ViiA 7 RT- PCR system (Applied Biosystems). All reactions were 
standardized with peptidyl prolyl isomerase A (Ppia) primers. Primer sequences used for RT- qPCR are 
listed in Supplementary file 1. Fold changes were calculated by the Delta Ct method.

Cell culture
All cells were maintained in standard normoxic conditions; humidified, 37°C, 5% CO2 with 1% peni-
cillin/streptomycin (Gibco). ST2 stem/stromal cell line was obtained from the American Type Culture 
Collection (Manassas, VA), tested negative for mycoplasma, and were authenticated by their ability to 
differentiate into chondrocytic, adipocytic, and osteoblastic lineages in their respective differentiation 
media. For gain- of- function studies, the coding region of GFP in pRRLin- CPPT- SFFV- E2A- GFP- wpre 
(LV- GFP) was swapped with that of Ksr2 from pcDNA3-Ksr2- flag (Addgene), producing pRRLsin- CPPT- 
SFFV- E2A-KSR2- wpre (LV- KSR2). Lentivirus (LV) plasmids were co- transfected with Pax2 and VSVG 
plasmids in 293T cells for LV generation as previously reported (Lindsey et al., 2019b). LV particles 
were transduced directly into ST2 or BMSCs. ST2 cells were cultured in 10% CS (Hyclone) with no AA 
(Life Technologies). Osteoblast differentiation was performed with 10 mM β-glycerophosphate (BGP) 
and 50 μg/ml AA (Sigma- Aldrich), with BGP only serving as vehicle. Glucose, insulin, rapamycin, and 
IGF- 1 (MilliporeSigma) were added at concentrations mentioned in the text, and low glucose (LG) 
was 5.5 mM, while high glucose (HG) was 25 mM. Mission lentiviral transduction shRNA particles for 
control (SHC002V) and Ksr2 (TRCN0000378606) were obtained from MilliporeSigma, and cells were 
selected in 10 μg/ml puromycin for 1 week before osteoblast differentiation.

Ex vivo culture of calvarial osteoblasts were isolated from 21- day- old C57BL/6J mice and main-
tained in 10% FBS (Gibco) AMEM no AA (Life Technologies), before osteoblast differentiation. BMSCs 
were isolated from whole femurs and tibias of 4- to 6- week- old C57BL/6J mice, while macrophages 
were isolated from 8- week- old C57BL/7J mice. KSR2 and GFP were overexpressed by lentivirus, 
without antibiotic selection. Osteoclast differentiation was performed with 30 ng/ml MCSF (R&D), 
and 30 ng/ml RANKL (R&D), with MCSF only serving as vehicle controls.

Figures
Figures were assembled on Adobe Illustrator CS5. Quantitative graphs were generated on Prism 
v9.3.1 software (GraphPad).

Statistics
Statistical analysis was performed by two- tailed Student’s t- test on Excel (Microsoft Office 365) 
following tests for normality. Data are presented as mean ± standard error of the mean (SEM) 
throughout. Values were considered significant at p<0.05 or less.

Study approval
Animal studies were performed according to protocols approved by the Institutional Animal Care and 
Use Committee of the VALLHS (Protocol#: 0029/204).
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