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A reliable and safe energy storage system utilizing lithium-ion batteries relies on the early 
prediction of remaining useful life (RUL). Despite this, accurate capacity prediction can be 
challenging if little historical capacity data is available due to the capacity regeneration and the 
complexity of capacity degradation over multiple time scales. In this study, data decomposition, 
transformers, and deep neural networks (DNNs) are combined to develop a model of RUL 
prediction for lithium-ion batteries. Complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) is used for battery capacity sequential data to account for the 
capacity regeneration effect. The transformer networks are leveraged to predict each component 
of capacity regeneration thus improving the model’s ability to handle long sequences while 
reducing the amount of data. The global degradation trend is predicted using a deep neural 
network. We validated the early prediction performance of the model using two publicly available 
battery datasets. Results show that the prediction model only uses 25%-30% data to achieve high 
accuracy. In the two public data sets, the RMSE errors were 0.0208 and 0.0337, respectively. A 
high level of accuracy is achieved with the model proposed in this study, which is based on fewer 
capacity data.

1. Introduction

Lithium-ion batteries have attracted the new energy industry due to their higher energy density, longer cycle life, and no memory 
effect. There are many electronic devices and many types of equipment that use lithium-ion batteries, such as cell phones, computers, 
electric vehicles, and intelligent power grids, which already use lithium-ion batteries to store energy [1–3]. However, lithium-ion 
batteries face performance degradation in practical applications because the internal chemical reaction of batteries causes increased 
internal resistance [4], capacity decay, and other performance-degradation problems [5]. Thus, battery health gradually declines 
along with capacity degradation [6]. For electric vehicles, batteries must be replaced or repaired when their capacity drops below 
a certain value, e.g., 80%. Otherwise, a battery can fail and even lead to a serious accident [7]. So advanced battery health and life 
management are essential for ensuring battery safety and reliability [8]. RUL is an essential health indicator for battery life prediction 

* Corresponding author.

E-mail address: kun.xu@siat.ac.cn (K. Xu).
Available online 3 July 2023
2405-8440/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1 These authors contributed to the work equally and should be regarded as co-first authors.

https://doi.org/10.1016/j.heliyon.2023.e17754

Received 10 April 2023; Received in revised form 22 June 2023; Accepted 27 June 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:kun.xu@siat.ac.cn
https://doi.org/10.1016/j.heliyon.2023.e17754
https://doi.org/10.1016/j.heliyon.2023.e17754
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e17754Y. Cai, W. Li, T. Zahid et al.

that is described as the number of cycles from the current time to the failure threshold [9–11]. Generally, battery aging models are 
developed to simulate the decay of battery life and to access the internal relationship between the input sequence and life cycles to 
accurately determine the life remaining of the battery.

In the existing studies, the prediction approaches of RUL are divided into two types: model-based and data-driven [12].

Model-based approach studies the physicochemical phenomena and degradation factors during the operation of the batteries and 
builds interpretable mathematical prediction models to capture the aging trend of batteries. The filtering algorithm is commonly 
used as the modeling approach. Yang et al. [13] proposed an optimal particle resampling strategy combined with an unscented 
particle filter for RUL prediction. Tang et al. [14] developed a prediction model using the unscented Kalman filter with varying 
weights calculated by the particle filter. By combining an exponential model and particle filter, Zhang et al. [15] achieved better 
prediction performance than the autoregressive moving average model. Using models-based approaches does not require extensive 
historical degradation data. However, batteries’ complex and dynamic electrochemical mechanisms make it difficult to model the 
aging performance accurately during multiple charge and discharge cycles. Many electrochemical parameters are difficult to obtain 
for building a model with high accuracy, leading to a high model complexity. This means that the model needs to be improved while 
being simplified for real-world applications.

The data-driven methods mainly rely on artificial intelligence and statistical theory to capture the hidden information of life 
aging and predict the remaining life cycles by utilizing the battery’s historical charge and discharge data. The data-driven methods 
don’t apply the electrochemical properties of the lithium-ion battery, making them more suitable for practical applications. Several 
data-driven methods have been studied for RUL prediction, such as naive Bayes [16], relevance vector machine [17], gaussian 
process regression [18,19], and deep learning [20,21], etc. Data-driven RUL models can achieve high accuracy but rely on large 
amounts of historical data to train long-term prediction models. The data-driven approach described above typically requires over 
50% of the total capacity data for accurate RUL prediction. Because of the lack of capacity data, these methods may not predict the 
RUL accurately at early stages. Another significant challenge affecting the model performance arises from the capacity regeneration 
phenomenon. This phenomenon of transient capacity regeneration makes data-driven models sensitive to input data, leading to 
substantial deviations from the actual capacity degradation curve. Therefore, developing an efficient early RUL prediction model 
using fewer data can significantly facilitate achieving high accuracy in actual applications.

Yang et al. [22] develop an RUL predictive model which combines signal decomposition and artificial intelligence. By combining 
the prediction model with EEMD, the capacity regeneration phenomenon is better predicted. However, it requires a large volume of 
historical data. Based on a hybrid model, Tong et al. [23] propose a model to predict RUL that uses both adaptive drop-outs long 
short-term memory and Monte Carlo simulation. Although this method achieves accurate prediction with only 25 percent degradation 
data, it only identifies the overall trend of capacity degradation, leaving out points where capacity can be restored. An integrated 
two-step method is suggested by Ma et al. to estimate the RUL [24]. First, the cycle life of selected LIBs was estimated on the basis of 
a double exponential model (DEM) using a convolutional neural network. As a second step, the determined DEM is used as an initial 
mean function to GPR for early RUL prediction. In comparison to CNN-based and GPR-based RUL prediction methods, the results 
show superior performance. However, the model’s performance needs to be improved.

This research proposes a hybrid model for RUL prediction to strengthen the model’s ability to deal with the transient capacity 
regeneration phenomenon and improve prediction accuracy at an early stage. By decomposing the input capacity sequences with 
CEEMDAN, we obtain several components representing capacity regeneration and a residual signal representing global capacity 
degradation. Then, the prediction networks are developed to predict the components separately using transformer networks and the 
residual trend using deep neural networks, respectively. Lastly, we combine all the predictions and sum them up to get the prediction 
result of RUL.

2. The CEEMDAN-transformer-DNN hybrid model

2.1. The structure and workflow of the hybrid model

The proposed hybrid model combines a signal decomposition unit using CEEMDAN, multiple prediction networks for capacity 
regeneration intrinsic mode functions (IMFs) based on the transformer, and a prediction model based on deep neural networks 
(DNNs) for the degradation trend residue (RES). The structure of the CEEMDAN-Transformer-DNN model is presented in Fig. 1. The 
hybrid RUL prediction model obeys the following steps.

Step 1: Extracting the capacity sequences from the battery charge and discharge cycling data.

Step 2: Implementing the signal decomposition of the battery capacity sequences using CEEMDAN and obtaining the IMFs for 
local capacity regeneration and the RES for global capacity degradation.

Step 3: Building the prediction models for the IMFs and the RES, respectively. Transformer networks are used for local prediction 
models of IMFs, and the DNN is used for the prediction model of the global RES. These data are divided into two batches for training 
and testing. Afterward, the model is updated using the optimal parameters that were obtained through model training.

Step 4: Combining the prediction results from the transformer networks of IMFs and the DNN of RES to acquire the RUL prediction 
result on the basis of the CEEMDAN-Transformer-DNN hybrid model.

2.2. Decomposing capacity sequences using CEEMDAN

The CEEMDAN is based on empirical mode decomposition (EMD), an improved signal decomposition methodology. The EMD 
2

method was proposed to handle time series data that are non-stationary [25]. In EMD, a complex signal is decomposed into an 
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Fig. 1. RUL prediction framework.

infinite number of basis functions, called IMFs, together with a convex signal to indicate the global trend, known as RES. The IMFs 
derived from the decomposition of real-world signals may reflect the natural processes from various causes that may occur at different 
time intervals. Thus, EMD is adaptive and can be applied to analyze nonlinear and nonstationary time series.

In practical applications, due to noise, interference, or intermittent signals, the IMFs obtained from EMD may encounter the 
difficulty of mode mixing, where one IMF contains vastly different time scales or the same time scale is distributed in multiple IMFs. 
To solve the mode mixing issue, EEMD was proposed that incorporate white noise to collect comparable scales into a single IMF, 
leveraging the frequency domain characteristics of white noise [26]. However, the decomposition of EEMD is incomplete, and the 
noise is difficult to eliminate. The CEEMDAN is proposed to address the above problems in EEMD [27], which adds adaptive white 
noise to the decomposition.

As the capacity sequences contain many local capacity regeneration behaviors with different time-scale features, we leverage the 
signal decomposition algorithm, i.e., the CEEMDAN, to acquire the sequences representing the capacity regeneration phenomenon 
and a RES. With CEEMDAN, mode mixing caused by EMD can be solved, and noise generated by EEMD can be effectively removed. 
The battery capacity sequences, i.e., the input data, are fed into the CEEMDAN block for signal decomposition as shown in the steps 
below.

Step 1: Reconstructing the original signal 𝑦(𝑡) by incorporating gaussian white noise. To obtain the first-order IMF 𝐶1, EMD is 
applied to the reconstructed signal in the equation (1):

𝐸(𝑦(𝑡) + (−1)𝑞𝜖𝑣𝑗 (𝑡)) = 𝐶
𝑗

1(𝑡) + 𝑟𝑗 , (1)

where 𝐸(𝑡) is the 𝑖-th IMF obtained after EMD, 𝑦(𝑡) is the original input signal that requires to be decomposed, 𝑣𝑗 is a gaussian white 
noise which satisfies the standard normal distribution, 𝑞 = 1, 2, 𝑗 = 1, 2, 3..., 𝜖 is the weight coefficient of the gaussian white noise. 
Using CEEMDAN as a decomposition method, we obtain the 𝑖-th intrinsic mode function as 𝐶𝑗

𝑖
(𝑡). 𝑟𝑗 is the residual generated by 

EMD.

Step 2: The first IMF of CEEMDAN is obtained by averaging 𝐶𝑗

𝑖
(𝑡). For the second EMD, we calculate the signal 𝑟1(𝑡) by subtracting 

the original signal 𝑦(𝑡) from the first IMF. It is shown in equation (2):

𝐶1(𝑡) =
1
𝑁

𝑁∑
𝑗=1

𝐶
𝑗

1(𝑡),

𝑟1(𝑡) = 𝑦(𝑡) −𝐶1(𝑡).

(2)

Step 3: The first-order mode component 𝐷1(𝑡) of a sequential signal is obtained by incorporating gaussian white noise to 𝑟1(𝑡) and 
using EMD to decompose the new signal. By averaging 𝐷1(𝑡) and calculating the difference between the initial signal and the second 
IMF, we obtain 𝑟2(𝑡) for the second IMF of the CEEMDAN. The detailed process is shown in the equation (3):

𝐶2(𝑡) =
1
𝑁

𝑁∑
𝑗=1

𝐷
𝑗

1(𝑡),
(3)
3

𝑟2(𝑡) = 𝑟1(𝑡) −𝐶2(𝑡).
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Fig. 2. Transformer encoder structure.

Step 4: Repeating the above steps until obtaining a monotonic function. Finally, the capacity sequence is decomposed into multiple 
IMFs and RES. We can build the prediction models for each component separately.

2.3. IMFs prediction model based on transformer

The RUL prediction is a problem of predicting long sequences based on the battery time-series data, i.e., the capacity sequences, 
which can be addressed by recurrent neural networks (RNNs) [28] and long short-term memory networks (LSTMs) [29]. Nevertheless, 
RNNs suffer from vanishing and exploding gradients when predicting long-time sequences. While LSTM is more capable of handling 
long-term sequences compared with RNN, it still requires a lot of historical data to train, which makes it unsuitable for early RUL 
prediction.

The transformer is a new deep learning framework proposed in 2017 [30]. When it comes to processing time series problems, 
the transformer is two times more efficient than traditional neural networks such as RNN and LSTM due to its self-attention and 
feed-forward layers. It significantly enhances the speed of the model operation and improves the precision of prediction. Due to 
the lack of historical capacity data, the model predicts the IMFs after CEEMDAN with an attention-mechanism-based transformer to 
improve long-term dependence and solve its early prediction problem. IMFs have a cyclical pattern of assignment fluctuations, so 
the transformer is a suitable choice. This study uses the encoder of the transformer to predict IMFs since it is a numerical sequence 
prediction. The main structure of the transformer encoder layer is shown in Fig. 2, which consists of the following parts.

Positional encoding: To encode each vector’s position, sine, and cosine functions are added to the input data to produce a higher 
dimensional feature vector. The positional encoding function is shown in equation (4):

𝑃𝐸(𝑡,2𝑘) = 𝑠𝑖𝑛(𝑡∕(100002𝑘∕𝑚),

𝑃𝐸(𝑡,2𝑘+ 1) = 𝑐𝑜𝑠(𝑡∕(100002𝑘∕𝑚),
(4)

where 𝑃𝐸(𝑡, 𝑘) is the positional encoding function, 𝑡 is the time, 𝑘 is a constant number, and 𝑚 is the dimension of the positional 
encoding.

Multi-Head attention: It is composed of multiple self-attention layers superimposed [31]. In multi-head attention layers, each 
vector will be multiplied with 𝑊𝑄, 𝑊𝐾 , and 𝑊𝑉 , then acquire the 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦, and 𝑉 𝑎𝑙𝑢𝑒. Lastly, the similarity score of each vector 
will be calculated. Equation (5) shows how self-attention is calculated [30]:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇√

𝑑𝐾

)𝑉 , (5)

among them, 𝑑𝐾 is the dimension of 𝑄 matrix and 𝐾 matrix. To avoid an excessively large inner product, 𝑄𝐾𝑇 is divided by 
√
𝑑𝑘, and 

the inner product is normalized using the softmax function and multiplied with the value matrix to obtain the output of self-attention.

Feed-Forward neural network: This network has a wide range of applications that contains two main layers. The first layer applies 
RELU as an activation function, while the second layer is linear. The expression of the function for this network is in the equation 
(6):

𝐹𝐹𝑁(𝑥) =𝑅𝑒𝑙𝑢(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2, (6)

where 𝑊1, 𝑏1 are the weights and deviations of the activation function layer, and the linear layer’s weights and deviations are 𝑊2
and 𝑏2.

2.4. DNN-based RES prediction model

The deep neural networks (DNNs) can have more than one hidden layer besides inputs and outputs. DNNs can learn more 
4

complex and abstract high-level features than shallower networks thanks to the deep feature hierarchy from multiple neurons and 
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Fig. 3. Example of DNN model.

layers. Therefore, DNNs are capable of diverse tough tasks with superior performance. We choose DNN to predict the RES due to its 
excellent single-feature regression ability.

The number of neurons and hidden layers can be adjusted according to the task requirements. An example of a typical DNN 
model can be found in Fig. 3, in which {𝑥1, 𝑥2, 𝑥3} represents the input, {𝑏1, 𝑏2, 𝑏3} represents the biases between the input and 
hidden layers, {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} represents each layer’s neuron nodes, and {𝑦1, 𝑦2, 𝑦3, 𝑦4} represents the output.

The forward propagation process of DNN from the input layer to the hidden layer is calculated as equation (7):

ℎ𝑗 =
𝑛∑
𝑖=1

𝑓 (𝑥𝑖𝜔𝑖𝑗 + 𝑏𝑘) 𝑖 = 1,2, ..., 𝑛 𝑗 = 1,2, ..., 𝑛 , (7)

where, 𝐹 is the activation function of the network, 𝑥𝑖 represents the input data, 𝑖 represents the dimension of input features, 𝜔𝑖𝑗

represents the weight between input layer and hidden layer, 𝑏𝑘 is deviation of the layer, 𝑘 is the layer number of the current network, 
ℎ𝑗 is the value of the nodes, and 𝑗 is the total number of neurons in each layer.

The forward propagation from the hidden layer to the hidden layer is also similar to equation (7), in which the input is replaced 
with ℎ𝑗 in the hidden layer. This process is shown in equation (8):

𝑦𝑚 =
𝑛∑
𝑖=1

𝑓 (ℎ𝑗𝜔𝑗𝑚 + 𝑏𝑘) 𝑖 = 1,2, ..., 𝑛 𝑗 = 1,2, ..., 𝑛 , (8)

among them, 𝜔𝑗𝑚 is the weight between the hidden layer and the output layer, 𝑦𝑚 is the output of the network, and 𝑚 is the number 
of output features.

3. Experimental design

In this study, the capacity sequences were decomposed using EMD, EEMD, and CEEMDAN to compare the precision of different 
data decomposition methods. Then, the data after decomposition were used as the input to the hybrid model for RUL prediction. 
Further, we assessed the accuracy of the model under the same experimental conditions by comparing its predictions with those of 
other studies [32]. Finally, the model’s performance was tested for RUL early prediction. The following sections discuss the datasets 
for the test, the neural network parameters, and the criteria for evaluating the neural network’s performance.

3.1. Datasets

We used two public battery datasets as a basis for testing the feasibility of the model, namely those from the NASA Ames Predictive 
Center of Excellence and the Advanced Life Cycle Engineering Center of the Maryland University (CALCE) [33,34]. Scholars have 
widely leveraged the two battery datasets for verifying and evaluating the performance of the advanced battery algorithms because 
of their strong feasibility and applicability.

The NASA dataset provides nine batches of battery aging data sets from multiple aging tests using 18650 batteries with a standard 
capacity of 2.0 Ah. This study compares the precision of the proposed RUL prediction model against one of the batch numbers 5, 
6, 7, and 18. The batteries were tested at a temperature of 24 °C, consisting of three steps: charging, discharging, and impedance 
testing. Detailed descriptions of the experimental steps follow.

Step 1: Continue charging batteries in the constant voltage till the voltage rises to 4.2 V, after charging in the constant current 
mode till the current falls to 20 mA.

Step 2: Using the constant current mode of 2A, discharge batteries till voltage with numbers 5, 6, 7, and 18 falls to 2.7 V, 2.5 V, 
5

2.2 V, and 2.5 V.
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Fig. 4. Capacity curves of NASA dataset.

Fig. 5. Capacity curves of CALCE dataset.

Step 3: In the frequency range of 0.1 Hz to 5 kHz, electrochemical impedance spectroscopy was performed.

Step 4: Tests should be halted when the battery finishes its service life, e.g., when its rated capacity drops by 30%, or from 2.0 Ah 
to 1.4 Ah.

University of Maryland’s CALCE battery dataset contains data on batteries with a standard capacity of 1.1 Ah. This study evaluates 
the performance of our proposed early prediction method with battery numbers 35, 36, 37, and 38. These batteries were tested at 
1 °C. The main steps are the same as those described in the NASA dataset. The test’s termination condition was a capacity drop from 
1.1 Ah to 0.77 Ah.

The battery RUL curves for the NASA dataset are shown in Fig. 4, and the CALCE dataset is shown in Fig. 5.

3.2. Model settings

This prediction model uses historical capacity sequences as input and residual useful life as output. The data size of historical 
cycles is critical for the early prediction model. According to most existing studies, the starting point for predicting battery life is 
generally 50%-70% of the total cycles since the battery was first charged.

We use the same starting point and the same datasets as other models to compare the accuracy. Then, we use fewer input data 
than the existing RUL prediction methods to validate the early prediction performance. As input data, we use only 25% cycles from 
NASA and 30% cycles from CALCE. Table 1 shows the parameters of the transformer and DNN models.

There are usually two training methods in the time-series model training process: single-step and multi-step, as shown in Fig. 6. 
We define the sliding window size and then use the training sets to generate multiple sequential capacity data sets 𝑡𝑟𝑎𝑖𝑛_𝑥 according 
to the sliding window size. For the single-step prediction, we use the next capacity value after the sliding window data sequence as 
𝑡𝑟𝑎𝑖𝑛_𝑦. For the multi-step prediction, we use the future capacity sequence following the sliding window as 𝑡𝑟𝑎𝑖𝑛_𝑦.

As the single-step method may bring large error accumulation in the long-time prediction, we use the multi-step (e.g., ten-step) 
method for training and testing. The prediction model uses the generated capacity data segments with the sliding window size as 
the input data to produce the predicted output capacity values ten steps ahead, which are then used to generate the input sliding 
window for the next iteration. As the sliding window moves forward, the multi-step prediction process continues iteratively until all 
the capacity values of the remaining cycles are predicted. Both neural networks are trained using root mean square error (RMSE) as 
6

their loss function.
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Table 1

Model parameters.

Parameters Transformer DNN

Learning rate 0.0001 0.001

Hidden layer 2 4

Number of neurons 256 256

Encoder layer 2 none

Self-attention heads 10 none

Optimizer ADAM ADAM

Activation function RELU RELU

Sliding window size 20(NASA)

200(CALCE)

20(NASA)

200(CALCE)

Train size 45(NASA)

300(CALCE)

45(NASA)

300(CALCE)

Fig. 6. Output method of the model. (a): single step (b): multi-step.

For the RUL prediction, it requires setting a starting point. Data from historical capacity with the defined sliding window size is 
the input to the prediction network, just as it is to the training process. The capacity data after the starting point can be predicted 
iteratively by forwarding the sliding window for each model as in equation (9):

𝑦
𝑗

𝑘+1∶𝑘+𝑛 =𝑁𝑗 (𝑥𝑘−𝑚+1, 𝑥𝑘−𝑚+2, ..., 𝑥𝑘),

𝑦
𝑗

𝑘+2∶𝑘+𝑛+1 =𝑁𝑗 (𝑥𝑘−𝑚+2, 𝑥𝑘−𝑚+3, ..., 𝑥𝑘, 𝑦𝑘+1),

...,

(9)

where 𝑦 is the output sequence, 𝑘 represents the cycling number of the starting point, 𝑛 is the future prediction steps, 𝑁𝑗 is the 𝑗 − 𝑡ℎ

prediction model, 𝑥 is the actual input data, and 𝑚 is the sliding window size.

3.3. Evaluation metrics

As performance metrics, absolute error (AE), absolute error rate (AER), and root mean square error (RMSE) are selected, which 
are extensively applied in the study of RUL prediction. The evaluation metrics are described below.

The metric AE is defined as equation (10):

𝐴𝐸 = |𝐶𝑦𝑐𝑙𝑒𝑇 −𝐶𝑦𝑐𝑙𝑒𝑃 |, (10)

the metric RMSE is defined as equation (11):

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖

|𝐶𝑎𝑝𝑇𝑖 −𝐶𝑎𝑝𝑃𝑖|2, (11)
7

and the metric AER is defined as equation (12):
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Fig. 7. Decomposition results of the capacity of B0005. (a): EMD (b): EEMD (c): CEEMDAN.

Fig. 8. Error curves of EMD, EEMD, CEEMDAN of B0005 capacity.

𝐴𝐸𝑅 =
|𝐶𝑦𝑐𝑙𝑒𝑇 −𝐶𝑦𝑐𝑙𝑒𝑃 |

𝐶𝑦𝑐𝑙𝑒𝑇
, (12)

where 𝐶𝑦𝑐𝑙𝑒𝑇 represents the true number of cycles, 𝐶𝑦𝑐𝑙𝑒𝑃 denotes the predicted number of remaining cycles, 𝐶𝑎𝑝𝑇𝑖 indicates the 
true capacity, and 𝐶𝑎𝑝𝑃𝑖 indicates the predicted value of the capacity.

4. Results and discussion

4.1. Comparison of the signal decomposition

The capacity sequence of battery B0005 is decomposed using three signal decomposition methods, i.e., EMD, EEMD, and CEEM-

DAN. Fig. 7 shows the signal decomposition results. Fig. 8 shows the error curves for the decomposition results of the three methods. 
From Fig. 7 (a) with the EMD method, we can see that mode mixing occurs between IMF1 and IMF2, where IMF2 contains compo-

nents from the frequency band of IMF1. Another mode of mixing occurs between IMF3 and RES, where RES also contains components 
from the frequency band of IMF3. The above mode mixing renders the IMFs physically meaningless and leads to an inaccurate de-

composition of the capacity data. The RMSE of the EMD method is 1.564 × 10−32.
From Fig. 7 (b) with the EEMD method, the mode mixing phenomenon is greatly eliminated, as the frequency bands of IMFs are 

clearer than the EMD method. However, as the white noise was added several times during the decomposition, IMF4 and IMF5 could 
not be eliminated during the ensemble averaging, resulting in a redundant EEMD. Moreover, the noise is not eliminated in IMF5, 
8

which leads to a large error in EEMD. The RMSE of the EEMD is 1.919 × 10−32.
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Table 2

RUL prediction of lithium-ion batteries datasets.

Datasets Method Starting point Real RUL Predict RUL AE AER

LSTM 90 34 50 16 0.4706

EMD-LSTM 90 34 50 16 0.4706

B0005 CEEMDAN-LSTM 90 34 45 11 0.2444

Our model 90 34 33 1 0.0294

Our model(early) 45 77 74 3 0.0389

LSTM 90 18 27 9 0.5000

EMD-LSTM 90 18 24 6 0.3333

B0006 CEEMDAN-LSTM 90 18 23 5 0.2778

Our model 90 18 18 0 0

Our model (early) 45 63 66 3 0.0476

LSTM 133 35 62 27 0.7714

EMD-LSTM 133 35 67 32 0.9143

B0007 CEEMDAN-LSTM 133 35 51 16 0.4571

Our model 133 35 34 1 0.0285

Our model (early) 45 123 123 0 0

LSTM 72 24 34 10 0.4167

EMD-LSTM 72 24 30 6 0.2500

B0018 CEEMDAN-LSTM 72 24 22 2 0.0833

Our model 72 24 24 0 0

Our model (early) 30 66 65 1 0.0151

LSTM 462 178 185 7 0.0393

EMD-LSTM 462 178 180 2 0.0112

CS235 CEEMDAN-LSTM 462 178 184 6 0.0337

Our model 462 178 179 1 0.0056

Our model (early) 300 340 339 1 0.0033

LSTM 599 46 52 6 0.1304

EMD-LSTM 599 46 45 1 0.0217

CS236 CEEMDAN-LSTM 599 46 49 3 0.0655

Our model 599 46 45 1 0.0217

Our model (early) 300 345 334 11 0.0290

LSTM 586 130 155 25 0.1923

EMD-LSTM 586 130 144 14 0.1077

CS237 CEEMDAN-LSTM 586 130 148 18 0.1385

Our model 586 130 136 6 0.0461

Our model (early) 300 415 393 22 0.0530

LSTM 581 175 182 7 0.0400

EMD-LSTM 581 175 180 5 0.0286

CS238 CEEMDAN-LSTM 581 175 185 10 0.0571

Our model 581 175 177 2 0.0114

Our model (early) 300 456 436 20 0.0438

Fig. 7 (c) shows the decomposed results using the CEEMDAN, where the mode mixing phenomenon is effectively eliminated. At 
the same time, the problem of excessive noise in the EEMD has been solved. The RMSE of the CEEMDAN method is 1.535×10−32, 
which is smaller than EEMD, thus resulting in an exact signal decomposition without mode mixing.

Table 2 lists the prediction results using different methods and their combinations. According to the AE metric in Table 2, 
prediction models combining mode decomposition (EMD, CEEMDAN) have smaller prediction errors compared to prediction models 
that do not use signal decomposition, confirming that the combined model is effective and feasible.

Moreover, the error using the CEEMDAN-LSTM model is much smaller than that using the EMD-LSTM model, which indicates 
that the decomposition part of the CEEMDAN method can achieve a more accurate prediction than the original EMD method.

4.2. RUL prediction results

In this research, several existing methods and their combinations in the field of battery RUL prediction, including LSTM, EMD-

LSTM, and CEEMDAN-LSTM, are compared with the proposed CEEMDAN-Transformer-DNN hybrid model. The prediction model is 
validated by using battery data numbered 5, 6, 7, and 18 from the NASA dataset, as well as battery data CS235, CS236, CS237, and 
CS238 from the CALCE dataset.

Using the same starting point as suggested in the proposed hybrid model, Fig. 9 illustrates the prediction results for RUL. As 
can be seen, the proposed hybrid model is very accurate at predicting capacity regeneration phenomena, greatly improving RUL 
prediction accuracy. Table 2 shows the results using different models. Only using the LSTM model results in significant prediction 
9

errors, with the largest AER values not found in any other datasets. The EMD-LSTM combines the signal decomposition and acquires 
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Fig. 9. RUL prediction results for the battery dataset used to validate the model. (a): B0005 (b): B0006 (c): B0007 (d): B0018 (e): CS235 (f): CS236 (g): CS237 (h): 
CS238.

decreased AERs. However, the improvement in accuracy is still limited, probably due to the extra errors caused by the mode mixing 
phenomenon introduced by the signal decomposition. The combination of CEEMDAN with LSTM substantially improves accuracy, 
proving the superiority of using CEEMDAN in the battery data.

For the NASA dataset, the RUL prediction for each battery is very accurate with our proposed method. The RMSEs are 0.0056, 
10

0.0097, 0.018, and 0.007 for batteries 5, 6, 7, and 18. The proposed hybrid model shows better predictive accuracy than the combined 
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Fig. 10. Early prediction of RUL results for NASA battery dataset. (a): B0005 (b): B0006 (c): B0007 (d): B0018.

LSTM-based model for the AE and AER metrics. The average AER of CEEMDAN-Transformer-DNN is 0.0144, while the average AER 
of CEEMDAN-LSTM is 0.2656, indicating significant improvement. Accordingly, the proposed model has the smallest AE, reflecting 
its enhanced adaptability, robustness, and accuracy as compared to other models.

For the CALCE dataset, the average RMSE of CEEMDAN-Transformer-DNN is less than 3%, which is undoubtedly a very excellent 
performance. The average RMSE of the LSTM method is 0.0347, while the average RMSE of the CEEMDAN-Transformer-DNN method 
is 0.0244, with an average reduction of 29.6% for the RMSE metric. Meanwhile, the CEEMDAN-Transformer-DNN has the highest AE 
and AER metric accuracy. The average AER of CEEMDAN-Transformer-DNN is 0.0212, while the LSTM method is 0.0423, reducing 
about 49.8%. It demonstrates the effectiveness of replacing the LSTM with a Transformer-DNN model, achieving the best performance 
in prediction accuracy among the existing methods.

The above prediction results are based on the same starting point as the existing methods in the literature for comparison. To 
check the accuracy of the model’s early prediction, we change the starting point to an earlier stage, as shown in Fig. 10 and Fig. 11. 
It is shown that the proposed method is able to accurately predict the capacity regeneration phenomenon using only 25%-30% of 
historical data, which is not available in other methods. The average RMSE of the proposed method using 25%-30% historical data 
is 0.0208 for the NASA dataset and 0.0337 for the CALCE dataset, which has a higher prediction accuracy than any other models 
that use even 50%-70% historical data. Hence, the proposed method has excellent early prediction precision.

The proposed method is found to achieve superior accuracy performances in several datasets when compared to other methods 
with CEEMDAN-Transf-ormer-DNN. Furthermore, even with a little capacity data, this model still offers better performance than other 
early prediction methods. As the transformer network can run in parallel, the calculation is faster than the mainstream recurrent 
neural networks and their variants, which can realize accurate prediction of the battery RUL in a shorter time.

5. Conclusion

Accurately predicting battery RUL is significant for monitoring the health state and enhancing operational safety through timely 
maintenance. Li-ion battery capacity regeneration problems during operation can seriously affect the accuracy of data-driven RUL 
prediction models. Additionally, using limited historical data, high-accurate early predictions of lithium-ion battery RUL are still 
challenging. In this research, we propose a CEEMDAN-Transformer-DNN hybrid model for RUL prediction that takes into account the 
capacity regeneration phenomenon on a global decreasing capacity. The hybrid model combines signal processing and deep learning 
to predict RUL.

According to test results using NASA and CALCE datasets, CEEMDAN can significantly address the mode mixing problem and 
improve the accuracy of decomposing battery capacity sequences. The proposed CEEMDAN-Transformer-DNN has better prediction 
11

accuracy and robustness. Furthermore, this method can predict RUL with high accuracy based only on 25%-30% of lifetime data.
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Fig. 11. Early prediction of RUL results for CALCE battery dataset. (a): CS235 (b): CS236 (c): CS237 (d): CS238.

Since capacity degradation behaviors are significantly affected by the actual operating conditions and working environment, 
multiple stress features like temperature, voltage, and current may be utilized as the input parameters to realize more advanced 
prediction models in future works.
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