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Abstract: In the present study, novel mixed additives of Chitosan or Paraloid B-72 combined with
nanoparticles (NPs) of Ag, ZnO, or cellulose (NCL) were examined for their effects on the mechanical,
optical, and fungal inhibition properties of the papersheets produced. The highest tensile, tear,
and burst indices of the papersheets were observed for flax pulp treated with additives of Paraloid
B-72 + ZnO NP (1%), Chitosan + ZnO NP (3%), and Chitosan + NCL (3%) at levels of 59.93 N·m/g,
18.45 mN·m2/g, and 6.47 kPa·m2/g, respectively. Chitosan + ZnO NP (1%) added to flax pulp showed
the highest fungal mycelial inhibition (FMI) (1.85%) against Aspergillus flavus. Chitosan + Ag NP (1%)
exhibited the highest FMI percentage (11.48%) when added to pulp against A. terreus. Pulp treated
with Paraloid B-72 + Ag NP (1%) exhibited the highest activity against Stemphylium solani with an
FMI value of 3.7%. The results indicate that the technological properties of the papersheets were
enhanced with the addition of novel mixtures to the pulp.

Keywords: fungal inhibition; flax papersheets; mechanical properties; nanoparticles; optical
properties

1. Introduction

In the pulp and paper industry, different materials in the form of nanoparticles (NPs) are used
as pulp additives or for coated paper to enhance the mechanical, physical, optical, and antimicrobial
properties of the produced papersheets [1–6].

Chitosan or its derivatives are added to water-suspended paper pulp mixture with non-fibrous
additives furnish [7,8] or used for coating paper [9–11] to obtain packaging papers with improved
tensile and burst strength properties. The wet and dry tensile strength values of recycled corrugated
carton pulp were improved by different dosages of high-molecular-weight Chitosan [12]. Smooth
surface properties and greater resistance to humidity were observed in paper manufactured with the

Materials 2020, 13, 363; doi:10.3390/ma13020363 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-1870-6277
https://orcid.org/0000-0001-5246-7620
https://orcid.org/0000-0002-3961-7935
http://www.mdpi.com/1996-1944/13/2/363?type=check_update&version=1
http://dx.doi.org/10.3390/ma13020363
http://www.mdpi.com/journal/materials


Materials 2020, 13, 363 2 of 23

addition of Chitosan [13,14]. Furthermore, the addition of Chitosan improved the tensile and burst
strengths of papersheets made from furnish consisting of elemental-chlorine-free (ECF) bleached Kraft
pulp from spruce (70%) and totally chlorine-free (TCF) bleached Kraft pulp from birch (30%) [15].

Paper pulp with the presence of Chitosan showed good antimicrobial activities against
Staphylococcus aureus and both fungi Candida albicans and C. glabrata, which is extremely important for
paper applications in the hygiene and medical sectors [16]. Chitosan in the form of NPs was used as
an antimicrobial coating in the textile industry [17]. To obtain paper with higher strength properties
and lower air permeability, micro–nanochitosan additives were used [15]. Chitosan NPs as a coating
material were shown to have properties of diffusion into the pores of paper fibers, resulting in increased
interfibrillar bonding [11]. The molecular structure of chitosan is similar to that of cellulose, which
promotes the creation of strong bonding [18]. The strength and physical properties of papersheets
were effectively improved by the addition of chitosan and its derivatives as additives [19–22]. Bamboo
pulp fabric treated with ZnO NPs showed potential antimicrobial properties and good ultraviolet (UV)
protective properties [23].

A nanocellulose (NCL) suspension without an additional adhesive can be used to treat and
consolidate weakened areas in paper [24]. NCL was used as a strengthening agent in paper, coating
applications, and surface sizing due to its high tensile strength [25]. NCL mixed directly with pulp or
as a filler has played an important role in paper-making due to the resulting mechanical reinforcement,
improved barrier properties, optical transparency, and smoothness [26,27].

Paraloid was used for the consolidation of paper-based manuscripts, and its mixture with NPs
was shown to increase or improve the mechanical and optical properties of papers [28,29], and wooden
artifacts [30]. Paraloid B-72 at 2%, 3%, or 10% did not exhibit antifungal activity [30–34], but antifungal
activity of Paraloid B-72 (10%) was observed when mixed with other substances [35].

The addition of soda–anthraquinone (AQ) in cooking liquor increases the delignification rate due
to the rate of decrease in the lignin content of wood and non-wood being related to alkali consumption
as the alkaline pulping process progresses. This is can be divided into three phases: (1) initial reaction,
(2) bulk delignification, and (3) residual delignification [36–39]. Compared to the soda–AQ and soda
method as a reference, alkaline sulphite–AQ (AS–AQ) gave the best results in terms of the yield and
the mechanical and optical properties of bagasse pulp blended with bamboo pulp [40].

The aim of this research was to compare the effects of Paraloid nanocomposites in the presence of
different nanoparticles with those of chitosan nanocomposites in the presence of the same nanoparticles
on pulp properties and the inhibition of fungal infestation. This was achieved using novel mixtures of
Chitosan or Paraloid B-72 with Ag NP, ZnO NP, and NCL at concentrations of 1% and 3%.

2. Materials and Methods

2.1. Chemicals

Chitosan powder (ACROS Organics™, Fisher Scientific, Im Heiligen Feld, Schwartz, Simmerath,
Germany), 575.16–3405.35 SEK, molecular weight 100,000–300,000 KDa, Molecular formula
C56H103N9O39, Molecular weight 1526.464 (g/mol), Paraloid polymer prepared by polymerization of
methyl methacrylate and ethyl acrylate monomers (Aldrich, Darmstadt, Germany), ZnO NP (Aldrich,
Darmstadt, Germany), Ag NP (Sigma-Aldrich, Schnelldorf, Germany), nanocellulose (NCL) (Across,
Schwartz GmbH, Simmerath, Germany), acetic acid (El Gomhouria Company, Cairo, Egypt), NaOH
(El Gomhouria Company, Cairo, Egypt), sodium dodecyl sulfate (SDS) (El Gomhouria Company, Cairo,
Egypt), and sodium bisulphite (SBS) (Sigma-Aldrich, Schnelldorf, Germany) were used.

2.2. Preparation of Nanocomposites

Chitosan nanocomposite solutions were prepared by the addition of 0.03 g and 0.09 g of each of
the NPs ZnO, Ag, or cellulose separately into 1% acetic acid. Each solution was mixed for about 10 min;
then, 3.0 g of Chitosan powder was added and mixed vigorously and the mixture sonicated for 15 min
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to obtain two different concentrations (1% and 3%) of ZnO/chitosan, Ag/chitosan, and cellulose/chitosan
nanocomposites. A quantity of 0.1 M NaOH was added slowly to each solution with vigorous stirring
until the pH reached 6.0 and the solution was kept overnight at 60 ◦C [41].

The paraloid nanocomposite was prepared according to Salem et al. [42]. Briefly, a co-polymer
emulsion lattice with a 50/50 composition ratio of methyl methacrylate/ethyl acrylate (MMA/EA)
monomers was used to produce poly(MMA-Co-EA) [43]. It was prepared by an emulsion
polymerization technique with solid content of 5% in the presence of 1% or 3% nanoparticles.
The polymerization was carried out according to the following procedure: in a 250 mL three-necked
flask, 1 g of emulsifier, sodium dodecyl sulfate (SDS), was dissolved in a desired amount of distilled
water. The desired amount of the monomer with the selected composition ratio (50/50 MMA/EA) was
added and well emulsified for 30 min at room temperature using a mechanical stirrer (500 rpm) in
the presence of 1% or 3% of ZnO, Ag, or cellulose NPs, separately. Then, the mixture was heated to
80 ◦C [44]. Next, the redox initiation system composed of potassium persulphate (PPS) (0.27 g) and
sodium bisulphite (SBS) (0.416 g) dissolved in 50 mL of distilled water was added dropwise to the
reaction mixture under continuous stirring for 3 h.

It should be noted that from the literature, most of the published works which chose concentrations
of NPs between 1% and 3% achieved greater modifications in the required chemical and mechanical
properties of chitosan and Paraloid [29,45–47]. Paraloid B-72 (70 Ethyl Methacrylate (EMA)/30MA)
and Chitosan were added at 4% as a constant amount when making the composite treatment.

Additionally, the polymer nanoparticles nanocomposite mixture sonicated for 15 min using
pulse-echo method operating at amplitude 350 Watt and frequency of 2 MHz (central frequency of
0.7 MHz and bandwidth of 1.4 MHz). The uncertainty of the measurements is ±10 m/s using an
oscilloscope (60 MHz time base oscilloscope, Philips, Eindhoven, Netherlands).

2.3. Morphological Analysis of the Prepared Nanocomposites

The morphological analyses of the prepared nanocomposites were performed via transmission
electronic microscopy (TEM), where the TEM images were obtained using a JEM-1230 electron
microscope operated at 60 kV (JEOL Ltd., Tokyo, Japan). Before taking a TEM image, the sample was
diluted at least 10 times by water. A drop of well-dispersed diluted sample was placed onto a copper
grid (200 mesh and covered with a carbon membrane) and dried at ambient temperature.

2.4. Flax Material and the Soda–Anthraxquinone Pulping Process

The flax plants grown in the North of Egypt during 2018 were used in this research with
well-shaped and visually free from defects. The stems of flax plants were cut into approximately 20 mm
in length, screened, and then air-dried. Preparation of the flax samples for analysis and moisture
content determination were done according to T257 and T208, respectively.

Prior to pulping, 200 g oven-dried flax plant was swelled for one day, filtrated, and washed several
times with hot water. The soda–anthraquinone pulping experiment was carried out using a stainless
steel vessel of 3 L capacity, equipped with a rotating and heating oil bath and temperature and pressure
monitor (0.7 MPa) devices. The pulping properties were active alkaline 17%, 170 ◦C temperature,
180 min reaction time, 0.15% anthraquinone based on the oven-dried weight (3 mL dosage from a
solution of 10% anthraquinone dissolved in ethyl alcohol), and liquor ratio of 10:1 (liquid to solid).
After pulping, the solid residue was defibrated, refined, and then washed with hot water and cold
water to a neutral pH. The washed pulp was screened in a Valley flat screen (machine manufactured in
Germany) with 0.25 mm slots.

2.5. Chemical Analysis

Homogenized flax samples were milled, sieved to a 60-mesh fraction, and subjected to chemical
analysis. The contents (%) of holocelluloses, pentosans, benzene and alcohol extractives, lignin,
and ash were measured according to the TAPPI standard methods T249, T223, T204, T222, and T211,
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respectively [48]. Furthermore, the contents of extractives soluble in cold water, hot water, and 1%
NaOH were measured in accordance with the methods of T207, T207, and T212, respectively. The
yield percentage (T210), kappa number (T236), and freeness of the pulp (T227) were determined for the
unbleached flax pulp [48].

2.6. Pulp Additives

Novel mixtures of chitosan or Paraloid B-72 combined with ZnO, Ag, or cellulose nanoparticles at
1% and 3% were added based on the pulp’s oven-dried weight (Table 1). The mixture was agitated for
20 min at room temperature (25 ◦C). Chitosan and Paraloid B-72 as pulp additives at 4% and pulp
without additives were used for comparison. All these measurements were done in triplicate.

Table 1. Different pretreatments used for flax pulp.

Treatment

1 Chitosan + Ag NP 1%
2 Chitosan + Ag NP 3%
3 Chitosan + ZnO NP 1%
4 Chitosan + ZnO NP 3%
5 Chitosan + NCL 1%
6 Chitosan + NCL 3%
7 Paraloid + Ag NP 1%
8 Paraloid + Ag NP 3%
9 Paraloid + ZnO NP 1%

10 Paraloid + ZnO NP 3%
11 Paraloid + NCL 1%
12 Paraloid + NCL 3%
13 Chitosan 4%
14 Paraloid B-72 4%
15 Pulp without additives

2.7. Sheet Formation and Papersheet Testing

The flax pulp was beaten in a valley beater according to T200, then 1.6 g (oven-dry) stock was
placed on a paper sheet cylinder to make standard sheets of 80 g/m2 with an area of 200 mm2 (T205

sp-02) [48]. For determination of the dry strength properties, the samples were conditioned at 50% ± 2%
RH and 23 ± 1 ◦C according to T402 sp-98 for at least 4 h [48]. The strength properties of the papersheets
were measured (T218 and T220). The produced paper sheets were tested for their tensile index (T403),
tear index (T414), burst index (T405), double fold (T423) and the percentage of brightness [49] (Table 2).

Table 2. Description test machines and their specifications.

Test Machine Specifications

Tensile Tester
Model: Adamel Lhomargy, model No. 596420, DY-30; Maximum load cell: 100 N
display in Newton or KN; Digital display: 41/2 digits; Accuracy: 0.1%; Speed
range: 0.01 to 999 mm/min, automatic return sped.

Tear Tester
Model: FRANK-PTI GMBH, Elmendorf tear tester, digital, Mod. 53984, Sr. 40551,
Germany; Fully automatic model Available pendulums: 0–8000 mN; Compressed
air 4–6 bar.

Burst Tester

Model: Tecnolab Company, model No. BS 20 E/SN. 160.08, Italy; Capacity
1999 kPa; Sensitivity 1 kPa; Accuracy ±0.5% kPa; Pump flow rate 95 ± 5 mL/min;
Circular clamp diameter 65 mm; Diaphragm diameter 30.5 mm; Adjustable clamp
pressure 0–90 psi; Air supply 6 bar max (90 psi).

Twin Folding Tester Model: KÖGEL LEIPZIG, DFP 6-60; Standard tension of 9.81 N; Sample length:
100 mm; Sample width: 15 mm; Speed: 115 ± 10 strokes/min

Color Touch Model ISO Model: Technidyne Corporation, New Albany Indiana USA, Model NO. CTH-
ISO, Serial NO. CTH A 2054; Technidyne Corporation.
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2.8. In Vitro Inhibition of Fungal Infestation

Three fungi, Aspergillus flavus AFl375, A. terreus Ate456, and Stemphylium solani Ssol382, deposited
in Genbank under accession numbers MH355958, MH355953, and MH355956, respectively, were used
to study their growth inhibition around the produced papersheets with different additives (Table 1).
Seven-day-old Potato Dextrose Agar (PDA) cultures from each fungus were prepared. Paper discs of
papersheets 9 mm in diameter were put directly over the inoculated media with a disc (5 mm diameter)
of each fungus in petri dishes for 14 days at 25 ± 1◦C. The inhibition percentage of fungal linear growth
was measured using the following formula [33]:

Mycelial growth inhibition (%) = [(Ac − At)/Ac] × 100 (1)

where Ac and At represent the average diameters of the control and treatment fungal
colonies, respectively.

To prevent cross contamination between samples in dishes, firstly, the paper samples were
sterilized in the autoclave before being placed on the medium and secondly, the infection was done
inside the laminar flow, in the presence of the UV-lamp, to complete sterilization. In addition, each
dish contains only one fungus.

2.9. Scanning Electron Microscopy

At the end of the incubation period of the produced paper sheets with the fungi, the symptoms or
inhibition of fungal infestation on the manufactured flax papersheets with different additives were
examined using a Scanning Electron Microscope (SEM). The papersheet samples were coated with
gold in a fine coat and examined via SEM-JEOL (JFC-1100E Ion sputtering device, model JSM- 5300,
JEOL Co., Tokyo, Japan) at 8 kV.

2.10. Statistical Analysis

Values of the mechanical, physical, and fungal inhibition properties of the flax papersheets as
affected by different pulp additives were statistically analyzed with analysis of variance (ANOVA)
using the Statistical Analysis System (SAS) [50], and compared with the control treatments using
Duncan’s Multiple Range Test.

3. Results

3.1. Morphological Analyses (TEM) of the Prepared Nanomaterials

Figure 1a–c shows TEM images of the chitosan/NP nanocomposites. NPs existed on the chitosan
surface with uniform distributio n and small aggregation; the dark areas represent the NPs and bright
areas represent the chitosan surface. Figure 2a–f represents TEM images of the Paraloid B-72/NP
nanocomposites. The prepared nanocomposites exhibited spherical shape with particle sizes in the
range of 90 nm in the case of Ag and ZnO NPs and reaching about 130 nm in the case of NCL.

TEM images represent spread of NPs over fibrous shape of chitosan in case of chitosan/NP
nanocomposites, but in case of Paraloid B-72/NP nanocomposites, the NPs spread over spherical shape
of Paraloid B-72. All the prepared samples are in one dimensional shape. Because both of thin film and
fibrous shape are from one dimension (single dimension) nanomaterials.
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Figure 2. TEM photographs of the prepared nanomaterials. (a,b) Paraloid B-72 + Ag NP; (c,d) Paraloid
B-72 + ZnO NP; (e,f) Paraloid B-72 + NCL.

3.2. Chemical Composition of the Flax Plant and Pulp Properties

The flax plant chemical contents of holocelluloses, pentosans, lignin, benzene:alcohol extractives,
ash, solubility in cold water, solubility in hot water and solubility in 1% NaOH were 70%, 12%, 6.8%,
16%, 2.1%, 11%, and 25%, respectively. The properties of the unbleached flax pulp were found to be as
follows: pulp yield (59%), kappa number (9.1), and freeness of pulp (600 CSF◦).

3.3. Mechanical and Physical Properties of the Papersheets

Figure 3 presents the mechanical and optical properties of the manufactured flax papersheets
as affected by the pulp additives and compared with the control treatments. The highest values of
tensile index were observed in pulp treated with Paraloid B-72 + ZnO NP (1%), Chitosan + NCL (3%),
and Chitosan + NCL (1%), with values of 59.93 ± 0.01, 55.85 ± 0.01, and 49.4 ± 0.01 N.m/g, respectively.
In contrast, the lowest values were 42.66 ± 0.05, 44.16 ± 0.005, and 45.36 ± 0.01 N.m/g in the pulp
without additives, Chitosan + Ag NP (1%), and Chitosan (4%), respectively.
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Figure 3. Effect of different nanomaterials on the mechanical and physical properties of the manufactured
flax papersheets compared to control treatments.

The highest values of tear index were observed in the flax pulp treated with Chitosan + ZnO
NP (3%), Chitosan + ZnO NP (1%), and Paraloid B-72 (4%), with values of 18.45 ± 0.01, 18.34 ± 0.01,
and 17.76 ± 0.02 mN.m2/g, respectively. The lowest values were 14.32 ± 0.005 and 15.97 ± 0.02 mN·m2/g
in pulp without additives and in that treated with Paraloid B-72 + ZnO NP (1%), respectively.

The highest burst index was achieved with flax papersheets produced from pulp treated with
Chitosan + NCL (3%), Paraloid B-72 + NCL (3%), and Paraloid B72 + ZnO NP (1%), with values of
6.47 ± 0.01, 6.23 ± 0.01, and 6.12 ± 0.01 kPa·m2/g, respectively, compared to the control treatments
of Chitosan 4% (5.21 ± 0.005 kPa·m2/g), Paraloid B-72 4% (5.24 ± 0.02 kPa·m2/g), and pulp without
additives (4.33 ± 0.01 mN·m2/g).

The highest double fold number values were observed in flax papersheets produced with pulp
additives of Chitosan + NCL (3%), Paraloid B-72 + ZnO NP (1%), Chitosan (4%), and Paraloid B-72
(4%), with values of 247.66 ± 1.52, 244.66 ± 1.52, 244.33 ± 0.57, and 244.33 ± 1.52, respectively, compared
to pulp without additives (231.33 ± 0.57).

The additives Chitosan + Ag NP (3%), Paraloid B-72, and Paraloid B-72 + NCL (3%) showed the
highest brightness percentages with values of 57.50% ± 0.20%, 56.63% ± 0.15%, and 56.40% ± 0.2%,
respectively. The lowest values were observed in pulp without additives (54.03% ± 0.05%) and
Chitosan+ZnO NP 1% (54.33% ± 0.15%).
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In terms of grammage (g/m2), paper sheets produced from pulp with additives of Paraloid B-72
+ Ag NP (1%), and Paraloid B-72 + ZnO NP (3%) exhibited the highest values of 85.09 ± 0.49 and
84.59 ± 0.49, respectively, compared to pulp without additives (77.46 ± 0.28).

The addition of Chitosan and Paraloid B-72 at 4%, as well as their combinations with Ag NPs,
ZnO NPs, and NCL, led to considerable increases in the papersheets’ mechanical properties compared
with the control (pulp without additives). Significant enhancements in the tensile and tear indices and
in the brightness percentages were observed in pulp treated with Paraloid B-72 (4%) compared to that
with Chitosan 4%, while no differences were found for burst index, fold number, and grammage.

Compared to the control treatment, pulp additives significantly enhanced (p < 0.05) the mechanical
and physical properties of the produced flax papersheets (Table 3).

Table 3. ANOVA analysis of the effect of different treatments on the mechanical and physical properties
of papersheets made from the flax plants.

SOV DF Sum of Squares Mean Square F Value Pr > F

Tensile index (N·m/g)

Additives (A) 6 383.552 63.925 198389 <0.0001

Concentrations (B) 1 17.056 17.056 52935.2 <0.0001

A × B 5 315.438 63.087 195789 <0.0001

Error 30 0.0096 0.00032

Corrected Total 44 837.958

Tear index (mN·m2/g)

A 6 20.284 3.3807 5828.86 <0.0001

B 1 0.011 0.011 19.01 <0.0001

A × B 5 4.608 0.922 1589.27 <0.0001

Error 30 0.0174 0.0006

Corrected Total 44 44.703

Burst index (kPa·m2/g)

A 6 0.668 0.112 110.02 <0.0001

B 1 1.444 1.444 1425.00 <0.0001

A × B 5 4.185 0.837 826.09 <0.0001

Error 30 0.0304 0.001

Corrected Total 44 12.645

Fold number

A 6 337 56.166 26.61 <0.0001

B 1 40.111 40.111 19.00 <0.0001

A × B 5 190.55 38.111 18.05 <0.0001

Error 30 63.333 2.11

Corrected Total 44 985.20

Brightness (%)

A 6 20.936 3.489 163.89 <0.0001

B 1 5.359 5.359 251.71 <0.0001

A × B 5 11.555 2.3111 108.55 <0.0001

Error 30 0.638 0.0212

Corrected Total 44 44.07

Grammage (gm/m2)

A 6 131.195 21.866 14.50 <0.0001

B 1 14.554 14.554 9.65 0.0041

A × B 5 102.238 20.447 13.56 <0.0001

Error 30 45.23 1.5077

Corrected Total 44 342.18

SOV: source of variance; DF: degrees of freedom.
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3.4. Biological Activity of the Flax Papersheets

The visual observations in Figure 4a–c show the degrees of fungal growth infestation of Aspergillus
flavus, A. terreus, and Stemphylium solani colonizing the produced laboratory flax papersheets. Compared
to the control treatments, A. flavus is clearly illustrated with intensive growth over the papersheets
manufactured from the treated pulp (Figure 4a). Complete growth was found in control treatments
with A. terreus, whereas the fungal inhibition percentage was improved for the examined papersheets
made with pulp additives of Chitosan + Ag NP (1%), Chitosan + ZnO NP (1%), Chitosan + NCL (1%),
Chitosan + NCL (3%), Paraloid B-72 + Ag NP (1%), Paraloid B-72 + NCL (1%), and Paraloid B-72
+ NCL (3%) (Figure 4b) with different inhibition percentages of mycelial growth (Table 4). Mycilial
inhibition of S. solani was found around the flax papersheets produced with pulp additives of Chitosan
+ NCL (3%) and Paraloid B-72 + Ag NP (1%) (Figure 4c).
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Figure 4. Antifungal activity of flax papersheets with different treatments against the growth of (a)
A. flavus, (b) A. terreus and (c) Stemphylium solani.

Table 4. Mycelia percentage inhibited of A. flavus, A. terreus and S. solani by pulp treated with different
nanoparticle materials at different concentrations.

Pulp Additives Concentration (%)
Inhibition of Mycelial Growth (%)

Aspergillus flavus Aspergillus terreus Stemphylium solani

Chitosan + Ag NP 1 1.48 ± 1.28 11.48 ± 0.64 0.74 ± 0.64
3 1.11 ± 1.11 8.51 ± 2.79 2.59 ± 1.28

Chitosan + ZnO NP 1 1.85 ± 1.69 10.37 ± 0.64 1.85 ± 1.69
3 1.48 ± 1.28 2.59 ± 1.28 0.74 ± 0.64

Chitosan + NCL
1 1.11 ± 1.11 10.74 ± 0.64 0.37 ± 0.64
3 0.74 ± 0.64 5.92 ± 0.64 2.22 ± 1.11

Paraloid B-72 + Ag NP 1 0.37 ± 0.64 8.88 ± 1.11 3.7 ± 0.64
3 0.74 ± 1.28 9.62 ± 0.64 1.48 ± 1.28

Paraloid B-72 + ZnO NP
1 0.37 ± 0.64 8.14 ± 1.69 0.37 ± 0.64
3 0.00 8.14 ± 1.28 1.85 ± 0.64

Paraloid B-72 + NCL
1 0.37 ± 0.64 8.14 ± 1.28 0.37 ± 0.64
3 0.00 10.74 ± 0.64 0.74 ± 1.28

Without additives 0 0.00 0.00 0.00
Chitosan 4 0.00 0.00 0.00

Paraloid B-72 4 0.00 0.00 0.00

p-value ** ** **

Notes: Values (**) are presented as mean ± SD.

Statistically, the antifungal activity in terms of the fungal mycelial inhibition (FMI) percentage
(Table 4) showed that flax pulp with chitosan + ZnO NP (1%) additive had the highest FMI
(1.85% ± 1.69%) against the growth of A. flavus. The highest FMI percentage values of 11.48% ± 0.64%,
10.74% ± 0.64%, 10.74% ± 0.64%, and 10.37% ± 0.64% against the growth of A. terreus were observed
in flax papersheets produced with pulp additives of Chitosan + Ag NP (1%), Chitosan + NCL (1%),
Paraloid B-72 + NCL (3%), and Chitosan + ZnO NP (1%), respectively. Pulp treated with Paraloid B-72
+ Ag NP (1%), Chitosan + NCL (3%), and Chitosan + Ag NP (3%) exhibited the highest activity against
S. solani with FMI values of 3.7% ± 0.64%, 2.22% ± 1.11%, and 2.59% ± 1.28%, respectively. On the
other hand, control treatments (pulp without additives or with Chitosan (4%) or Paraloid B-72 (4%))
did not show any FMI percentages against the studied three molds.
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Based on the visual observations of fungal growth as well as the antifungal activities, the samples
chosen for SEM measurements clearly exhibited different degrees of growth of the tested fungi. Dense
and huge fungal mycelial growth of A. terreus (Figure 5) was clearly visible on the examined flax paper
sheets produced without pulp additives (Figure 5a,b), with 4% chitosan (Figure 5c,d), and with 4%
Paraloid B-72 (Figure 5e,f). Dense mycelial growth of A. terreus was found on the tested paper sheets
manufactured with pulp additives of Chitosan + ZnO NP (3%) (Figure 5g,h). On the other hand, the
fungal mycelial growth of A. terreus over paper samples produced with pulp additives of Chitosan
+ Ag NP (3%) (Figure 4i), Paraloid B-72 + Ag NP (3%) (Figure 5j), and Paraloid B-72 + NCL (3%)
(Figure 5k) decreased.
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of Paraloid B-72 + Ag NP 1% (Figure 6g) and Chitosan + Ag NP 3% (Figure 6h) showed reasonable 

Figure 5. SEM images of flax papersheets manufactured with/without additives and inoculated with
A. terreus. (a,b) Flax papersheets produced without additives; (c,d) with 4% chitosan; (e,f) with 4%
Paraloid B-72; (g,h) with chitosan (4%) + ZnO NP 3%; (i) with chitosan 4% + Ag NP 3%; (j) with
Paraloid B-72 4% + Ag NP 3%; (k) with Paraloid B-72 4% + NCL 3%. Arrows refer to growth levels of
the fungus mycelium in a, b; while growth intensity varies with different concentrations of additives
in c–k.

The same trend was found with the growth of A. flavus, where huge hyphae growth was observed
over the papersheets produced without pulp additives (Figure 6a,b), with 4% chitosan (Figure 6c,d),
and with 4% Paraloid B-72 (Figure 6e,f). Flax papersheets produced with pulp additives of Paraloid
B-72 + Ag NP 1% (Figure 6g) and Chitosan + Ag NP 3% (Figure 6h) showed reasonable decreases in
the hyphae growth of A. flavus, while dense growth was observed in pulp treated with Paraloid B-72 +

ZnO NP 3% (Figure 6i) and Paraloid B-72 + Ag NP 3% (Figure 6j).
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additives (Figure 7a,b), with 4% chitosan (Figure 7c,d), and with 4% Paraloid B-72 (Figure 7e,f). 
Furthermore, dense growth was observed in pulp treated with chitosan + ZnO NP 3% (Figure 7g), 
Paraloid B-72 + ZnO NP 1% (Figure 7h), and chitosan 4% + NCL 1% (Figure 7i). 

Control treatments did not exhibit any antifungal activities against the growth of A. flavus, A. 
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improved when the flax pulp was treated with nanocomposite additions of chitosan 4% or Paraloid 
B-72 4% combined with Ag NP or NCL at 3%. 

Figure 6. SEM images of flax papersheets produced with/without additives and inoculated with A.
flavus. (a,b) Flax papersheets produced without additives; (c,d) with 4% chitosan; (e,f) with 4% Paraloid
B-72; (g) with Paraloid B-72 (4%) + Ag NP 1%; (h) with chitosan (4%) + Ag NP 3%; (i) with Paraloid
B-72 (4%) + ZnO NP 3%; (j) with Paraloid B-72 (4%) + Ag NP 3%. Arrows refer to less growth of the
fungus mycelium in (a–h); while growth intensity varies with different concentrations of additives
in (i,j).

Dense growth of S. solani was observed in flax paper sheets manufactured without pulp additives
(Figure 7a,b), with 4% chitosan (Figure 7c,d), and with 4% Paraloid B-72 (Figure 7e,f). Furthermore,
dense growth was observed in pulp treated with chitosan + ZnO NP 3% (Figure 7g), Paraloid B-72 +

ZnO NP 1% (Figure 7h), and chitosan 4% + NCL 1% (Figure 7i).
Control treatments did not exhibit any antifungal activities against the growth of A. flavus, A.

terreus, or S. solani. This indicates that the antifungal properties of flax pulp were significantly improved
when the flax pulp was treated with nanocomposite additions of chitosan 4% or Paraloid B-72 4%
combined with Ag NP or NCL at 3%.
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1%; (i) with chitosan 4% + NCL 1%. Arrows refer to the growth of hyphae. 
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which could be related to the increasing particle size of NCL relative to Ag and ZnO NPs [51]. 
Additionally, the NPs were uniformly distributed on the surface of the polymer matrix, which 
confirmed the successful preparation of Paraloid B-72 nanocomposite with Ag NPs, ZnO NPs, and 
NCL [29]. 

According to the chemical analysis of flax plant, the lignin content was much lower than that in 
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that the average value of the tensile index of papersheets produced from soda–AQ pulping of Acacia 
auriculiforms reached 45.1 N·m/g. The present values of tear index are higher than those reported from 
papersheets produced from soda–AQ pulping of bagasse, with values ranged from 5.7 to 6.0 mN·m2/g 
[40] and from A. auriculiformis (3.7 to 6.7 mN·m2/g) [54]. Comparative to other lignocellulosic plants, 
burst index values are higher than those reported in the literature (kPa·m2/g) for stems of Stipa 

Figure 7. SEM images of flax papersheets manufactured with the addition of different additives and
inoculated with Stemphylium solani. (a,b) Flax papersheets without additives; (c,d) with 4% chitosan;
(e,f) with 4% Paraloid B72; (g) with chitosan 4% + ZnO NP 3%; (h) with Paraloid B72 4% + ZnO NP 1%;
(i) with chitosan 4% + NCL 1%. Arrows refer to the growth of hyphae.

4. Discussion

The TEM images showed the prepared of nanomaterials, where the aggregation of NPs on
the chitosan surface increased from Ag to ZnO, and high aggregation was observed in the case of
NCL, which could be related to the increasing particle size of NCL relative to Ag and ZnO NPs [51].
Additionally, the NPs were uniformly distributed on the surface of the polymer matrix, which confirmed
the successful preparation of Paraloid B-72 nanocomposite with Ag NPs, ZnO NPs, and NCL [29].

According to the chemical analysis of flax plant, the lignin content was much lower than that in
hardwood (25–30%), but the ash content was higher than values obtained from hardwood species
(0.2–1.5%) [52,53].

Pulp additives were significantly affected the mechanical properties of the manufactured flax
papersheets. Tensile index values are lower than those values reported from soda–AQ pulping of
bagasse (77.8–73.8 N·m/g) [40]. Our results are in agreement with those by Jahan et al. [54] who
found that the average value of the tensile index of papersheets produced from soda–AQ pulping
of Acacia auriculiforms reached 45.1 N·m/g. The present values of tear index are higher than those
reported from papersheets produced from soda–AQ pulping of bagasse, with values ranged from
5.7 to 6.0 mN·m2/g [40] and from A. auriculiformis (3.7 to 6.7 mN·m2/g) [54]. Comparative to other
lignocellulosic plants, burst index values are higher than those reported in the literature (kPa·m2/g)
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for stems of Stipa tenacissima (1.3), bamboo (2.02), giant reed (0.5), miscanthus (1.23), reed canary (4),
switch grass (5.3), Napier grass (4.98), and bagasse (4.8–4.9) [40,55–61].

In the present study, the treatments of Chitosan + NCL (1% or 3%) and Paraloid B72+ZnO
NP (1%) increased the tensile strength of the paper sheets. These results are in agreement with
Vikele et al. [15] who found that micro–nanochitosan increased the tensile index and concluded that
micro–nanoparticles fill the submicroscopic voids of the porous paper structure and create additional
bonds. NCL, with its high surface area and flexibility, increases the strength of the network [62,63]
by increasing the number of hydrogen bonds between each fibril and fibers [64]. Pulp additives
with 6% (dry weight) NCL showed a resulting increase in the tensile strength of the produced 60
g/m2 papersheets by 26% to 30% [65], and the same trend was found by Bilodeau and Bousfield [66],
Hamann [67], and Madani et al. [68]. NCLs enhanced the fiber–fiber bond strength; subsequently, a
strong reinforcing effect in paper and board products occurred [69].

Results of the SEM are in agreement with previous works wherein at 2% or 10% Paraloid B-72, no
increases in the resistance of beech and spruce wood were observed against Coniophora puteana and
Gloeophyllum trabeum [31], and weak activity was observed against Poria vaillantii [32]. In addition,
some fungi are able to grow on Paraloid B-72 [70]. On the other hand, a combination of Paraloid B-72
(10%) with Pentachlorophenol 2% showed antifungal activity against A. flavus [35]. Wood treated
with Paraloid B-72 (2% or 3%) showed huge mycelial growth of Trichoderma harzianum [33], Alternaria
tenuissima, and Fusarium culmorum [34].

Previously, Chitosan in its free polymer form was proven to exhibit potential antifungal activity
against A. niger, A. alternata, Rhizopus oryzae, Phomopsis asparagi, R. stolonifera, Botrytis cinerea, and F.
oxysporum [71–74]. In the present study, pulp with Chitosan applied as an additive showed intense
growth of fungi. However, other pulp additives that showed superior or stronger results for preventing
fungal growth can be seen in Table 4 and Figure 4a–c. Chaetomium globosum growth significantly affects
the dry mass as well as the tensile elastic modulus of some tested natural fiber mats and composites
including non-woven flax fibers [75].

Overall, the enhancing effects of additives on the technological properties are much greater than
the antifungal activities of the produced flax papersheets.

5. Conclusions

In this study, additives were used to enhance the mechanical, optical, and antifungal properties
of paper sheets manufactured from flax pulp. Remarkable enhancement in the tensile index was
found in pulp treated with Paraloid B-72 + ZnO NP 1% and Chitosan + NCL (1% or 3%) compared
to control treatments (pulp without additives, with chitosan 4%, or with Paraloid B-72). Addition of
Chitosan + ZnO NP (1% or 3%) and Paraloid B-72 4% increased the Tear index values. Furthermore,
the burst index values of the paper sheets were enhanced with the addition of Chitosan + NCL (3%),
Paraloid + NCL (3%), and Paraloid + ZnO NP (1%), while the double fold number was improved
with the addition of Chitosan + NCL (3%), Paraloid B-72 + ZnO NP (1%), Chitosan 4%, or Paraloid
B-72 4%. Pulp additives significantly affected the optical properties of the produced papersheets. The
novel combination treatments can be considered to produce antifungal papersheets when compared
to the huge growth of Aspergillus flavus, A. terreus, and Stemphylium solani that was observed over
papersheets produced with pulp with additives of Chitosan and paraloid B-72 at 4% as well as pulp
without additives.
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