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ABSTRACT
Introduction  Exposure to malnutrition in early life has 
been found to significantly elevate type 2 diabetes risk in 
adulthood. However, the changes in metabolites resulting 
from malnutrition in early life have not been studied. The 
aim of this study was to identify metabolites with levels 
associated with type 2 diabetes resulting from exposure to 
China’s Great Famine (1959–1962).
Research design and methods  Participants were from 
SPECT-China 2014 and SPECT-China2 2019, two cross-
sectional studies performed at the same site. In total, 
2171 subjects participated in SPECT-China and SPECT-
China2 simultaneously. The sample size of fetal-exposed 
(1959–1962) versus non-exposed (1963–1974) individuals 
was 82 vs 79 in 2014 and 97 vs 94 in 2019. Metabolomic 
profiling was performed between famine-exposed and 
non-exposed groups.
Results  Among the different famine exposure groups, 
the fetal-exposed group (1959–1962) had the greatest 
incidence rate (12.5%), with an OR of 2.11 (95% CI 1.01 
to 4.44), compared with the non-exposed group (1963–
1974). Moreover, compared with those in the non-exposed 
group (1963–1974), four metabolites (indole-3-carbinol 
(I3C), phosphatidylcholine (PC) (22:6(4Z,7Z,10Z,13Z,16Z, 
19Z)/16:1(9Z)), pyrimidine, and PC(16:1(9Z)/22:5(4Z,7Z, 
10Z,13Z,16Z))) showed significantly lower relative 
intensities in the famine and diabetes groups both in 
2014 and 2019. Pyrimidine significantly mediated the 
association of famine exposure with diabetes, and I3C 
marginally mediated this association.
Conclusions  Famine exposure in the fetal period could 
increase type 2 diabetes risk in adults, even those in their 
60s. I3C and pyrimidine are potential mediators of the 
effects of famine exposure on diabetes development.

INTRODUCTION
The global prevalence of diabetes has rapidly 
increased over recent decades, and the 
number is projected to increase from 9.3% 
(463 million people) in 2019 to 10.2% (578 
million) by 2030 and to 10.9% (700 million) 
by 2045.1 2 China is now the epicenter of the 
global type 2 diabetes mellitus epidemic.3 The 
overall prevalence (11.6% in 2013) has been 
soaring since the 1970s, when the Chinese 

economic reform began.4 5 The main factors 
contributing to this phenomenon are aging, 
food, physical activity, obesity, and poten-
tially genetic background.4 Further under-
standing the primary factors contributing to 
the diabetes epidemic in China is crucial in 
determining future prevention and interven-
tion programs.

Malnutrition in early life is another poten-
tial factor, as the Developmental Origins of 
Health and Disease theory suggests.6 China’s 
Great Famine from 1959 to 1962 spread 
throughout China and is regarded as one 
of the largest and most severe famines in 
the 20th century.7 Studies have shown that 
prenatal and/or early postnatal exposure 
to China’s Great Famine was associated with 
metabolic disturbances, including diabetes, 
non-alcoholic fatty liver diseases, metabolic 
syndrome and visceral adipose dysfunction,8–12 

Significance of this study

What is already known about this subject?
►► Early-life famine exposure has been found to signifi-
cantly elevate type 2 diabetes risk in adulthood.

What are the new findings?
►► Fetal famine-exposed individuals had the highest 
incidence rate of diabetes.

►► Indole-3-carbinol (I3C), phosphatidylcholine (PC) 
(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)), pyrimidine,  
and PC(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) showed  
significantly lower relative intensities in the famine 
and diabetes groups.

►► Pyrimidine significantly mediated the association of 
early-life famine exposure with diabetes, and I3C 
marginally mediated this association.
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►► I3C and pyrimidine are potential mediators of diabe-
tes associated with early-life undernutrition.
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and was also found to exacerbate the association between 
hypertension and cardiovascular disease.13 These studies 
were analyzed in a quasi-experimental setting with life-
time risks. A recent cohort study found that fetal-exposed 
participants also showed an increased risk of diabetes in 
adulthood (HR 1.25, 95% CI 1.07 to 1.45), even during 
a median of 7.3 years of follow-up.14 The participants 
recruited were in their 40s. Whether the effects of famine 
exposure can persist in the elderly (60s) population 
needs further verification.

According to the above results, the metabolic system 
in humans can undergo persistent changes as a result 
of famine exposure, but the contribution of the mech-
anism to human disease remains to be defined. Metab-
olomics is defined as ‘the quantitative measurement of 
the dynamic multiparametric metabolic response of 
living systems to pathophysiological stimuli or genetic 
modification’.15 Animal models exposed to prenatal 
malnutrition show metabonomic changes in the meta-
bolic pathways related to energy metabolism and gluta-
mate metabolism in the brain and amniotic fluid.15 16 As 
far as we know, comprehensive metabonomic profiling 
following prenatal exposure to malnutrition is lacking in 
humans, and this information could be critical to under-
standing the famine-induced plasticity of the metabolic 
system. Here, we performed metabolomic profiling in 
individuals prenatally exposed to China’s Great Famine 
and in unexposed individuals as controls. We aimed to 
identify metabolites that were significantly changed on 
exposure to famine and their role in the association of 
famine exposure with type 2 diabetes.

RESEARCH DESIGN AND METHODS
Participants
SPECT-China (registration number ChiC-
TR-ECS-14005052; www.​chictr.​org.​cn) is a cross-sectional 
survey on the prevalence of metabolic diseases and risk 
factors in East China. A stratified cluster sampling method 
was used to select a sample in the general population. The 
sampling process was stratified according to rural/urban 
area and economic development status in Shanghai, 
Jiangxi Province and Zhejiang Province. Adults aged 18 
years old and above who were Chinese citizens and have 
lived in their current residence for 6 months or longer 
were selected and invited to our study. Those with severe 
communication problems and acute illness and showed 
an unwillingness to participate were excluded from the 
study. The overall response rate was 90.8%. In total, 6899 
subjects were included in the SPECT-China study from 
February to June 2014.17

SPECT-China2 (registration number 
ChiCTR1900021356; www.​chictr.​org.​cn) is a continuous 
cross-sectional study at the same study sites as SPECT-
China from February to June 2019. Inclusion and 
exclusion criteria were also the same. A total of 5097 
participants participated in a comprehensive exam-
ination. After excluding 209 participants with missing 

laboratory and questionnaire results, 4888 subjects were 
included in SPECT-China2.

Among them, 2171 subjects participated in SPECT-
China and SPECT-China2 simultaneously. A total of 
1899 subjects had no baseline diabetes in SPECT-China 
(figure 1).

Metabolomic profiling sample selection
Among the 2171 participants in both SPECT-China and 
SPECT-China2, 297 experienced fetal famine expo-
sure. Then, 100 participants were randomly selected 
from the 297 participants with randomization number. 
Randomization numbers were generated using the SAS 
statistical software package V.9.4. Meanwhile, each of 
the fetal famine-exposed participants was matched with 
a sex-balanced and body mass index (BMI)-balanced 
non-exposed participant (born in 1963–1965) to ensure 
a balanced distribution of sex and BMI. Some serum 
samples were used in previous laboratory examinations. 
Finally, the sample size of fetal-exposed versus non-
exposed women was 82 vs 79 in 2014 and 97 vs 94 in 2019 
(figure 1).

Exposure age categories
Exposure to famine was based on a proxy, the year of 
birth. Based on the study by van Abeelen et al and Bogin’s 
life cycle theory,18 19 subjects were categorized into five 
groups according to their life stages when exposed to 
famine from January 1, 1959, to December 31, 1962: fetal 
period (age 52–55 years, in 2014), born between 1959 
and 1962; childhood (age 56–65 years, in 2014), born 
between 1949 and 1958; adolescence and young adult 
period (age 66–93 years, in 2014), born between 1921 
and 1948; non-exposed (age 40–51 years, in 2014), born 
between 1963 and 1974; and non-exposed (age ≤39 years, 
in 2014), born after 1975 (n=1245). In China, the preva-
lence of diabetes has risen dramatically in people older 
than 40 years.4 As such, we separated the non-exposed 
group into two groups: current age 40–51 years and 
current age ≤39 years.

The metabolomic profiling analysis included partici-
pants randomly selected from the fetal exposure group 
(age 52–55 years, in 2014) born between 1959 and 1962, 
and the non-exposed group (age 40–51 years, in 2014) 
born between 1963 and 1974.

Measurements
Trained staff used a questionnaire to collect informa-
tion on demographic characteristics, medical history 
and lifestyle risk factors. Current smoking was defined 
as having smoked at least 100 cigarettes in one’s lifetime 
and currently smoking cigarettes.4 Body weight, height 
and blood pressure were measured with the use of stan-
dard methods as described previously.4 Venous blood 
samples were drawn after an overnight fast of at least 8 
hours. Blood samples were stored at −20°C after collec-
tion and centrifugation and shipped by air on dry ice 
to a central laboratory within 2–4 hours of collection, 

www.chictr.org.cn
www.chictr.org.cn
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which was certified by the College of American Pathol-
ogists. Glycated hemoglobin (HbA1c) was assessed by 
high-performance liquid chromatography (MQ-2000PT, 
China). Fasting plasma glucose (FPG) and lipid profile, 
including total cholesterol, triglycerides, high-density 
lipoprotein (HDL) and low-density lipoprotein (LDL), 
were measured by Beckman Coulter AU680 (Germany).

Diabetes was determined using a previous diagnosis 
by healthcare professionals, FPG level ≥7.0 mmol/L 
or HbA1c ≥6.5%. Hypertension was assessed by systolic 
blood pressure ≥140 mm Hg, diastolic blood pressure 
≥90 mm Hg, or self-reported previous diagnosis of hyper-
tension by physicians. Dyslipidemia was defined as total 
cholesterol ≥6.22 mmol/L (240 mg/dL), triglycerides 
≥2.26 mmol/L (200 mg/dL), LDL ≥4.14 mmol/L (160 
mg/dL), HDL <1.04 mmol/L (40 mg/dL) or a self-
reported previous diagnosis of hyperlipidemia by physi-
cians, according to the modified National Cholesterol 
Education Program Adult Treatment Panel III. Over-
weight was defined as BMI 23–24 kg/m² and obesity as 25 
kg/m² or more because these cut-offs have been recom-
mended as more reasonable thresholds to define over-
weight and obesity in Asians.20

Metabolomic profiling
Metabolite extraction
Fifty microliters of serum were transferred to a centri-
fuge tube. After the addition of 200 µL of extract solu-
tion (acetonitrile:methanol=1:1, containing isotopically 
labeled internal standard mixture), the samples were 
vortexed for 30 s, sonicated for 10 min in an ice-water 
bath, and incubated for 1 hour at −40°C to precipitate 
proteins. Then, the sample was centrifuged at 13 800 g 
for 15 min at 4°C. The resulting supernatant was trans-
ferred to a fresh glass vial for analysis. The quality control 
sample was prepared by mixing an equal aliquot of the 
supernatants from all of the samples.

LC-MS/MS analysis
LC-MS/MS (liquid chromatography tandem mass spec-
trometry) analyses were performed using a ultra-high 
performance liquid chromatography (UHPLC) system 
(Vanquish, Thermo Fisher Scientific) with a ultra 
performance liquid chromatography (UPLC) BEH 
Amide Column (2.1 mm × 100 mm, 1.7 µm) coupled 
to a Q Exactive HFX mass spectrometer (Orbitrap MS, 
Thermo). The mobile phase consisted of 25 mmol/L 

Figure 1  Flow chart of the study participants. BMI, body mass index.
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ammonium acetate and 25 mmol/L ammonia hydroxide 
in water (pH=9.75) (A) and acetonitrile (B). The anal-
ysis was carried out with an elution gradient as follows: 
0–0.5 min, 95% B; 0.5–7.0 min, 95%–65% B; 7.0–8.0 min, 
65%–40% B; 8.0–9.0 min, 40% B; 9.0–9.1 min, 40%–95% 
B; 9.1–12.0 min, 95% B. The column temperature was 
35℃. The autosampler temperature was 4℃ and the 
injection volume was 3 µL.

The QE HFX mass spectrometer was used for its ability 
to acquire MS/MS spectra in information-dependent 
acquisition mode with the acquisition software (Xcalibur, 
Thermo). In this mode, the acquisition software contin-
uously evaluates the full scan MS spectrum. The elec-
trospray ionization (ESI) source conditions were set as 
follows: sheath gas flow rate of 50 arb, aux gas flow rate of 
10 arb, capillary temperature of 320℃, full MS resolution 
of 60 000, MS/MS resolution of 7500, collision energy 
of 10/30/60 in NCE mode, and spray voltage of 3.5 kV 
(positive) or −3.2 kV (negative).

Data preprocessing and annotation
The raw data were converted to the mzXML format using 
ProteoWizard and processed with an inhouse program, 
which was developed using R and based on XCMS, for 
peak detection, extraction, alignment, and integration. 
Then, an inhouse MS2 database (BiotreeDB) was applied 
for metabolite annotation. The cut-off for annotation was 
set at 0.3.

Statistical analysis
We performed survey analyses with IBM SPSS Statistics 
V.22. All analyses were two-sided. A p value <0.05 indi-
cated a significant difference. Continuous variables are 
expressed as mean±SD and categorical variables are 
described as percentage (%). The characteristics of the 
study sample were compared by Student’s t-test or anal-
ysis of variance for continuous variables with normal 
distribution, Mann-Whitney U test or Kruskal-Wallis test 
for continuous variables with a skewed distribution, and 
Pearson’s χ2 test for categorical variables.

To analyze the association between life stages when 
exposed to famine and incident diabetes, logistic regres-
sion analysis was used. In different life stages, non-
exposed individuals (1963–1974) were the reference. 
Model 1 was unadjusted. Model 2 was adjusted for age, 
gender, current smoking, and rural/urban residence. 
Model 3 was adjusted for age, sex, current smoking, 
rural/urban residence, BMI category (less than 23 kg/
m², 23–24 kg/m², and 25 kg/m² or more), hypertension 
and dyslipidemia.

For metabolomic profiling, 12 664 peaks were 
detected and 8391 metabolites remained after relative 
SD denoising. Then, the missing values were filled up 
by half of the minimum value. Additionally, the total ion 
current normalization method was employed in this data 
analysis. The final data set containing the peak number, 
sample name and normalized peak area information 
was imported into the SIMCA V.15.0.2 software package 

(Sartorius Stedim Data Analytics, Umea, Sweden) for 
multivariate analysis.

For comparisons of each group, we calculated the 
Euclidean distance matrix for the quantitative values of 
the differential metabolites and clustered them by the 
complete linkage method. We used the intersection of 
the differentially expressed metabolites in 2014 and 2019 
to avoid false positive results. There were four metab-
olites (indole-3-carbinol (I3C), phosphatidylcholine 
(PC) (22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)), pyrimi-
dine, PC(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z))) showing 
significantly lower relative intensity in the famine group 
both in 2014 and 2019.

Data of these four metabolites were scaled and loga-
rithmically transformed to minimize the impact of both 
noise and high variance of the variables. After these 
transformations, the value of variable importance in 
the projection (VIP) of the first principal component in 
orthogonal projections to latent structures-discriminate 
analysis (OPLS-DA) was obtained. It summarizes the 
contribution of each variable to the model. Metabolites 
with VIP >1 and p<0.05 (Student’s t-test) were considered 
significantly changed metabolites. Principal component 
analysis (PCA), an unsupervised analysis that reduces 
the dimension of the data, was carried out to visualize 
the distribution and the grouping of the samples with 
changed metabolites. To visualize group separation, 
supervised OPLS-DA was applied.

We then tested the mediation effects of the four metab-
olites in the association between famine exposure and 
diabetes by the SPSS PROCESS macro in an approach 
with 5000 bootstrap samples.21 Mediation model 1 was 
unadjusted, and model 2 was adjusted for sex and BMI. 
First, mediation analysis was used to clarify whether expo-
sure X was proposed as influencing outcome Y via an 
intervening variable M. In this study, we predicted that 
‘famine’ impacted ‘diabetes’ with ‘metabolites’ as medi-
ator variables. PROCESS was performed using one inde-
pendent variable (famine exposure), one mediator (one 
metabolite), and one dependent variable (diabetes). 
Second, in the moderation or interaction analysis, we 
predicted that metabolites would moderate the relation-
ship between famine exposure and diabetes. PROCESS 
was performed using one independent variable (famine 
exposure), one moderator (one metabolite), and one 
dependent variable (diabetes).

RESULTS
The baseline characteristics of the study population 
by famine exposure period are presented in table  1. 
Compared with the non-exposed group (1963–1974), 
the fetal-exposed and childhood-exposed groups had 
higher FPG, HbA1c, blood pressure and LDL values and 
a higher prevalence of rural residence, obesity, hyperten-
sion and dyslipidemia.

During a mean follow-up period of 5 years, 137 cases 
of diabetes were newly discovered among the 1899 
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participants, and the incidence rate was 1.44% per year. 
The associations between the famine exposure period 
and incident type 2 diabetes are shown in table 2. The 
crude rates in 5 years of incident diabetes were 2.0%, 
12.5%, 10.6%, 7.9% and 3.9% in non-exposed (1975 and 
later), fetal-exposed (1959–1962), childhood-exposed 
(1949–1958), adolescence/adult-exposed (1921–1948) 
and non-exposed (1963–1974) groups, respectively. The 
unadjusted ORs for incident diabetes were 2.97 (95% 

CI 1.65 to 5.31) for the fetal-exposed group, 2.87 (95% 
CI 1.76 to 4.67) for the childhood-exposed group, and 
2.01 (95% CI 1.05 to 3.87) for the adolescent/adult-
exposed group compared with the non-exposed group 
(1963–1974). In the multivariate-adjusted model, only 
the OR for incident diabetes in the fetal-exposed group 
was significant (OR 2.11, 95% CI 1.01 to 4.44). No inter-
action effect of famine exposure and BMI on diabetes 
risk was found (p>0.05).

Table 1  Baseline characteristics of the study population

Non-exposed 
(1975 and later)

Fetal-exposed 
(1959–1962)

Childhood-exposed 
(1949–1958)

Adolescence/adult-
exposed (1921–1948)

Non-exposed 
(1963–1974)

Age in 2014 ≤39 52–55 56–65 66–93 40–51

n 256 232 586 214 611

Men, % 43.0 42.7 43.5* 50.5* 37.8

Current smoker, % 14.3 22.3 24.2* 23.4 19.4

Rural/urban residence, 
%

34.8/65.2* 65.5/34.5* 77.5/22.5* 71.5/28.5* 53.2/46.8

BMI category, %

 � Overweight 22.6* 24.9 22.1 27.8 26.6

 � Obesity 21.4* 41.8* 40.8* 34.9 32.6

Hypertension, % 12.4* 40.8* 54.3* 67.1* 26.3

Dyslipidemia, % 17.2 31.9* 32.8* 29.0* 20.8

FPG, mmol/L 5.1±0.5* 5.5±0.6* 5.6±0.6* 5.6±0.5* 5.3±0.5

HbA1c, % 5.0±0.4* 5.3±0.5* 5.3±0.4* 5.4±0.4* 5.1±0.5

SBP, mm Hg 117±15* 130±19* 134±20* 141±20* 125±18

DBP, mm Hg 73±11* 80±13* 80±13* 79±12 78±13

TG, mmol/L 1.05 (0.77–1.55) 1.41 (1.03–2.02) 1.39 (0.99–1.88) 1.25 (0.95–1.67) 1.18 (0.87–1.71)

LDL, mmol/L 2.65±0.62* 3.07±0.81* 3.02±0.69* 2.94±0.71 2.86±0.63

HDL, mmol/L 1.40±0.28* 1.46±0.31 1.48±0.32 1.49±0.34 1.48±0.30

Continuous variables are expressed as mean±SD for variables of normal distribution and as median (IQR) for variables of skewed 
distribution. Categorical variables are described as percentages.
The Kruskal-Wallis test and analysis of variance were used for continuous variables with skewed distribution and normal distribution, and the 
Pearson’s χ2 test was used for categorical variables.
*P<0.05, significantly different from that in the non-exposed group (1963–1974).
BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; SBP, systolic blood pressure; TG, triglycerides.

Table 2  Association between famine exposure and diabetes incidence

Cases, 
n

Crude rate in 
5 years, % Model 1 Model 2 Model 3

Non-exposed (1975 and later) 5 2 0.49 (0.19 to 1.30) 0.84 (0.25 to 2.85) 0.86 (0.24 to 3.03)

Fetal-exposed (1959–1962) 29 12.5 2.97 (1.65 to 5.31) 2.22 (1.08 to 4.57) 2.11 (1.01 to 4.44)

Childhood-exposed (1949–1958) 62 10.6 2.87 (1.76 to 4.67) 1.63 (0.61 to 4.32) 1.73 (0.63 to 4.74)

Adolescence/adult-exposed (1921–1948) 17 7.9 2.01 (1.05 to 3.87) 0.75 (0.15 to 3.75) 0.99 (0.19 to 5.25)

Non-exposed (1963–1974) 24 3.9 1.00 (ref) 1.00 (ref) 1.00 (ref)

Data are risk ratios (95% CI).
Model 1 was unadjusted. Model 2 was adjusted for age, gender, current smoking, and rural/urban residence. Model 3 was adjusted for 
age, sex, current smoking, rural/urban residence, BMI category (less than 23 kg/m², 23–24 kg/m², and 25 kg/m² or more), hypertension and 
dyslipidemia.
Bold indicates P<0.05.
BMI, body mass index; ref, reference.
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The sample size of fetal-exposed versus non-exposed 
groups for metabolomic profiling was 82 vs 79 in 
2014 and 97 vs 94 in 2019. We visualized the results of 
screening differential metabolites in the form of volcano 
plots and heatmaps (figure  2A,B). Each point in the 
volcano plot represents a metabolite, and the abscissa 
represents the fold change of the group compared with 
each substance. The size of the scatter represents the VIP 
value of the OPLS-DA model. A larger scatter distance 
correlates with a higher VIP value. Scattered dots repre-
sent the final screening results. Metabolites that were 
significantly upregulated are shown in red, metabolites 
that were significantly downregulated are shown in blue, 
and metabolites that were not significantly different are 
shown in gray. The differential metabolites obtained 
through the above analysis are often biologically similar 
in results and functions/complementary, or are posi-
tively controlled/negatively regulated by the same meta-
bolic pathway, showing similar or opposite expression 
characteristics between fetal-exposed and non-exposed 

groups. For each group of comparisons, we calculated 
the Euclidean distance matrix for the quantitative values 
of the differential metabolites, clustered the differential 
metabolites in a fully linked method, and displayed them 
in a heatmap. The relative levels of 88 metabolites were 
significantly different between the fetal famine exposure 
group and the non-exposed group in 2014. As a verifi-
cation, we found that 4 of the 88 metabolites were also 
significantly different between the fetal famine exposure 
group and the non-exposed group in 2019, as shown 
in the Venn diagram in figure  2C. The four metabo-
lites were I3C, PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:
1(9Z)), pyrimidine, and PC(16:1(9Z)/22:5(4Z,7Z,10Z,
13Z,16Z)). Furthermore, to verify the ability to discrim-
inate among fetal-exposed, non-exposed, diabetes and 
non-diabetes, PCA and OPLS-DA were carried out and 
represented, showing a separation among groups using 
the four metabolites (online supplemental figure 1).

The relative intensity of changed metabolites between 
the fetal-exposed and non-exposed groups in 2014 and 

Figure 2  Examination of the metabolic profiles of peripheral blood from individuals from the fetal-exposed and non-exposed 
groups. (A) Heatmap representation of the fully linked clustering of the significantly changed positive and negative ion features 
in 2014 (upper panel) and 2019 (lower panel). (B) Volcano plot of the differential metabolites between fetal-exposed and non-
exposed individuals in 2014 (left) and 2019 (right). (C) Venn diagram showing the metabolites that were significantly different 
between fetal-exposed and non-exposed individuals in both 2014 and 2019. VIP, variable importance in the projection.

https://dx.doi.org/10.1136/bmjdrc-2020-001935
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2019 is presented in table  3. The famine group had a 
non-significantly (2014) or significantly (2019) higher 
prevalence of diabetes.

We further performed mediation analysis and tried 
to understand whether the four metabolites were signif-
icant mediators between famine and diabetes. Figure 3 
illustrates the model for the mediation effect. In the 
model, ‘a’ indicates the path from famine (exposure) 
to metabolites (mediators), ‘b’ indicates the path from 
metabolites (mediators) to diabetes (outcome), and 
‘c’ indicates the direct path from famine (exposure) to 
diabetes (outcome) when controlled for mediators.

Famine exposure in the fetal period was significantly 
associated with higher relative intensities of I3C, PC(22
:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)), pyrimidine and 
PC(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) in participants 
from 2014 and 2019. Among the metabolites, famine 
exposure showed consistently significant direct effects 
on diabetes in 2019 but not in 2014 (table  4). More-
over, pyrimidine significantly mediated the association 
between famine exposure and diabetes, although further 
adjusting for sex and BMI mitigated the significance. In 

2019, I3C marginally mediated the association between 
famine exposure and diabetes in the unadjusted model 
(β=0.18, 95% CI −0.01 to 0.50). We also tested the inter-
action effect of famine exposure and the four metabo-
lites on diabetes. None of the four metabolites showed a 
significant interaction effect (p for interaction ranging 
from 0.156 to 0.760).

Sensitivity analysis
To avoid the difference resulting from the same partic-
ipants with diabetes participating in the research in 
both 2014 and 2019, we reanalyzed the metabolites of 
the participants attending only SPECT-China2 in 2019 
without baseline diabetes and found that the three metab-
olites were significantly or marginally different between 
the fetal famine exposure group and the non-exposed 
group (I3C, p=0.073; pyrimidine, p=0.040; PC(16:1(9Z)
/22:5(4Z,7Z,10Z,13Z,16Z)), p=0.070), while PC(22:6(4Z
,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)) showed similar relative 
levels between the fetal famine exposure group and the 
non-exposed group (p=0.185).

DISCUSSION
In this study, we found that early-life malnutrition could 
greatly increase the incidence of diabetes in the elderly 
population. The rates and ORs in 5 years of follow-up 
for incidental diabetes were highest in the fetal famine-
exposed group (birth years 1959–1962). Moreover, 
compared with those in the non-exposed group, four 
metabolites (I3C, PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/ 
16:1(9Z)), pyrimidine, PC(16:1(9Z)/22:5(4Z,7Z,10Z,1
3Z,16Z))) showed significantly lower relative intensities 
in the fetal famine-exposed and diabetes groups in both 
2014 and 2019. Pyrimidine significantly mediated the 
association between famine exposure and diabetes, and 

Table 3  Relative intensities of four significantly changed metabolites between the fetal-exposed and non-exposed groups in 
both 2014 and 2019

2014 2019

Fetal-exposed 
(1959–1962)

Non-exposed 
(1963–1965) P value

Fetal-exposed 
(1959–1962)

Non-exposed 
(1963–1965) P value

n 82 79 97 94

Age, years 53.1±0.9 50.3±0.8 <0.001 58.0±0.9 55.3±0.8 <0.001

Men, % 37.87 35.4 0.756 35.1 39.4 0.538

Diabetes, % 11.0 6.3 0.296 20.6 7.4 0.009

BMI, kg/m2 25.3±3.6 23.8±2.7 0.003 24.8±4.1 24.4±2.6 0.456

Indole-3-carbinol 8.8±2.8 10.0±3.0 0.009 6.0±1.4 6.4±1.5 0.039

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/1
6:1(9Z))

13.9±11.2 19.6±14.6 0.006 5.2±2.7 6.1±3.2 0.047

Pyrimidine 1.4±0.6 1.7±0.6 0.006 0.51±0.31 0.61±0.33 0.028

PC(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,1
6Z))

0.57±0.42 0.80±0.56 0.004 0.23±0.12 0.27±0.14 0.016

Continuous variables are expressed as mean±SD and categorical variables are described as percentage.
Student’s t-test was used for continuous variables and Pearson’s χ2 test was used for categorical variables.
BMI, body mass index; PC, phosphatidylcholine.

Figure 3  The conceptual mediation model. In the model, 
‘a’ indicates the path from famine (exposure) to metabolites 
(mediators), ‘b’ indicates the path from metabolites 
(mediators) to diabetes (outcome), ‘c’ indicates the total 
effect of famine (exposure) on diabetes (outcome), and ‘c'’ 
indicates the direct path from famine (exposure) to diabetes 
(outcome) when controlling for mediators.
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I3C marginally mediated the association between famine 
exposure and diabetes in 2014. These results identified 
key metabolites in individuals prenatally exposed to 
China’s Great Famine, which could mediate the associa-
tion between early-life malnutrition and type 2 diabetes 
development.

Evidence suggests that famine exposure during early 
development before and after birth could cause metabolic 
abnormalities in adulthood. Prenatal famine exposure is 
associated with metabolic disorders in adulthood.22 23 A 
recent meta-analysis also showed that early-life famine 
exposure, especially fetal-infant exposure, may increase 
the risk of developing type 2 diabetes in adulthood.24 
With regard to postnatal famine exposure, we and others 
believe that there is a link between famine exposure and 
type 2 diabetes and the development of other metabolic 
diseases in China.9 11 12 24 25 In this study, we found that 
the rates at 5 years of incident diabetes were highest 
in the fetal famine-exposed group (12.5%) and gradu-
ally decreased with increasing age in famine-exposed 
individuals (childhood-exposed: 10.6%; adolescence/
adult-exposed: 7.9%), and the ORs for incident diabetes 
also followed this trend (fetal-exposed: 2.97; childhood-
exposed: 2.87; adolescence/adult-exposed: 2.01). After 
adjusting for age, sex, current smoking, rural/urban 
residence, BMI category, hypertension and dyslipidemia, 
only the OR for incident diabetes in the fetal-exposed 
group was significant. Therefore, regardless of age, indi-
viduals with famine exposure in the fetal period could 
have a higher incidence of diabetes.

The duration of the effect caused by early-life malnutri-
tion on glucose metabolism has not been fully elucidated 
to date. In people prenatally exposed to the Dutch famine, 
although it was confirmed that undernutrition during 
gestation was linked to decreased glucose tolerance, 
the effect does not seem to become more pronounced 
at age 58 than at age 50.26 In this study, the age of the 
famine-exposed population in 2019 was at least 57, and 
the incidence of diabetes was still increased greatly in 
fetal famine-exposed subjects (age 57–59), suggesting 
that early-life malnutrition could have a profound effect 
on metabolic function, and the differential metabolites 
in famine-exposed subjects might be a result of the long-
lasting early-life malnutrition effect.

The roles of pyrimidines and their derivatives in the 
regulation of glucose metabolism have been studied in 
recent years. Short-term uridine administration could 
reduce the phosphorylation level of insulin signaling 
proteins and reduce the ability for insulin-stimulated 
blood glucose removal during an insulin tolerance test.27 
Moreover, a series of pyrimidine derivatives were used as a 
treatment for type 2 diabetes mellitus and obesity-related 
symptoms. 5-methyl-2-(4-((4-(methylsulfonyl)benzyl)
oxy)phenyl)-4-(piperazin-1-yl)pyrimidine derivatives 
ameliorated obesity-related symptoms by decreasing body 
weight without markedly changing food intake, normal-
ized some serum biomarkers, and exerted therapeutic 
activity on fat deposition in liver tissue.28 Pyrimido[5,4-d]

pyrimidine derivatives could also reduce the blood 
glucose area under the curve,29 and 6-amino-pyrido[2,3-d]
pyrimidine-2,4-dione derivatives could inhibit α-glu-
cosidase in a competitive mode.30 Another series of 
pyrimidine derivatives of small-molecule glucagon-like 
peptide-1 (GLP-1) receptor agonists were able to signifi-
cantly increase insulin secretion.31 Thieno[2,3-d]pyrim-
idines, as antioxidant and anti-inflammatory molecules, 
could be attributed to the significant downregulation 
of nuclear factor kappa B (NF-κB) protein expression 
in hepatic tissues.32 In summary, given its critical role in 
metabolism regulation, pyrimidine has the potential to 
be developed as a predictor and therapeutic target in 
diabetes.

In this study, we found that I3C could be a mediator 
of diabetes, and this result is biologically plausible. I3C, 
an anti-inflammatory phytochemical, was proposed as 
a potential preventive agent against obesity and meta-
bolic disorders since chronic inflammation in adipose 
tissue might lead to obesity-related insulin resistance 
and contribute to an increased risk of diabetes.33 I3C 
is a substance present in vegetables of the Brassicaceae 
family.34 When plant tissue is disrupted, an endogenous 
thioglucosidase is activated and converts glucobrassicin 
and other indolylic glucosinolates to indoles, principally 
to I3C.34 In recent studies with C57BL/6J mice after 
the administration of a high-fat diet, I3C showed a posi-
tive modulation of glucose, insulin, HbA1c levels, body 
weight, adipose tissue macrophage infiltration, glucose 
tolerance, and thermogenesis.35–37 The potential mech-
anism is decreased level of oxidative stress mediators 
and increased level of antioxidant enzymes and small 
molecules and expression of acetyl coenzyme A carboxy-
lase, inflammatory biomarkers, peroxisome proliferator-
activated receptor-γ (PPARγ), uncoupling proteins 1 and 
3, PPARα, and PPARγ coactivator 1α.35–37 I3C also regu-
lates the gut–liver–adipose tissue axis by restoring hepatic 
antioxidant capacity, attenuating the increased levels 
of hepatic proinflammatory cytokines and decreasing 
adipose inflammation and free fatty acid release.38 These 
findings suggest that I3C has benefits in preventing 
global metabolic disorders. Moreover, we found that I3C 
could be a mediator of the association between famine 
and diabetes, indicating that malnutrition in early life 
might modify the dietary habits of no preference of I3C 
in adulthood and finally lead to metabolic diseases.

Some limitations should also be mentioned in this 
preliminary study. First, the ages of subjects in the non-
exposed and fetal-exposed groups were not comparable. 
The Great Famine in China was a national disaster, and 
we thus cannot identify a group of people with compa-
rable ages who completely avoided the effects of famine, 
even in the childhood-exposed or adolescence/adult-
exposed groups. Second, we presumed that the individ-
uals did not migrate to other areas, which may cause bias. 
Due to strict requirements for obtaining permanent resi-
dency, only 2.68% of the rural population live in prov-
inces other than their birthplace.39 Third, due to limited 
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budget, we did not perform metabolomic analysis of every 
famine exposure group. According to the incidence of 
diabetes and its strong association with fetal exposure, we 
chose fetal-exposed and non-exposed control groups to 
perform this examination. Finally, targeted metabolomic 
examinations and further molecular biological experi-
ments are also needed in future studies to provide more 
evidence for these results.

In conclusion, we reported that famine exposure in 
early life was positively and significantly associated with 
a higher incidence of diabetes, even in elderly subjects. 
I3C and pyrimidine are potential mediators of diabetes 
associated with early-life malnutrition. Future develop-
ments in targeted metabolomics to quantify these metab-
olites and their validation in more plasma samples will 
help assess the suitability of these promising metabolites 
for the early diagnosis of famine-related diabetes in both 
experimental and clinical studies.
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