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Many cancer genomes are extensively rearranged with aberrant chromosomal karyotypes. Deriving these karyotypes from

high-throughput DNA sequencing of bulk tumor samples is complicated because most tumors are a heterogeneous mixture

of normal cells and subpopulations of cancer cells, or clones, that harbor distinct somatic mutations. We introduce a new

algorithm, Reconstructing Cancer Karyotypes (RCK), to reconstruct haplotype-specific karyotypes of one or more rear-

ranged cancer genomes from DNA sequencing data from a bulk tumor sample. RCK leverages evolutionary constraints

on the somatic mutational process in cancer to reduce ambiguity in the deconvolution of admixed sequencing data into

multiple haplotype-specific cancer karyotypes. RCK models mixtures containing an arbitrary number of derived genomes

and allows the incorporation of information both from short-read and long-read DNA sequencing technologies. We com-

pare RCK to existing approaches on 17 primary and metastatic prostate cancer samples. We find that RCK infers cancer kar-

yotypes that better explain the DNA sequencing data and conform to a reasonable evolutionary model. RCK’s

reconstructions of clone- and haplotype-specific karyotypes will aid further studies of the role of intra-tumor heterogeneity

in cancer development and response to treatment. RCK is freely available as open source software.

[Supplemental material is available for this article.]

The somaticmutations that drive cancer development range across
all genomic scales, from single-nucleotide mutations through
copy number aberrations and large-scale genome rearrangements
(Stratton et al. 2009; Garraway and Lander 2013; Vogelstein et al.
2013; Raphael et al. 2014). Whole-genome sequencing of tumor
samples has enabled the detection of all classes of somatic muta-
tions; however, specialized algorithms are required to identify
each class of mutations from the short DNA sequence reads ob-
tained by current technologies. In addition, nearly all cancer se-
quencing to date has been of bulk tumor tissue, which is
generally a mixture of normal (noncancerous) cells and (sub)pop-
ulations of cancerous cells, or clones, that often are not genetically
identical. Quantifying this intra-tumor heterogeneity is essential for
understanding the processes that drive cancer development and
also helps inform treatment strategies (Aparicio and Caldas 2013;
McGranahan and Swanton 2015; Patch et al. 2015).

Here,we consider the problemof describing the large-scale or-
ganization of one or more cancer genomes that are derived from a
normal human reference genome via copy number aberrations
and rearrangements. The large-scale organization of a cancer ge-
nome is described by two features. First is the number of copies of
each segment of the genome. Many methods (e.g., Van Loo et al.
2010; Boeva et al. 2012; Carter et al. 2012; Nik-Zainal et al. 2012;
Fischer et al. 2014; Ha et al. 2014; Oesper et al. 2014; Zaccaria and
Raphael2020)havebeendevelopedto identifycopynumbervalues
for heterogeneous, bulk tumor samples. Second is genome rear-
rangements (e.g., chromosomal inversions and translocations)
that link together distant segments of the normal genome. Many
methodshavebeendeveloped topredict thenovel adjacencies result-
ing fromsuch rearrangements (e.g., Chen et al. 2009;Quinlan et al.
2010;Wanget al. 2011; Rauschet al. 2012; Sindi et al. 2012; English

et al. 2014; Layer et al. 2014; Ritz et al. 2014; Zheng et al. 2016;
Huddleston et al. 2017; Spies et al. 2017; Elyanow et al. 2018;
Nattestad et al. 2018; Sedlazeck et al. 2018; Wala et al. 2018).
However, these methods do not distinguish between adjacencies
fromdifferent homologous chromosomes or from different cancer
clones within a bulk sample, that is, they assume that the human
genome is haploid and that the tumor is homogeneous.

A more challenging problem is to integrate and reconcile the
information about segment copy numbers and novel adjacencies
into genome karyotypes, or the alignment of cancer genome and
the healthy genome that depicts the number of occurrences of ev-
ery segment in the cancer genome, and the adjacencies between
these segments on the cancer genome. Multiple methods have
been developed to reconstruct cancer genome karyotypes, includ-
ing PREGO (Oesper et al. 2012), Weaver (Li et al. 2016; Rajaraman
and Ma 2018), ReMixT (McPherson et al. 2017), Karyotype
Reconstruction (Eitan and Shamir 2017), SVclone (Cmero et al.
2020), and the method of Eaton et al. (2018). However, each of
these methods relies on simplifying assumptions that do not ade-
quately address the challenges in real cancer sequencing data. For
example, SVclone (Cmero et al. 2020) focuses solely on inferring
genome-specific copy numbers for novel adjacencies, without
attempting to reconstruct complete karyotypes of the derived
genomes. PREGO (Oesper et al. 2012) and Karyotype
Reconstruction (Eitan and Shamir 2017) assume that the human
reference genome is haploid, thus losing important information
about alleles involved in rearrangements. Weaver (Li et al. 2016;
Rajaraman andMa 2018) assumes that the cancer sample contains
only a single derived genome (with a possible admixture of the ref-
erence genome) and lacks a proper support of reciprocal novel ad-
jacencies, which can emerge both from copy neutral somatic
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rearrangements (e.g., inversions, balanced translocations, and so
forth), as well as from more complex “catastrophic rearrange-
ments” such as chromoplexy and chromothripsis (Berger et al.
2011; Stephens et al. 2011; Baca et al. 2013; Hirsch et al. 2013;
Weinreb et al. 2014; Oesper et al. 2018). ReMixT (McPherson
et al. 2017) allows for tumor heterogeneity, but fixes the number
of derived genomes in the observed cancer sample to
2. Moreover, although ReMixT aims to infer genome- and allele-
specific segment copy numbers for a 2-genome sample (with a pos-
sible admixture of the reference genome), the genome-specific
copy numbers for novel adjacencies that are inferred by ReMixT
lack information about which homologous copies of the segments
are actually involved in observed novel adjacencies. Last, Weaver
and ReMixT produce karyotypes with biologically unlikely scenar-
ios in which rearrangements occur repeatedly at the same homol-
ogous loci in different cancer clones. We summarize these
limitations of existing methods in Supplemental Table S1.

Here, we propose a novel algorithm, Reconstructing Cancer
Karyotypes (RCK), for deriving the karyotypes of cancer genomes
in a heterogeneous tumor sample from second-generation (and
third-generation, when available) sequencing data. RCK distin-
guishes itself from existing methods by several features, including
(1) support for a diploid reference genome that distinguishes be-
tween alleles of segment copy numbers and novel adjacencies;
(2) joint inference of both segment and adjacency copy numbers
in both a clone- and haplotype-specific manner; (3) comprehen-
sive support for sample heterogeneity ranging from homogeneous
samples with a single derived genome to heterogeneous samples
with an arbitrary number of clones; (4) a somatic evolutionary
model based on a generalization of the infinite sites assumption;
and (5) ability to incorporate groups of novel adjacencies from
third-generation sequencing technologies into the inferencemod-
el. We show the advantages of RCK on a data set of 17 primary and
metastatic prostate cancer samples. We show that RCK infers more
plausible karyotypes than ReMixT, and that the RCK inferred kar-
yotypes have allele-specific segment copy numbers that agree with
leading copy number inference algorithms.

Results

RCK algorithm

We introduce Reconstructing Cancer Karyotypes (RCK), an algo-
rithm to construct the large-scale organization of one or more can-
cer genomes present in a bulk tumor sample.We assume that each
cancer genome in the sample arises from a sequence of somatic ge-
nome rearrangements and copy number aberrations that trans-
form a healthy normal genome into a cancer genome. As a result
of these somatic mutations, each cancer genome can be represent-
ed as a karyotype graph, or more briefly, a karyotype. A karyotype
graph includes (1) a collection of contiguous segments from the hu-
man reference genome, each segment with a label (A or B) distin-
guishing the two homologous chromosomes; (2) an integer copy
number for each segment; (3) a collection of adjacencies that join
the ends of segments; and (4) an integer copy number for each ad-
jacency. The karyotype graph describes an alignment between the
cancer genome and healthy genome (analogous to the breakpoint
graph in genome rearrangement studies) (Alekseyev and Pevzner
2009; Avdeyev et al. 2016). The karyotype graph also represents
the information about the cancer genome sequence that can be in-
ferred from DNA sequencing technologies whose read lengths are
shorter than the length of genome rearrangements.

RCK solves the following Cancer Karyotype Reconstruction
Problem: given allele-specific segment copy numbers and a list of
novel adjacencies (i.e., pairs of genomic loci that aremeasured as ad-
jacent in the cancer genome but distant in the normal reference)
from a bulk tumor sample, derive karyotype graph(s) for the cancer
genome(s) present in the tumor sample. Two major challenges
must be addressed in developing an algorithm to solve this prob-
lem. The first challenge is that methods for inferring allele-specific
copy numbers from bulk tumor sequencing data do not preserve
the allelic information across multiple adjacent segments.
Specifically, these methods output a pair of copy number vectors,
ĉ = [ĉ1, ĉ2, . . . ,ĉm] and č = č1, č2, . . . ,čm[ ], where the pair ĉj, čj

{ }
of

integers indicates the number of copies of each of the two homol-
ogous copies of segment j from the reference genome that are pre-
sent in the cancer genome. However, each of these pairs is
unordered: for each segment j, it is unknownwhether ĉj is the num-
ber of copies from thematernal chromosome or the paternal chro-
mosome; moreover, the assignment of ĉj to either the maternal or
paternal chromosome is independent for each j. The second chal-
lenge is that themanymethods for inferring novel adjacencies from
bulk tumor sequencing data generally do not include two impor-
tant attributes in their output: (1) the alleles (maternal or paternal)
that are joined by the adjacency, and (2) the copy number(s) of the
adjacency in each genome in the sample. Because of this incom-
plete information in the allele-specific copy numbers and novel
adjacencies, cancer genome karyotypes are not directly available.

RCK derives optimal cancer genome karyotype(s) from allele-
specific copy numbers and novel adjacencies by solving an optimi-
zation problem on a graph, called the Diploid Interval Adjacency
Graph (DIAG) (Fig. 1). The vertices of the DIAG are extremities, or
the positions in the human reference genome of the endpoints
of the segments that are rearranged to form the cancer genomes
present in the sample. Specifically, if we enumerate the segments
of the reference genome 1, . . . , m, then each segment j has the
form jH = [ jtH , j

h
H ], where jtH and jhH are extremities. The label t indi-

cates that the extremity is the tail, or starting coordinate of the seg-
ment in the reference genome, whereas the label h indicates the
head, or ending coordinate in the reference genome. A haplotype
labelH∈ {A, B} indicates which copy of the two homologous chro-
mosomes in the reference (A or B) is the source of the segment.
Adjacent extremities of consecutive segments that follow each
other along the chromosome in the genome constitute an adjacen-
cy. We distinguish between two types of adjacencies: reference adja-
cencies that are present in the reference genome, and novel
adjacencies that are not present in the reference genome. Thus,
the DIAGhas three types of edges: (1) segment edges { jtH , j

h
H } join ex-

tremities from a segment; (2) reference adjacency edges { jhH , ( j+ 1)tH }
join extremities of adjacent segments on the reference genome;
and (3) novel adjacency edges { jsHk

s′
H ′ } join extremities that are not ad-

jacent in the reference genome, where H, H
′
∈ {A, B} and σ, σ

′
∈

{t, h}. Importantly, a measured novel adjacency is generally unla-
beled, having the form a = { js, ks

′
} and lacking allelic information.

Tomodel this uncertainty,we add all four possible labeled versions
of the adjacency ({jsA, k

s′
A }, {jsA, k

s′
B }, {jsB, k

s′
A }, and {jsB, k

s′
B }) to the

DIAG. Supplemental Table S2 summarizes the notation used to
describe the DIAG.

A chromosome in the cancer genome corresponds to awalk in
the DIAG that alternates between segment edges and reference/
novel adjacency edges, and where the number of times every seg-
ment/adjacency edge is visited encodes the respective segment/ad-
jacency copy number (see Methods, “Diploid interval adjacency
graph”). Thus, all vertices (except telomere vertices) should satisfy
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the copy number balance condition: the copy number of the incident
segment edge equals the sum of the copy numbers of the incident
reference edge and novel adjacency edge(s).

RCK solves the Cancer Karyotype Reconstruction Problem of
finding an edge multiplicity μG (e) for each edge e and each cancer
genome G such that (1) each extremity (vertex ν) satisfies the copy
number balancing conditions (Equations [5] and [6] in Methods);
(2) the copy numbers μG ( jA) and μG ( jB) of homologous segments
jA and jB are approximately equal to the allele-specific copy num-
bers (ĉj and čj); and (3) most of the novel adjacencies are present
in at least one genome, that is, μG (e)≥0 for novel adjacency edge
e in at least one genome G. However, there are often numerous so-
lutions to this problem owing to the lack of A/B labels on the mea-
sured novel adjacencies with each measured novel adjacency
generating four edges in the DIAG. Selecting one of these four pos-
sible allele-specific novel adjacencies independently for each mea-
sured novel adjacency often leads to biologically implausible
solutions.

To address this ambiguity, RCK imposes several constraints
on the inferred karyotypes that are motivated by the somatic evo-
lutionary process of cancer. In particular, RCK uses conditions on
allowed novel adjacencies that are derived from a generalization of
the infinite sites (IS) assumption commonly used in evolutionary

studies. The infinite sites assumption is that a mutation does not
occur at the same locusmore than once during the course of evolu-
tion. The locus of a large-scale genome rearrangement is not appar-
ent and could be defined as either (or both) of the genomic
positions of the extremities in the adjacency as well as adjacent ge-
nomic positions of “reciprocal” extremities. We define multiple
constraints on the extremities that may be involved in novel adja-
cencies (Fig. 1), which generalize the infinite sites assumption to
the case of multiple genomes that are derived from a diploid refer-
ence genome by a sequence of large-scale genome rearrangements.
First, extremity-exclusivity is the constraint that an extremity
is involved in at most one novel adjacency. Second,homologous-
extremity-exclusivity is the constraint that an extremity and
its homolog cannot both be involved in a novel adjacency. Third,
homologous-reciprocal-extremity-exclusivity is the con-
straint that an extremity and its reciprocal mate of the homolo-
gous chromosome cannot both be involved in a novel adjacency.
Methods that rely onweaker forms of the infinite sites assumption
can yield implausible genome reconstructions, as we will show
below.

RCK uses a mixed-integer linear program (see Supplemental
Methods, “MILP formulation”) to find edge multiplicities μG (e)
satisfying conditions (1), (2), and (3) above while also requiring

Figure 1. Overview of the RCK algorithm. The inputs to RCK (white dotted boxes) are clone- and allele-specific copy numbers (top left) and novel ad-
jacencies (top right) from bulk tumor samples that are derived from alignments of DNA sequencing (top) reads using existing tools. The RCK algorithm (blue
shaded elements) builds a diploid interval adjacency graph integrating copy number and novel adjacency information (for details, see Methods). RCK then
solves a mixed-integer linear program (MILP) to find an optimal assignment of segment copy numbers and novel adjacencies to alleles and clones, subject
to copy number balance on segment ends and satisfying evolutionary constraints from a generalized infinite sites model. Constraints on groups of novel
adjacencies from the third-generation sequencing technologies may optionally be included. The outputs of RCK are clone- and haplotype-specific cancer
genome karyotypes.
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that the novel adjacencies inferred to be present (μG (e) > 0) satisfy
the generalized infinite sites constraints. RCK also allows for
grouping of novel adjacencies that are measured to be present on
the same cell or long read when such information is available
from third-generation sequencing technologies, for example, sin-
gle-cell sequencing, linked read sequencing (Zheng et al. 2016;
Spies et al. 2017; Elyanow et al. 2018), or long-read sequencing
(English et al. 2014; Ritz et al. 2014; Huddleston et al. 2017;
Sedlazeck et al. 2018). SeeMethods, “Third-generation sequencing
technologies and novel adjacency groups” for further details.

Evaluation of RCK on simulated data

We first evaluate RCK on simulated cancer genomes.We simulated
bulk tumor samples containing up to two rearranged cancer ge-
nomes, or clones. The simulation starts with a normal diploid ref-
erence genome and a somatic phylogenetic tree as an input, and
then sequentially applies random genome rearrangements along
the branches of the tree. The simulated genome rearrangements
(Supplemental Fig. S1A) include simple rearrangements (e.g., dele-
tion, duplication, inversion, translocation, whole chromosome amplifi-
cation/loss (WCA/L)) and complex rearrangements (e.g., breakage-
fusion-bridge [BFB], whole-genome duplication [WGD], chromothrip-
sis, and chromoplexy). Following these rearrangements, the derived
genomes of each clone are recorded on the leaves of the tree
(Supplemental Fig. S1B). Every simulated tumor sample includes
at least one complex rearrangement that occurred early and was
shared by all derived cancer genomes in the sample, consistent
with reports on the early occurrence of “catastrophic” rearrange-
ments in cancer genomes (Cortés-Ciriano et al. 2020; Gerstung
et al. 2020). Although the simulator is capable of explicitly enforc-
ing the generalized infinite sites constraints described above, we
found that randomly simulated rearrangements satisfied these
constraints. Further details of simulations are in Methods,
“Simulating rearranged cancer samples.”

We evaluated RCK’s performance on two different types of
simulated data. In the first, there are no errors in the novel adjacen-
cies and allele-specific segment copy numbers that are input to
RCK. However, the novel adjacencies are missing information
about the clone(s) containing the adjacency as well as the haplo-
type involved in the adjacency. Similarly, the segment copy num-
bers aremissing the haplotype information.We say that this input
data has clone and haplotype information loss (CHIL) (Supplemental
Fig. S1C). On this data we find that RCK outputs karyotypes that
use all input novel adjacencies and whose haplotype-labeled
copy numbers agree with the simulated copy numbers, for both
adjacencies and segments.

Next, we simulated data with errors in novel adjacencies and
segment copy numbers. Specifically, we introduce uncertainty
(+50 bp) into coordinates of novel adjacency and include 10%
spurious adjacencies, resulting in a set �̃AN of novel adjacencies.
We introduce errors in copy number profiles by averaging the val-
ues in true segment copy number profile C over 50 kbp fragments,
and also perturbing 5% of fragment copy number values by ±1, re-
sulting in a copy number profile �̃C

′
(Supplemental Fig. S1C).

We ran RCK with input adjacency utilization parameter P =
0.9 and P=0.75, that is, at least a fraction P of the input novel ad-
jacencies set �̃AN must be present in at least one of the derived ge-
nomes in a sample. We then compared inferred copy numbers
for novel adjacencies and segments in a haplotype-specific man-
ner (up to haplotype symmetries; see Methods, “Sequencing of re-
arranged cancer genomes”) with the true values in the input. We

found that karyotypes reconstructed by RCK (P =0.9) use almost
all true novel adjacencies with an average false negative rate
(FNR) of < 0.003, and rarely incorporate spurious input novel adja-
cencies with average false positive rate (FPR) of < 0.12 (Fig. 2A).
When P=0.75 (less than the actual fraction 0.9 of true novel adja-
cencies in the input set �̃AN ), the karyotypes reconstructed by RCK
do not use a small fraction of true novel adjacencies with an aver-
age FNRof <0.1, and the FPR remains lowwith an average of < 0.11
(Fig. 2; Supplemental Fig. S2A). We also found that the segment
copy numbers output by RCK are closer to the true values using
both a length-weighted segment copy number distance
(Equation [11] in Methods; Fig. 2B), and a comparison of copy
number states (i.e., amplification, neutral, and loss) (Supplemental
Fig. S2B,C).

We also observe that when the only source of error in the in-
put segment copy numbers is a result of fragment-size averaging,
both the FPR and FNR of novel adjacencies remain low
(Supplemental Fig. S3A), and segment copy numbers inferred by
RCK are closer to the true values in the simulated cancer samples
(Supplemental Fig. S3B,C). Last, because of the generalized IS con-
straints, RCK correctly assigns groups of reciprocal novel adjacen-
cies, generated by single chromothripsis k-break event, to the same
haplotype-of-origin (e.g., Supplemental Fig. S4).

Evaluation of RCK on prostate cancer

We analyze a cancer sequencing data set from Gundem et al.
(2015), which consists of whole-genome sequencing data from
49 samples from 10 metastatic prostate cancer patients. Segment
copy numbers inferred by Battenberg (Nik-Zainal et al. 2012)
and novel adjacencies were obtained from Gundem et al. (2015).
We also applied HATCHet (Zaccaria and Raphael 2018) to infer al-
lele-specific copy numbers by joint analysis across all sequenced
samples from the same patient. We analyzed the 17 samples for
which both Battenberg and HATCHet agreed on the number of
clones present. We aligned the positions of extremities of seg-
ments fromBattenberg or HATCHet to the positions of extremities
from novel adjacencies. See “Deriving extremities and novel adja-
cencies from data” in Methods for further details. We divided the
cancer samples into two groups according to the number of tumor
clones predicted by both Battenberg and HATCHet: homogeneous
samples containing only one tumor clone (samples A21g, A21h,
A24c, A24d, A24e, A34a, A34d); and heterogeneous samples con-
taining two tumor clones (samples A10c, A12c, A12d, A17d,
A31a, A31d, A31e, A31f, A32e, A34c). Notably, there was only
one sample (A12c) for which Battenberg and HATCHet disagreed
on the presence of a WGD.

We compare RCK to ReMixT (McPherson et al. 2017), an ex-
isting method that both derives multiple tumor clones from bulk
sequencing data and distinguishes between homologous chromo-
somes. ReMixT infers clone- and allele-specific copy numbers for
segments, as well as clone-specific copy numbers for novel adja-
cencies. Importantly, ReMixT does not infer haplotype A/B labels
for the extremities that are involved in each novel adjacency. We
will showbelow that this lack of assignment of each novel adjacen-
cy to a homologous chromosome leads to unusual genome recon-
structions in many cases.

For each sample, we ran RCK requiring that (1) the only telo-
meres in the inferred cancer genomes are telomeres from the refer-
ence genome (i.e., extremities that are not the endpoints of
reference chromosomes have copy number balance); and (2) at
least a fraction P of the input novel adjacencies are present in at
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least one of the derived genomes in a sample, for P =1.0, 0.9, 0.75,
0.5. ReMixT does not allow control over telomeres or the fraction
of novel adjacencies; thus, we ran ReMixT using default
parameters.

Heterogeneous tumor samples

We compared the karyotypes inferred by RCK and ReMixT on the
10 samples from the heterogeneous group. First, we compared the
segment copy numbers inferred by RCK and ReMixT to the allele-
specific copy numbers from HATCHet and Battenberg, using a
length-weighted segment copy number distance (Equation [11]
in Methods). We found that in all but three cases (samples A10c,
A12c, and A17d with RCK parameter P =1.0), the segment copy
numbers inferred by RCK are closer to the copy numbers from
HATCHet (Fig. 3A) or Battenberg (Supplemental Fig. S5A), com-
pared to the segment copy numbers inferred by ReMixT. In four
samples (A31a, A31d, A31e, and A31f), copy numbers inferred
by ReMixT have an extremely large distance to HATCHet (or
Battenberg) copy numbers. Both HATCHet and Battenberg in-
ferred a whole-genome duplication (WGD) in these four samples.
Although ReMixT also infers high copy number values and many
copy number changes in these four samples, the large copy num-
ber distances indicate the ReMixT’s inferred copy numbers do not
seem to align well with copy numbers expected from a WGD. We
also observe a large and consistent decrease in copy number dis-
tance when we require RCK to use all novel adjacencies (P = 1) ver-
sus when we allow a small fraction of novel adjacencies to be
excluded (P =0.9). The distance is largely stable for P <0.9, showing
that RCK is not overfitting the observed copy number values by ex-
cluding high fractions of adjacencies. Finally, note that the total
length of segments for which RCK (P =0.9) changed the copy
numbers input by HATCHet or Battenberg is on average less
than the overall inferred length-weighted segment copy number
distances; this is because RCK changes the copy number of some
segments by more than 1 (Supplemental Tables S3, S4).

Next, we compared the fraction of input novel adjacencies
that were contained in the karyotypes constructed by ReMixT
and RCK. This fraction ranged from 0.75 to 0.92 for ReMixT (Fig.

3B) compared to a range from 0.5 to 1.0 for RCK, with the lower
bound for RCK explicitly controlled via the P parameter. We ob-
serve that RCK frequently uses more novel adjacencies than the
minimum required (value of P). This occurs on 7/10 cancer sam-
ples (A10c, A12d, A31a, A31d, A31e, A31f, A32e) with HATCHet
copy numbers in input and P= 0.75 or P = 0.5, and 6/10 samples
with Battenberg copy numbers in input. RCK’s incorporation of
novel adjacencies at a higher proportion than the minimum re-
quired fraction P suggests that RCK is selectively including those
novel adjacencies required to achieve copy number balance.

Next, we analyzed the number of novel (i.e., nonreference)
telomeres in the karyotypes inferred by ReMixT. We observed
that the karyotypes inferred by ReMixT have a substantially large
numbers of inferred nonreference telomeres (ranging from 41 to
133 per genome) (Supplemental Fig. S6). In contrast, RCK required
derived chromosomes to start and end at telomeres of the reference
genome; thus, RCK karyotypes have no novel telomeres.
Karyotypes reconstructed by ReMixT correspond to highly unlike-
ly cancer genomes having dozens or even hundreds of linear chro-
mosomes with novel telomeres. This large number of novel
telomeres contradicts the recent PCAWG study (Sieverling et al.
2020) of more than 2500 cancer genomes, which reported that
novel telomeres in prostate cancer were rare.

Finally, we examined the number of violations of the gener-
alized IS constraints in the karyotypes inferred by RCK and
ReMixT. By construction, RCK karyotypes haveno such violations.
In contrast, we identified numerous violations of generalized IS
conditions in the ReMixT karyotypes, which we categorize into
three types. The first type of violation is an intra-genome violation
of the homologous-extremity-exclusivity constraint. This viola-
tion occurs when the inferred segment copy numbers require
that a novel adjacency a be assigned both a label A and a label B
to achieve copy number balance (Fig. 4A). This situation requires
that at least two large-scale somatic rearrangements occurred inde-
pendently at the same genomic position on both homologous
chromosomes, which is highly unlikely. We find that karyotypes
reconstructed by ReMixT contain such violations in 6/10 samples,
ranging from 1 to 8 violations per genome, and from 1 to 12 vio-
lations per sample (Fig. 4B).

A B

Figure 2. Results of RCK on simulated bulk tumor samples with two clones. (A) False negative rate (FNR) and false positive rate (FPR) of novel adjacencies
used by RCK using adjacency utilization parameter P = 0.9 (RCK-0.9) and P =0.75 (RCK-0.75). (B) Length-weighted segment copy number distances be-

tween input copy numbers ( �̃C
′
) and karyotypes inferred by RCK.
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The second type of violation is an inter-genome violation of
the homologous-extremity-exclusivity constraint (Fig. 4C). This
violation occurs when a novel adjacency a is reported as being pre-
sent inmore than one genome in the sample, but a label Amust be
assigned to at least one a’s extremities in one genome, and a label B
must be assigned to at least one a’s extremities in another genome.
This situation requires that at least two large-scale somatic rear-
rangements occurred independently at the same homologous geno-
mic location in two different tumor clones, which is highly
unlikely. We found that the karyotypes produced by ReMixT had
such violations in all samples, with a substantial fraction (ranging
from 0.06 to 0.28) of novel adjacencies containing such violations
(Fig. 4D).

The third type of violation concerns pairs of reciprocal novel
adjacencies. For a pair a= {x, jh}, b= {( j+1)t, y} of reciprocal novel
adjacencies that involve adjacent extremities jh and ( j+1)t on
the reference genome, possible violations of generalized IS include
intra/inter-genome violation of the homologous-extremity-exclu-
sivity or intra/inter-genome violation of the homologous-recipro-
cal-extremity-exclusivity constraints (Fig. 4E), or both. Any such
violation requires that at least two large-scale somatic rearrange-
ments occurred independently on the same or homologous geno-
mic location both producing pairs of reciprocal novel
adjacencies, a situation which is highly unlikely. We found that
karyotypes produced by ReMixT had such violations in all sam-
ples; furthermore, in 6/10 samples, more than half of reciprocal
novel adjacencies had such violations (Fig. 4F).

Homogeneous tumor samples

We compared the karyotypes inferred by RCK and ReMixT on
the seven prostate cancer samples from the homogeneous
group and analyzed the karyotypes output by both methods, fol-
lowing the procedures described above for the heterogeneous sam-
ples. Because ReMixT assumes that an input sample contains
exactly two cancer clones, ReMixT’s results disagree with both Bat-
tenberg’s and HATCHet’s predictions of one cancer clone in these
samples. Thus, we compared the segment copy number profiles of
the clone inferred by ReMixT with the highest cellular prevalence
in each sample with the copy number profiles inferred by Batten-
berg and HATCHet. We found that on every sample in the homo-
geneous group, the segment copy numbers inferred by RCK (with
P≤0.9) are more similar to the copy numbers from Battenberg
(Supplemental Fig. S7A) and HATCHet (Supplemental Fig. S7B)

compared to the segment copy numbers inferred by ReMixT.
The fraction of input novel adjacencies that were present in the
karyotypes inferred by ReMixT ranged from 0.82 to 0.94, com-
pared to a range of 0.5 to 1.0 for RCK (Supplemental Fig. S8). As
in the heterogeneous samples, we observed that segment copy
number distances are largest for RCK when we require RCK to
use all novel adjacencies (P = 1, a larger proportion than used in
ReMixT), but that the distances decrease and stabilize when
some novel adjacencies are excluded (P≤0.9).

Similar to the heterogeneous samples, we also observed that
karyotypes inferred by ReMixT had implausible features including
a large number (and multiplicity) of novel telomeres
(Supplemental Fig. S9) and violations of the generalized infinite
sites constraints (Supplemental Fig. S10). In contrast, karyotypes
inferred by RCK had no such issues. Overall, our analysis of in-
ferred cancer genomes karyotypes in the homogeneous group
aligned with the findings for the heterogeneous group.

Complex genome rearrangements in prostate cancer

We looked for evidence of complex rearrangements that involve
simultaneous double-stranded DNA breakages at three or more ge-
nomic locations in the prostate cancer samples. Such complex re-
arrangements—including insertional duplications, chromoplexy,
and chromothripsis—have recently been reported inmultiple can-
cer types, including prostate cancer (Stephens et al. 2011; Baca
et al. 2013; Hirsch et al. 2013; Weinreb et al. 2014; Oesper et al.
2018) and can affect genes and other functional genetic elements
with important roles in cancer development and prognosis (Shen
2013; Fontana et al. 2018). Complex rearrangements are not
directly observed in short-read DNA sequencing data, but rather
must be inferred from the pattern of novel adjacencies that are cre-
ated during such rearrangements. Specifically, under the infinite
sites assumption, any pair a= {x, jh}, b= {( j+1)t, y} of reciprocal
novel adjacencies that involves the adjacent extremities jh and
( j + 1)tmusthave been created during a single rearrangement event
that broke both the reference adjacency { jh, ( j+1)t} as well as refer-
ence adjacencies involving x and y. Thus, we identify evidence of
complex rearrangements by finding chains (a1, a2, . . . , ak−1)
of novel adjacencies where consecutive novel adjacencies, ai and
ai+1, contain reference-adjacent extremities (Fig. 5A). Such a chain
provides a lower bound on the number k of simultaneous DNA
breakages that must have taken place, that is, it is possible that a
rearrangement with k≥3 double-stranded DNA breaks may not

A B

Figure 3. Comparison of RCK and ReMixT on heterogeneous prostate cancer samples. (A) Length-weighted segment copy number distances between
segment copy numbers from HATCHet and segment copy numbers output by ReMixT and RCK. (B) Fractions of novel adjacencies from input that are in-
ferred to be present by ReMixT or RCK for each sample in the heterogeneous group. RCK used segment copy numbers from HATCHet in input and novel
adjacency utilization parameter P = 1.0, 0.9, 0.75, 0.5.
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have produced novel adjacencies connecting all of the k broken
reference adjacencies.

We identified complex k-break rearrangements in the karyo-
types reconstructed by RCK (P=0.9) on all 17 metastatic prostate
cancer samples. One example is a 5-break on Chromosome 10 in
heterogeneous sample A31a (Fig. 5B). All five novel adjacencies re-
sulting from the 5-break are present in one of the genomes inferred
by RCK, while only 4/5 of the novel adjacencies are present in the
other (subclonal) genome. Moreover, the copy numbers for some
of these novel adjacencies differ across the two genomes, suggest-
ing that additional subclonal rearrangements occurred after the
complex rearrangement. Three of the reference adjacencies affect-
ed by this 5-break fall within the genes VTI1A, TECTB, and LZTS2
that are listed in the COSMIC database of genes somaticallymutat-
ed in cancer (Forbes et al. 2017). Note that some extremities in-
volved in reciprocal novel adjacencies have no change in copy
number (e.g., Chr10:64,708,4[19|20] in genome G1), whereas oth-
ers show a change in copy number (e.g., Chr10:114,208,50[2|3] in
genome G1) (Fig. 5B). These observations underscore the impor-
tance of RCK’s karyotype reconstruction model that allows for ge-
nomic heterogeneity within a sample and also carefully analyzes
reciprocal novel adjacencies.

Overall, the number of k-breaks identified by RCK ranges
from seven (in A12c, all 3-breaks) to 31 (in A34d, a mixture of 3-,
4-, and 5-breaks) per sample. Moreover, these k-breaks showed
strong concordance between HATCHet and Battenberg segment
copy number input (Fig. 5C). The most frequent complex rear-
rangements were 3-break rearrangements, which were present in
all samples. We also find two 8-break rearrangements, one each
in samples A21g and A21h from patient A21. We found that
266/302 (respectively, 260/296) of complex rearrangements over-
lapped human genes from RefSeq (O’Leary et al. 2016) using the
karyotypes inferred by RCK with HATCHet (respectively,
Battenberg) segment copy number inputs (Supplemental Table
S5). Of these genes, 14 (respectively, 15) are in the COSMIC. In to-
tal, we identified 185 distinct genes being affected by complex re-
arrangements ranging from eight (in sample A12c) to 33 (in
sample A34c) per sample.

Discussion

We introduced RCK, a novel algorithm for reconstructing clone-
and haplotype-specific cancer genome karyotypes from bulk tu-
mor samples. RCK accounts for heterogeneity in the observed

A C E

B D F

Figure 4. ReMixT karyotypes from heterogeneous prostate cancer samples have numerous violations of the generalized infinite sites constraints. In A, C,
and E, solid edges represent segment edges, black-dashed edges represent reference adjacency edges, and red dashed edges represent novel adjacency
edges. Integer values indicate copy numbers of corresponding segment and adjacency edges. (A) An intra-genome violation of the homologous-extremity-
exclusivity constraint. To achieve copy number balance, both homologous vertices 2h

A and 2h
B from genome Gi must be involved in novel adjacencies. (B)

Number of novel adjacencies that violate the intra-genome homologous-extremity-exclusivity constraint in each cancer karyotype inferred by ReMixT in
each sample. (C) An inter-genome violation of the homologous-extremity-exclusivity constraint. To achieve copy number balance, both homologous ver-
tices 2h

A and 2h
B (in different genomes)must be involved in novel adjacencies. (D) The fraction x/y, where x is the number of novel adjacencies that violate the

inter-genome homologous-extremity-exclusivity constraint (on at least one of the extremities involved in a novel adjacency) in ReMixT karyotypes, and y is
the total number of novel adjacencies reported by ReMixT as being present in both genomes. (E) A violation of the intra-genome homologous-reciprocal-
extremity-exclusivity constraint. To achieve copy number balance, both homologous-reciprocal vertices 2h

A and 3t
B must be involved in novel adjacencies.

Inter-genome violations of the homologous-reciprocal-extremity-exclusivity constraint are also possible (Supplemental Fig. S17). (F) Fraction x/y, where x is
the number of reciprocal locations with violations of either intra- or inter-genome (or both) homologous-reciprocal-extremity-exclusivity constraint in
ReMixT karyotypes; and y is the total number of reciprocal locations that both have novel adjacencies in ReMixT karyotypes.
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tumor sample, correctlymodels the diploid reference genome, and
enforces biologically reasonable evolutionary constraints that gen-
eralize the infinite sites assumption to somatic large-scale genome
rearrangements. RCK is, to the best of our knowledge, the only al-
gorithm with these features and also the only algorithm that can
combine both second- and third-generation sequencing data
into the reconstruction process, leveraging the long-
range adjacency information from third-generation sequencing
technologies.

Onprostate cancer sequencing data, we found that RCK infers
cancer karyotypes whose inferred segment copy numbers are clos-
er to those produced by state-of-the-art copy number inference
tools (HATCHet and Battenberg), and whose novel adjacencies
conformwith constraints from an infinite sites evolutionarymod-
el. In contrast, ReMixT’s approach of using novel adjacencies to
“adjust” copy numbers generally led to allele-specific segment
copy numbers that were different from those of HATCHet and

Battenberg. Moreover, the novel adjacencies that are present in
ReMixT inferred karyotypes often require biologically implausible
rearrangements. Furthermore, we identified complex k-break rear-
rangements in all but two of the prostate cancer samples, which
overlap a total of 185 genes, including known cancer genes in
COSMIC. These results show that RCK’s proper handling of recip-
rocal novel adjacencies plays a crucial role in adequate reconstruc-
tion of clone- and haplotype-specific cancer karyotypes.

Although RCK uses a comprehensive somatic evolutionary
model and addresses some shortcomings of the previous ap-
proaches, there are several limitations and avenues for future im-
provement. First, RCK’s performance is limited by the allele-
specific copy numbers and novel adjacencies provided in input.
Our analysis of prostate tumors focused on the samples for which
two copy number deconvolution methods (HATCHet and
Battenberg) agreed about the heterogeneous composition of the
sample. Further improvements in methods for copy number

A B

C

Figure 5. Evidence of complex k-break (k≥3) rearrangements in metastatic prostate cancer. (A) Two complex rearrangements across two genomes in a
heterogeneous sample. A 5-break rearrangement that produced four novel adjacencies {a, b, c, d} involving five reference adjacencies (X, R, L, O, and M),
with novel adjacency a not present in genome G2. A 3-break rearrangement that produced three novel adjacencies {e, f, j} involving three reference ad-
jacencies (Y, Z, and T), with novel adjacency j not present G1. (B, top) A complex 5-break rearrangement on Chromosome 10 in the karyotype inferred by
RCK on sample A31a. Only the four novel adjacencies, five reference adjacencies, and incident segments involved in the rearrangement are shown. Copy
numbers ≤1 are omitted for clarity, and absent segments/adjacencies are shown as faded. (Bottom) The locations of the corresponding double-stranded
DNA breakages for the 5-break on Chromosome 10, indicated as x|y for each reference adjacency {(x)h, (y)t}. Three reference adjacencies lie in/near genes:
reference adjacency 102,756,[799|800] falls within the promoter region for gene LZTS2; reference adjacency 114,208,50[2|3] falls inside gene VTI1A; and
reference adjacency 114,062,94[6|7] falls inside gene TECTB. (C) Number of complex k-break (k≥3) rearrangements reported in RCK-reconstructed kar-
yotypes using HATCHet and Battenberg copy number inputs with novel adjacency utilization parameter P = 0.9. Values of 0 are omitted for clarity.
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deconvolution will increase RCK’s accuracy in deriving allele- and
haplotype-specific karyotypes. RCK can use output from different
methods for inferring allele-specific copy numbers from bulk sam-
ples; however, nearly all such current methods require a matched
normal sample, and thus in practice RCK also requires a matched
normal sample. Second, improvements in distinguishing novel
telomeres (telomeres not present in the reference genome) fromer-
rors in the input data remains a challenging problem. In the RCK
results presented here, we assume that each cancer genome con-
tains only the telomeres present in the reference genome, that is,
no new telomeres are present in the cancer genomes. Although
the current implementation of RCK allows the user to specify
the location of novel telomeres, telomere selection is not currently
part of the objective function optimized by RCK. Third, additional
work is needed to distinguish karyotypes with haplotype symme-
tries that produce identical values of RCK’s objective function.
RCK uses reciprocal locations and input allele-specific profiles to
assign haplotypes, but these constraints are usually insufficient
to infer chromosome-scale haplotypes. Additional information in-
dicating that multiple novel adjacencies should be assigned to the
same haplotype in the karyotype would reduce ambiguities in kar-
yotype inference and provide longer resolvedhaplotype blocks; for
example, Aganezov et al. (2020) used RCK’s model with additional
haplotype label constraints arising from the third-generation long
reads. Fourth, some extremely rearranged cancer genomes may vi-
olate the generalized infinite sites constraints and have extremities
that are involved in several distinct unlabeled novel adjacencies.
Such instances can be identified from the input novel adjacencies
and the current implementation of RCK allows users to explicitly
specify location(s) where such breakpoint reuse is suspected,
thus providing a manual control over the extremity-exclusivity
constraint. It would be interesting to extend this approach to eval-
uate and score cases in which the data support breakpoint reuse.
Fifth, we can further generalize RCK to simultaneously analyze
multiple samples from the same individual, as has proven useful
in copy number inference (Zaccaria and Raphael 2020).
Extensions to multiple samples could leverage phylogenetic
(Zaccaria et al. 2017), spatial (El-Kebir et al. 2018), or temporal
(Myers et al. 2019) relationships between samples. Finally, it would
be helpful to incorporate a patient-specific germline genome to
better distinguish germline structural variations, long repetitive
segments, and so forth.

Higher-resolution reconstructions of cancer karyotypes can
help researchers illuminate differences/similarities between differ-
ent types of cancer in general and lead to a more targeted and per-
sonalized medical treatments in specific patients. RCK’s inference
of clone- and haplotype-specific cancer karyotypes enables further
studies of the somaticmutational processes that produce highly re-
arranged cancer genomes, as well as improved characterization of
specific functional changes (e.g., loss of heterozygosity, novel hap-
lotype-specific fusion genes, and so forth).

Methods

We derive the RCK algorithm by first formulating the mathemati-
cal problem in the case of “perfect” input data (“Sequencing of re-
arranged cancer genomes”). Next, we describe the construction of
the diploid interval adjacency graph (“Diploid interval adjacency
graph”) and show how the model can incorporate information
from third-generation sequencing technologies (“Third-genera-
tion sequencing technologies and novel adjacency groups”).
Finally, we describe the realistic case when there is uncertainty

in input segment copy number values (“Uncertainty in copy num-
ber measurements”), and formulate the optimization problem
solved by RCK.

Sequencing of rearranged cancer genomes

A cancer genome results from a sequence of somatic genome rear-
rangements that transform the diploid reference human genome R
into a derived genome G. In general, tumors are genetically
heterogeneous with cancerous cells distinguished by unique
rearrangements. Sequencing of a bulk tumor sample thusmeasures
not a single derived genome, but rather a mixture of different
derived genomes, often called clones. We define a sample
S = (G1, G2, . . . , Gn) to be a list of n derived genomes all of which
were derived from the same diploid reference genome R via large-
scale rearrangements.

The genome rearrangements that produce each derived ge-
nome result in duplications, deletions, and reorderings of seg-
ments of the reference genome. Thus, we describe each derived
genome using an “alphabet” of segments of the reference genome.
Every chromosome in a diploid reference genome R is present in
two homologous copies, which we label by A and B, respectively.
Given a multichromosomal diploid reference genome R, we label
segments 1 throughm (Fig. 6A). A segment jH = [ jtH , j

h
H ] is a contig-

uous part of theH homolog,H∈ {A, B} of a reference chromosome;
the endpoints jtH and jhH are called extremities. In a derived genome,
segments can be absent, present more than once, and appear both
in forward and reverse orientation. We denote by −jA = [ jhA, j

i
A] a

reversed instance of the segment jA. Extremities that demarcate
the beginning and the end of a chromosome are called telomeres,
and we define by T (G) the set of telomeres in genome G. For a dip-
loid reference genome R with k chromosomes, we define the set
T (R) = {1t

A, 1
t
B, . . . , mh

A, m
h
B} of reference telomeres and note

that |T (R)| = 4k.
A derived genome G corresponds to a collection of derived

chromosomes, where each derived chromosome is a concatena-
tion of segments from any homologous copy of any of the chro-
mosomes in the diploid reference R. Each derived chromosome
thus corresponds to a word from the following alphabet:

S = {jH |j [ {+1, + 2, . . . , +m}; H [ {A, B}}. (1)

Each pair ( jH , kH ′ ), where H, H ′ [ {A, B}, of consecutive seg-
ments on a chromosome determines an adjacency { jhH , k

t
H ′ }, or the

pair of extremities that are adjacent on a chromosome. A genome
G determines a set A(G) of adjacencies present in it. For example,
themultichromosomal diploid reference genome R (Fig. 6B) deter-
mines a set A(R) of reference adjacencies as follows (we assume that
every segment appears exactly once in a forward orientation in the
reference genome):

A(R) = {{ jhH , ( j+ 1)tH }|j [ {1, 2, . . . , m− 1}; H [ {A, B}; jh, ( j+ 1)t � T (R)}.

(2)

Adjacencies that are present in a mutated genome G but are
not present in the reference are called novel adjacencies, and we
denote by AN(G) a set of novel adjacencies in genome G.
Because there are no novel adjacencies in the reference we have
AN (R) = ∅. For a reference adjacency { jhH , ( j+ 1)tH } [ A(R), we
call extremities jhH and ( j+ 1)tH reciprocal. Similarly, for a sample
S = (G1, G2, . . . , Gn) letAN(S) = <Gi[SAN(Gi) be the set of all ad-
jacencies and let AN (S) = <Gi[SAN (Gi) be the set of all novel adja-
cencies present in any (subset) of the genomes in S.

A genome G determines a diploid segment copy number pro-
file CG = (a = [a1, a2, . . . , am], b = [b1, b2, . . . , bm]), where
values (aj, bj)∈N2 indicate the number of copies of segments
jB and jB in G, respectively (Fig. 6C). Note that a diploid
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reference genome R has aj= bj=1 for every segment j.
Similarly, a sample S = (G1, G2, . . . , Gn) determines a pair
CS = (A = [a1, a2, . . . , an]

T , B = [b1, b2, . . . , bn]
T ) of n×m dip-

loid segment copy number matrices, where genome-specific seg-
ment copy number vectors ai = [ai,1, ai,2, . . . , ai,m] and
bi = [bi,1, bi,2, . . . , bi,m] contain integer values ai,j, bi,j∈N
corresponding to the number of times segments jA and jB appear
in genome Gi∈ S, respectively. We denote by A[j] =
[a1,j, a2,j, . . . , an,j]

T and by B[j] = [b1,j, b2,j, . . . , bn,j]
T vectors of

copy number values for segments jA and jB across all genomes Gi∈S.
Current short-read sequencing technologies do not measure

the diploid segment copy number profile CG of a derived genome
G directly. Rather there exist multiple methods (Van Loo et al.
2010; Boeva et al. 2012; Carter et al. 2012; Nik-Zainal et al. 2012;
Fischer et al. 2014; Ha et al. 2014; McPherson et al. 2017; Zaccaria
and Raphael 2020) that derive a pair ĉ = [ĉ1, ĉ2, . . . , ĉm],
č = č1, č2, . . . ,čm[ ] of vectors, where for every segment j an unla-
beled (allele-specific) pair ĉj, čj

{ }
[ N2 represents copy numbers

of segments jA and jB in G, but without A/B labels explicitly as-
sociated with the measured values. In other words, we know
that aj, bj

{ } = ĉj, čj
{ }

, but it is unclear whether aj, bj
( ) = ĉj, čj

( )
or

aj, bj
( ) = čj, ĉj

( )
(example shown in Fig. 7). Similarly for a sample

s = (G1, G2, . . . , Gn), we do not measure the pair CS= (A, B)
of its n×m diploid segment copy matrices directly, but rather we
measure a pair Ĉ = {Ĉ = [ĉ1, ĉ2, . . . , ĉn]

T , Č = [č1, č2, . . . , čn]
T }

of n×m allele-specific segment copy number matrices, such that
for every segment j either (A[j], B[j]) = (Ĉ[j], Č[j]) or

(A[j], B[j]) = (Č[j], Ĉ[j]). Figure 7 shows examples of copy number
profiles for a heterogeneous sample (Fig. 7A) derived under differ-
ent assumptions about the sample (e.g., haploid [Fig. 7B] vs. dip-
loid reference [Fig. 7C], homogeneous vs. heterogeneous sample
[Fig. 7D,E]).

In addition, current short-read sequencing technologies do
not measure the set A(G) of adjacencies in a genome G derived
from a diploid reference R; rather for every novel adjacency
{ jsH , k

s′
H ′ } [ AN (G) we measure only an unlabeled adjacency

{ js, ks
′
} where the extremities aremissing the A/B labels. For exam-

ple, in the derived genome G shown in Figure 6, we measure the
unlabeled novel adjacency {3h, 7h} instead of the true novel adja-
cency {3h

A, 7
h
B} [ AN (G). There exist several methods capable of

producing the unlabeled novel adjacencies both from a standard
short-read bulk sequencing data (Rausch et al. 2012; Sindi et al.
2012; Layer et al. 2014; Sudmant et al. 2015; Chen et al. 2016;
Wala et al. 2018) as well as from third-generation sequencing tech-
nologies (English et al. 2014; Ritz et al. 2014; Zheng et al. 2016;
Huddleston et al. 2017; Spies et al. 2017; Elyanow et al. 2018;
Nattestad et al. 2018; Sedlazeck et al. 2018). Similarly for every novel
adjacency a = { jsH , k

s′
H ′ } [ AN (S) in sample S = (G1, G2, . . . , G2),

we measure only the unlabeled counterpart { js, ks
′
}. Moreover, we

also lose the information about which genome(s) in sample S con-
tains the novel adjacency a. We define by ÃN (S) a set of unlabeled
adjacencies measured from a sample S.

Because the measured unlabeled novel adjacencies do not in-
clude the A/B labels, we do not know the true underlying novel

A

B

C

Figure 6. Segments, extremities, and copy number profiles for genomes. (A) A diploid reference genome R containing two pairs of homologous chro-
mosomes: A Chromosomes are dark blue and dark green, and the homologous B Chromosomes are light blue and light green. Chromosomes are parti-
tioned into consecutive segments labeled 1 through 12. (B, top) Reference genome R is a collection of concatenations of segments; the “flat” end of
segment j corresponds to the tail extremity jt, whereas the “pointy” end of each segment j corresponds to the head extremity jh. Dashed lines correspond
to reference adjacencies between adjacent extremities. The set T (R) = {1t

A, 1
t
B, 5

h
A, 5

h
B, 6

t
A, 6

t
B, 12

h
A, 12

h
B} of extremities is the telomere set. (Bottom) The

diploid segment copy number profile CR = (a, b) for the genome R with colors (dark/light blue/green) corresponding to A/B labeled segments. (C, top)
A derived genome G obtained via multiple large-scale rearrangements from the reference genome R. Red dashed lines correspond to novel adjacencies,
for example, {3h

A, 7
h
B}. (Bottom) The diploid segment copy number profile CG= (a, b) for the genome G with colors (dark/light blue/green) corresponding

to A/B labeled segments. The set T (G) of telomeres in the derived genome G is identical to the set T (R) of telomeres in the reference genome R.
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adjacencies that produced a measurement. For an unlabeled novel
adjacency a = { js, ks

′
}, let h(a) = {{ jsH , k

s′
H ′ }|H, H ′ [ {A, B}} be the

set of the four possible novel adjacencies that can be obtained by
labeling extremities in a with haplotypes A or B. For a set A of un-
labeled novel adjacencies, let H(A) = {h(a)|a [ A} be the set of all
possible labeled novel adjacencies that can be obtained from A.
Note that when a set ÃN of unlabeled novel adjacencies comes
from a genome G, it follows that AN (G) # H(ÃN ). Then the set
A(R)<H(ÃN ) gives all possible adjacencies that can be present
in the genome G.

Reconstructing karyotypes under generalized infinite sites

constraints

To reconstruct cancer genomes using the ambiguous measure-
ments of adjacencies and copy number profiles that are obtained
from bulk sequencing data, we make some simplifying assump-
tions on the somatic evolutionprocess that generated the genomes
Gi in samples S. Specifically, we make the infinite sites assumption
that the large-scale somatic rearrangements that “break” and
“glue” chromosomes do not affect the exact same nucleotide
more than once during evolution. Previous work on genome rear-
rangements has used the infinite sites assumption (Ma et al. 2008;
Alekseyev and Pevzner 2009; Oesper et al. 2012; Li et al. 2016;
McPherson et al. 2017); however, in the case of a diploid reference
genome, there are multiple possible interpretations of the infinite
sites assumption that depend on whether different rearrange-
ments at homologous nucleotide positions are allowed.We define
several specific assumptions about reuse of extremities and adja-
cencies that collectively we refer to as the generalized infinite sites
assumptions.

Specifically, we assume that the large-scale somatic rearrange-
ments that “break” and “glue” chromosomes do not affect the
same genomic location—on either of the two homologous chromo-
somes A andB in anyof the genomesGi in the sample S—more than
once during the entire somatic evolutionary process. This general-
ized infinite sites assumption leads to the following constraints on
the extremities and adjacencies of each derived genome G:

a. Extremity-exclusivity: Every extremity jsH is involved in at most
one novel adjacency from AN (G). This constraint derives from
the fact that a novel adjacency that includes the extremity jsH re-
sults from a large-scale rearrangement that breaks a reference ad-
jacency that includes jsH (and possibly several other reference
adjacencies). By the generalized IS assumptions, at most one
novel adjacency can involve the extremity jsH .

b. Homologous-extremity-exclusivity: If an extremity jsH is in-
volved in a novel adjacency from AN (G), then the homologous
extremity js

Ĥ
is not involved in any novel adjacency fromAN (G).

This constraint follows the logic of the extremity-exclusivity
constraint, but further restricts rearrangements to involve at
most one of the homologous extremities jsH and js

Ĥ
. This con-

straint derives from the fact that for both extremities jsH and js
Ĥ

to be involved in novel adjacencies, there must have been at
least two large-scale rearrangements breaking homologous refer-
ence adjacencies involving both extremities jsH and js

Ĥ
, which is

prohibited under the generalized IS.
c. Homologous-reciprocal-extremity-exclusivity: If an extremity js

′
H

from the reference adjacency { jsH , k
s′
H } is involved in a novel ad-

jacency from AN (G), then the homologous extremity ks
′

Ĥ
is not

involved in any novel adjacency from AN (G). This constraint
follows the observation that for both extremities jsH and ks

′
Ĥ

to
be involved in novel adjacencies, there must have been two
large-scale rearrangements breaking both homologous reference
adjacencies { jsH , k

s′
H } and { js

Ĥ
, ks

′
Ĥ
}, which is prohibited under the

generalized IS.

Supplemental Figure S11 gives examples of rearrangements
that violate the generalized IS and the resulting implications for
novel adjacencies in the derived genomes.

We call a genome G proper provided that the extremity-
exclusivity, homologous-extremity-exclusivity, and homologous-
reciprocal-extremity-exclusivity constraints hold for the set
AN (G). Similarly, we call a sample S = (G1, G2, . . . , Gn) proper if
the three constraints hold for the set AN(S) of novel adjacencies
in all of the genomes in S. Thus, the generalized IS constraints
are imposed for the whole somatic evolutionary process that pro-
duced the genomes in the sample S. Note that if a sample

A

B C D E

Figure 7. Ambiguity and errors in inferring segment copy number (SCN) profiles for a heterogeneous sample S = (G1, G2) under different assumptions
about the sample composition. (A) A two-genome proper sample S= (G1, G2): each genome Gi∈ S is depicted as collections of adjacent blocks (top), and
the corresponding sequences of signed blocks (bottom). (B) The copy number profile c= [c1, c2, c3, c4] inferred under the assumption that the sample is
homogeneous (i.e., comprised of a single derived genome) and the reference genome is haploid (i.e., each segment has only a single haplotype in the
reference). Each value cj is the weighted average of the sums of haplotype-specific (or allele-specific) copy numbers ai,j + bi,j = ĉi,j + či,j over the genomes
Gi∈ S. (C) Allele-specific copy number profiles ĉ = [ĉ1, ĉ2, ĉ3, ĉ4] and č = č1, č2, č3, č4[ ] inferred under the assumption that the sample is homogeneous
and the reference genome is diploid (i.e., each segment has two haplotypes labeled A and B). Here, the entries ĉj and čj for segment j are averages
(ĉ1,j + ĉ2,j )/2 and č1,j + č2,j

( )
/2 of genome- and allele-specific copy number values. Note that the vectors ĉ and č do not preserve the true A/B label of

each allele: dark blue are true counts of allele A and light blue are true counts of allele B. Here, segments 2 and 4 are flipped. (D) Genome-specific copy
number profiles c1 = [c1,1, c1,2, c1,3, c1,4] and c2 = [c2,1, c2,2, c2,3, c2,4] inferred under the assumption that the sample is heterogeneous, but the reference
genome is haploid. Here, the entry ci,j for a segment j and genome Gi is the sum ĉi,j + či,j of allele-specific copy number values in a genome Gi. (E)
Allele- and genome-specific copy number matrices C̃ = Ĉ = ĉ1, ĉ2, . . . ,ĉn[ ]T , Č = č1, č2, . . . ,čn[ ]T

( )
inferred under the assumption that the sample is het-

erogeneous and the reference genome is diploid. Segments 2 and 4 are flipped alleles: č1,2, ĉ2,2
( ) = a1,2, b2,2

( )
and č1,4, ĉ2,4

( ) = a1,4, b2,4
( )

.
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č1,4, ĉ2,4
( ) = a1,4, b2,4

( )
is proper, then any subsample (including

individual derived genomes Gi∈ S of S is also proper. Note that if
a set ÃN of unlabeled novel adjacencies is measured from a proper
sample S, then ÃN satisfies the generalized IS conditions. This is
because unlabeled novel adjacencies involve extremities that lack
A/B labels, and thus only the (unlabeled) extremity-exclusivity
constraint (i.e., on unlabeled extremities) must be satisfied. This
is achieved because in a proper sample, the extremity-exclusivity
and homologous-extremity-exclusivity conditions guarantee that
for every pair jsA, j

s
B of homologous extremities at most one of

them is involved in any novel adjacency from AN (G), and thus
the unlabeled extremity js is also involved in atmost onemeasured
unlabeled novel adjacency from ÃN .

We assume that large-scale rearrangements that generated a
derived genomeG from a diploid reference genome Rhave not cre-
ated novel telomeres (i.e., T (G) # T (R)), and formulate the follow-
ing problem of reconstructing a sample S = (G1, G2, . . . , Gn) of
derived genomes from measurement data.

Cancer Genome(s) Reconstruction Problem

Given a diploid reference genomeR, a pair C̃ = (Ĉ, Č) of n×mallele-spe-
cific segment copy numbermatrices, and a set ÃN ofmeasured unlabeled
novel adjacencies that satisfies (unlabeled) extremity-exclusivity con-
straint, find a proper sample S = (G1, G2, . . . , Gn) such that:

1. for every adjacency a = { jsH , k
s′
H ′ } [ A(S), either { js, ks

′
} [ ÃN or

a [ A(R);
2. for every adjacency { js, ks

′
} [ ÃN, there exists a unique pair H, H

′
∈

{A, B} of labels, such that { js
′

H , k
s′
H ′ } [ A(S);

3. for every segment j, either A j[ ],B j[ ]
( )

= Ĉ j[ ], Č j[ ]
( )

or
A j[ ],B j[ ]

( )
= Č j[ ], Ĉ j[ ]

( )
;

4. for every genome Gi∈ s, the telomere set T (Gi) # T (R).

Diploid interval adjacency graph

We reformulate the Cancer Genome(s) Reconstruction Problem as
a graph-theoretic problem, which provides a convenient frame-
work for deriving a combinatorial optimization algorithm to solve
the problem. First, we define the diploid interval adjacency graph
(DIAG), a graph that summarizes the segments, extremities, and
adjacencies of a genome, or genomes, derived from the diploid ref-
erence genome. The DIAG can be viewed as a generalization of a

breakpoint graph used in the area of comparative genomics
(Alekseyev and Pevzner 2009; Avdeyev et al. 2016; Zerbino et al.
2016), or graphs used in the area of structural analysis of normal
and cancer genomes with haploid reference structure (Medvedev
et al. 2010; Oesper et al. 2012; Li et al. 2016; Dzamba et al. 2017;
Eitan and Shamir 2017; McPherson et al. 2017).

A DIAG D(R, ÃN) = (V, E) is constructed on a set
{1, 2, . . . , m} of segments, and a set A = A(R)<H(ÃN ) of adja-
cencies (Fig. 8). The set V of vertices is in one-to-one correspon-
dence with all segments’ extremities. Formally we define V as
follows:

V = {jsH |j [ {1, 2, . . . , m}; s [ {t, h}; H [ {A,B}}. (3)

The set E of edges in a DIAG comprises two sets of edges: a set
ES of segment edges and a set EA of adjacency edges. Each segment
edge connects the tail and head extremities from the same seg-
ment. Formally, we define ES as follows:

ES = {{ jtH , j
h
H }|j [ {1, 2, . . . , m}; H [ {A,B}}. (4)

The set EA of adjacency edges is in a one-to-one correspon-
dence with the set A = A(R)<H(ÃN ) of adjacencies: that is, every
adjacency a = { jsH , k

s′
H ′ } [ A is represented by a corresponding ad-

jacency edge ea = { jsH , k
s′
H ′ } [ EA. We call an adjacency edge

ea [ EA corresponding to a reference adjacency a [ A(R) a reference
adjacency edge, and we denote by ER # EA a set of all reference ad-
jacency edges in EA. We also define a set EN = EA\ER of novel adja-
cency edges: edges in EN correspond to novel adjacencies inH(ÃN).
Because adjacency edges and adjacencies are in one-to-one corre-
spondence, we allow ourselves to use adjacencies when referring
to adjacency edges and vice versa. Note that a DIAG is allowed to
have self-loop adjacency edges that correspond to self-loop novel
adjacencies inH(ÃN ). Such self-loop novel adjacencies can be pro-
duced by breakage-fusion-bridge cycles, inverted tandem duplica-
tions, and othermore complex large-scale genome rearrangements
that have been observed in cancer (Lim et al. 2005; Hicks et al.
2006; Greenman et al. 2012; Zakov et al. 2013).

Because every vertex v = jsH [ V is incident to exactly one seg-
ment edge { jtH , j

h
H } [ ES, we define eS(v)∈ES to be a segment edge

incident to a vertex v, and define eS( jH)∈ES to be a segment edge
corresponding to a segment jH. Every vertex v∈V is incident to

Figure 8. A DIAGD(R, ÃN) = (V , E) constructed on a set {1, 2, . . . , 12} of segments, and a setA(R)<H(ÃN) of adjacencies. The setA(R) corresponds
to reference adjacencies in a diploid reference R shown in Figure 6B, and the set ÃN = {{3h, 7h}, {2h, 9h}, {4t , 8t }, {4h, 4h}, {5t , 8h}, {3t , 10t}, {6h, 11t}} rep-
resents unlabeled novel adjacencies that were measured from a derived genome G shown in Figure 6C. Squares indicate telomere vertices
T (G) = T (R) # V , and circles are non-telomere vertices. Solid edges correspond to segment edges in ES, with dark blue/green edges corresponding to
segments labeled A, and light blue/green edges corresponding to segments labeled B. Black-dashed edges are reference adjacency edges ER, and red-dot-
ted edges are novel adjacency edges EN.
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atmost one reference adjacency edge, andwedefine eR(v)∈ER to be
the reference adjacency edge containing vertex v, if such adjacency
exists. We define EN(v)⊆ EN to be the set of novel adjacency edges
incident to v∈V.

Every chromosome in a derived genome G determines a seg-
ment-adjacency edge alternating walk in the corresponding DIAG
that starts and ends at telomere vertices in T (G) (Supplemental Fig.
S12B). Such an alternating walk spells out a concatenation of seg-
ments from the reference genome, corresponding to a derived
chromosome in G. Thus, a derived genome G determines a collec-
tion of segment-adjacency edge alternating walks. The number of
times a segment edge { jtH , j

h
H } [ ES is traversed (in either direction)

across all walks determined by G corresponds to the segment copy
number (e.g.,m({jtA, j

h
A}) = aj). Similarly, the number of times an ad-

jacency edge e = { jsH , k
s′
H ′ } [ EA is traversed (in either direction)

across all walks determined by G corresponds to an adjacency
copy number (i.e., the number of times an adjacency corresponding
to an edge e is present in G). A genome G thus determines an edge
multiplicity function μ:E→N on both segment and adjacency edges
(example is shown in Supplemental Fig. S12A). We call the corre-
sponding DIAG D(R, AN , m) a weighted DIAG.

We define by l(a):EA � {1, 2} an auxiliary function that out-
puts 2 if a is a self-loop adjacency (edge), and 1 otherwise. For a ge-
nome Gi in a sample S, a vertex v∈V exhibits copy number balance
provided

mi(eS(v)) = mi(eR(v))+
∑

e[EN (v)

l(e) · mi(e), (5)

and a vertex v∈V exhibits copy number excess provided

mi(eS(v)) . mi(eR(v))+
∑

e[EN (v)

l(e) · mi(e). (6)

The following theorem follows directly from previous work
(Kotzig 1968; Pevzner 1995):

Theorem 1.
Aweighted DIAG D= (V, E, μ), can be partitioned into a collection

of segment-adjacency edge alternating walks that start and end at a set
T # V of telomere vertices, such that every edge e∈E is traversed μ(e)
times provided:

1. Every non-telomere vertex v [ V\T is copy number balanced;
2. Every telomere vertex v [ T # V has copy number excess.

When the derived genome is allowed to have circular chro-
mosomes, which have been extensively observed and studied in
cancer (Carroll et al. 1988; Von Hoff et al. 1988; Fan et al. 2011;
Garsed et al. 2014; Turner et al. 2017), Theorem 1 provides not
only a necessary but also a sufficient condition for a derived ge-
nome to exist. An extended discussion aboutDIAGdecomposition
into segment-adjacency edge alternating walks is in “On minimal
path-cycle Eulerian decomposition of (D)IAGs” in Supplemental
Methods.

For every unlabeled novel adjacency a [ ÃN and a DIAG
G(R, ÃN ), we define by hE(a)⊆ EN a subset of novel adjacency edges
corresponding to adjacencies in h(a). Furthermore, given aweight-
ed DIAGD(R, ÃN ) = (V, E, m), for every unlabeled novel adjacency
a [ ÃN we define by hE

+(a) # hE(a) # EN a subset of adjacency edg-
es with positive multiplicities as follows:

hE
+(a) = {e|e [ hE(a); m(e) . 0}. (7)

Given a sample S = (G1, G2, . . . , Gn) and a set ÃN of unla-
beled novel adjacencies from S, we construct a DIAG
D(R, ÃN ) = (V, E). Every genome Gi∈ S determines a genome-spe-

cific edge multiplicity function μi:E→N as was previously de-
scribed in a case of a single derived genome.

For every unlabeled adjacency a [ ÃN and a genome Gi∈ S,
we define by hE

i,+(a) # hE(a) a subset of novel adjacency edges in
hE(a) with positive copy number as determined by the genome-
specific edge multiplicity function μi as follows:

hE
i,+(a) = {e|e [ hE(a), mi(e) . 0}. (8)

We generalize the definition of hE
+(a) for the sample

S = (G1, G2, . . . , Gn) case as follows:

hE
+(a) =

⋃
Gi[S

hE
i,+(a). (9)

For every segment jH, we define by μ[ j,H] = [μ1(eS( jH)),
μ2(eS( jH)), …, μn(eS( jH))]

T a vector of genome-specific edge multi-
plicity functions’ values on the segment edge eS( jH)∈ES.

We reformulate the Cancer Genome(s) Reconstruction
Problem into a problem of finding edge multiplicity functions
μ1, μ2, …, μn:E→N in the corresponding DIAG as follows.

Cancer Karyotype Reconstruction Problem (Exact Data)

Given a DIAG D(R, ÃN ) = (V, E), where the set ÃN of unlabeled novel
adjacencies satisfies the (unlabeled) extremity-exclusivity constraint,
and a pair C̃ = Ĉ, Č

( )
of n×mallele-specific segment copy numberma-

trices, find edge multiplicity functions μ1, μ2, …, μn:E →N such that:

1. for every adjacency a [ ÃN, |hE
+(a)| = 1;

2. for every i∈ [n] and every adjacency a = { js, js} [ ÃN,
mi({j

s
A, j

s′
B }) = 0;

3. for every pair a = {u, jh}, b = {( j+ 1)t , v} [ ÃN of unlabeled novel
adjacencies, such that {jhA, ( j+ 1)tA} [ A(R), there exists
a′ = {uH , jhH ′ } [ hE

+(a) and b′ = {( j+ 1)tH ′ , vH ′′ } [ hE
+(b), where H,

H
′
, H

′ ′
∈ {A, B};

4. for every segment j, either (m[j,A], m[j,B]) = (Ĉ[j], Č[j]) or
(m[j,A], m[j,B]) = (Č[j], Ĉ[j]);

5. for every i∈ [n] and every non-telomere vertex v [ V\T (R) the copy
number balance condition (equality (5)) holds;

6. for every i∈ [n] and every telomere vertex v [ T (R) # V either the
copy number balance condition (Eq. (5)) or the copy number excess
condition (Eq. (6)) holds.

Edge multiplicity functions μi that solve the above problem
guarantees the existence of a proper sample S defined by the μi;
however, the solution may not be unique, with several solutions
achieving the same objective function value and satisfying the re-
quired constraints. Specifically, if μ1, μ2, …, μn are a solution, then
every segment j satisfying the following two conditions defines a
symmetrical counterpart solution: (1) normal adjacencies defined
by the μi do not involve/span extremities of either jA or jB; and (2)
the edge multiplicities of segment j are haplotype-symmetric:
(m[j,A], m[j,B]) = (m[j,B], m[j,A]). A symmetrical counterpart solution
can be obtained from a solution by flipping the A/B haplotype la-
bels of all segment and adjacency copy numbers on one side of the
chromosome that contains a segment j satisfying the two condi-
tions given above (Supplemental Fig. S13).

Third-generation sequencing technologies and novel adjacency

groups

Recently, several third-generation sequencing technologies have
been introduced including single-cell DNA sequencing, barcoded
linked reads, and long-read sequencing (English et al. 2014; Ritz
et al. 2014; Zheng et al. 2016; Huddleston et al. 2017; Spies et al.
2017; Elyanow et al. 2018; Sedlazeck et al. 2018). These technolo-
gies can provide additional information about groups of novel
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adjacencies that are present in the same genome. For example,
a single-cell sequencing can reveal that several novel adjacen-
cies are present on the same derived genome, and long-read se-
quencing can reveal that multiple novel adjacencies are present
on the same DNA molecule. We define a molecule group u # ÃN

to be a set of unlabeled novel adjacencies that originate from a
single derived genome Gi∈ S. Recall that for every unlabeled
novel adjacency a = { js, ks

′
} measured in a sample S= (G1, G2,

…, Gn) there exists a unique novel adjacency { jsH , k
s′
H ′ } [ AN (S),

when S is proper. Or, more formally,|h(a)>AN (S)| = 1.
Similarly, for every molecule group u # ÃN of unlabeled novel
adjacencies obtained from third-generation sequencing of a
proper sample S= (G1, G2, …, Gn), there is at least one genome
Gi∈ S such that∑

a[u

|AN (Gi)> h(a)| = |AN (Gi)>H(u)| = |u|. (10)

LetU denote the set ofmolecule groups obtained froma third-
generation sequencing experiment. Below we extend the Cancer
Karoytype Reconstruction Problem to leverage information pro-
vided by U.

Uncertainty in copy number measurements

Inferring allele-specific segment copy numbermatrices (Ĉ, Č) from
bulk sequencing is challenging, and existing inferencemethods do
not infer these copy numbers without error. In addition, novel
adjacencies further subdivide the genome segments output by al-
lele-specific copy number methods, as described in “Deriving ex-
tremities and novel adjacencies from data” below. We formulate
the Cancer Karotype Reconstruction Problem to address these
ambiguities.

First, we derive a distance between copy numbermatrices that
accounts for both allele-flipping—owing to uncertainty in haplo-
type labels—and fragmentation of copy number segments.
Formally, we define a fragment f[ j,l ] to be a sequence ( j, j+1, …,
j + l ) of segments that are adjacent on the reference genome. We
denote by F a collection of nonoverlapping fragments that cover
all of the segments. The allele-specific copy numbers given in in-
put define the number of copies of each allele for all segments
within a fragment. We aim to leverage this information about cor-
relations between allele-specific copy numbers for segments from
the same fragment when we infer segment copy number values.
Given a pair C̃ = (Ĉ, Č) of n×m allele-specific segment copy num-
ber matrices, a pair C= (A, B) of n×m haplotype-specific segment
copy number matrices, and a set F of fragments, we define a copy
number distance

C− C̃
∥∥ ∥∥

F=
∑
f[F

C− C̃
∥∥ ∥∥

f , (11)

where the length-weighted copy number distance C− C̃
∥∥ ∥∥

f for a
fragment f [ F is

C− C̃
∥∥ ∥∥

f= min
d, d′

d, d′
{ } = ĉ, č{ }

∑
j[f

∑n
i=1

ai,j − di,j +| |bi,j − d′i,j
∣∣∣ ∣∣∣( )

· L j
( )

,

(12)

andwhere L( j) is the total number of base pairs (i.e., length) of seg-
ment j.

We now extend the Cancer Karyotype Reconstruction
Problem to the case edge multiplicity functions on the edges of
the corresponding DIAG where the measured allele-specific seg-
ment copy numbers are noisy and where (optionally) a set U of
molecule groups from third-generation sequencing is available.

Cancer Karyotype Reconstruction Problem

Given a DIAG D(R, ÃN ) = (V, E), where the set ÃN of unlabeled mea-
sured novel adjacencies satisfies (unlabeled) extremity-exclusivity con-
straint, a pair C̃ = (Ĉ, Č) of n×m allele-specific segment copy number
matrices, a set F of fragments, and (optionally) a set U of molecule
groups of unlabeled novel adjacencies, find edge multiplicities functions
μ1, μ2, …, μn:E→N such that:

• conditions 1–6 of the Exact Data problem are satisfied;
• for every molecule group u [ U there exists (at least one) i (1≤ i≤n)
such that

∑
a[u |hE

i,+(a)| = |u|;
• the copy number distance Cm − C̃

∥∥ ∥∥
F is minimized for a pair

Cm = (Am, Bm) of diploid segment copy number matrices determined
by values of edge multiplicity functions μ1, μ2, …, μn on segments
edges ES.

In the Supplemental Methods, we derive a mixed-integer lin-
ear program (MILP) optimization problem that solves the Cancer
Karyotype Reconstruction Problem. We find that the run times
of RCK are reasonable, requiring on average <15min on simulated
data (Supplemental Fig. S14) and <10 min on most of the prostate
cancer samples (Supplemental Fig. S15).

Simulating rearranged cancer samples

We simulated 100 instances of a cancer samples S= (G1, G2), con-
taining two clones with corresponding genomes G1 and G2. In
each instance, G1 and G2 share the majority of the somatic rear-
rangement history (∼600 rearrangements), but also have clone-
specific rearrangements affecting their structure (100 and 200 sim-
ple rearrangements for clones G1 and G2, respectively). For every
generated cancer sample S= (G1, G2) we also created a homoge-
neous cancer sample S

′
= (G1) containing the first cancer clone in

S. For each sample S, we derived the true clone-specific segment
copy number profile CS and the true set AN of novel adjacencies.
To simulate ambiguity in deriving segment copy numbers and
novel adjacencies from DNA sequencing data, we remove the
clone label for each novel adjacency and the haplotype labels for
each segment copy number and novel adjacency. We refer to
this process as clone and haplotype information loss (CHIL)
(Supplemental Fig. S1C). First, we generate CHIL segment copy
number input C̃ by randomly (with probability of 0.5) allele-flip-
ping copy numbers in C for every segment j. We then generate
CHIL novel adjacencies ÃN by removing haplotype labels on ex-
tremities in novel adjacencies in AN .

In real data, errors in novel adjacencies and clone- and allele-
specific segment copy numbers are expected. To simulate such er-
rors, we first simulated a fixed-size fragment-averaged copy num-
ber input �C by averaging true segment copy numbers from C
over 50 kbp fragments. We then simulated noisy novel adjacency
measurements by varying the coordinates of segment extremities
by ±50 bp in a randomhalf of adjacencies fromAN , and then lastly
generating an additional 10%of spurious novel adjacencies, result-
ing in a noisy set �AN of input novel adjacencies. We then per-
formed the same CHIL procedure on �C and �AN to obtain the
inputs �̃C and �̃AN for RCK (Supplemental Fig. S1C). We also simu-
late errors in input copy number data by perturbing the copy num-
bers by ±1 in a random 5% of the segments before performing the
CHIL procedure, resulting in segment copy number input �̃C

′
for

RCK.

Deriving extremities and novel adjacencies from data

We derive the extremities and novel adjacencies that form the in-
put to RCK by integrating the output from structural variant pre-
diction methods and copy number inference methods as follows.

Reconstructing cancer karyotypes

Genome Research 1287
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256701.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256701.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256701.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256701.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256701.119/-/DC1


Structural variant prediction methods output novel adjacencies
(sometimes called breakpoints) in the form of pairs: {(chr1, coord1,
str1), (chr2, coord2, str2)}, where chri determines the chromosome
of origin the genomic loci i, coordi determined the coordinate of
the genomic loci i on the respective chromosome chri, and
stri [ {+, −} determined the strand of origin of the genomic loci
i. Methods to predict allele-specific copy numbers partition the ref-
erence genome into nonoverlapping fragments F . The challenge
in combining these two outputs is that the coordinates (extremi-
ties) output by a structural variant prediction method and an al-
lele-specific copy number method are often not identical. This is
becausemostmethods to predict structural variants do not predict
breakpoints to single-nucleotide resolution, and thus there is some
uncertainty in the exact values of the coordinate coordi of the ge-
nomic loci i involved in a novel adjacencies. This uncertainty can
be an issue when determining whether an adjacency is part of a re-
ciprocal event (e.g., inversion or reciprocal translocation).
Similarly, methods to compute allele-specific copy numbers often
have uncertainty in the genomic locations where changes in copy
number occur.

First, we refine the positions of extremities involved in recip-
rocal novel adjacencies. For a sample S, we sort the positions
involved in unlabeled novel adjacencies from ÃN on every chro-
mosome. Then, we use a sliding window to update the coordinates
for any consecutive pair pi, pj of positions which resembles a recip-
rocal signature, that is, if the distance |coordi − coordj|was <50

base pairs and stri = strj, we update the values of the coordi-
nates in positions pi and pj so that they have a coordinate distance
of 1, with the position having a + strand appearing before the po-
sition having a − strand (Fig. 9A).

Next, we adjust the extremities identified by structural varia-
tion predictions and allele-specific copy number segmentation
as follows. We partition the fragments F , on which allele-specific
copy number values are measured, into smaller segments [1, 2,…,
m] such that extremities of these segments correspond either to the
coordinates of extremities involved in the refined novel adjacen-
cies from ÃN or to the extremities of the original fragments (Fig.
9B). This results in original fragments from F spanning one or
more smaller refined segments. Copy numbers on the newly ob-
tained segments are inherited from the values of the “parent”
spanning fragments.

In the analysis of the prostate cancer data set (Gundem
et al. 2015), we used novel adjacencies from the original publica-
tion, which were obtained using brass2 (https://github.com/
cancerit/BRASS). For allele-specific copy numbers, we used the out-
put from Battenberg from the original publication (Gundem et al.
2015).We also inferred clone- and allele-specific copy numbers us-
ing HATCHet (Zaccaria and Raphael 2020), which we ran on the
read alignments obtained from the original publication. For each
sample, the output of Battenberg and HATCHet includes (1) the
number of clones; (2) allele-specific copy numbers for each geno-
mic segment in each clone; and (3) the occurrence of a whole-

A

B

Figure 9. Derivation of extremities and novel adjacencies for input to RCK and ReMixT. (A) An example of derivation of coordinates that resembles a
reciprocal signature in measured unlabeled novel adjacencies on a chromosome a. Positions p1 = (a, 100, + ) and p2 = (a, 107,− ) have reciprocal signature
(i.e., |coord1 − coord2| = 7 , 50 and str1 = − = str2 = +). Updated pair { p′1 = (a, 103, +), p′2 = (a, 104, −)} of coordinates constitutes a reciprocal
location. (B) An example of partitioning of a set F = { f1, f2, f3, f4} of fragments from allele-specific copy number calls into a set S= {s1, s2, s3, s4, s5, s6,
s7, s8} of segments. Extremities of segments in S correspond to either preprocessed coordinates of unlabeled novel adjacencies (e.g., sh1 = p′1,s

t
2 = p′2)

or to the extremities of fragments in F (e.g., sh3 = f h2 ,s
t
4 = f t3).
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genome duplication (WGD) when reported tumor ploidy is >3.
Summary statistics for these samples is available in Supplemental
Table S6.

Last, to compute length-weighted segment copy number
distances between RCK, ReMixT, Battenberg, and HATCHet
on the prostate cancer samples, we refined the fragments/seg-
ments on which the copy numbers were inferred as shown in
Supplemental Figure S16.

Software availability

RCK is available at GitHub (https://github.com/raphael-group/
RCK) and as Supplemental Code.
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