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Abstract: Rice blast (Magnaporthe oryzae) is a devastating disease affecting rice production globally.
The development of cultivars with host resistance has been proved to be the best strategy for disease
management. Several rice-resistance genes (R) have been recognized which induce resistance to blast
in rice but R gene-mediated mechanisms resulting in defense response still need to be elucidated.
Here, mutant lines generated through CRISPR/Cas9 based targeted mutagenesis to investigate the role
of Pi21 against blast resistance and 17 mutant plants were obtained in T0 generation with the mutation
rate of 66% including 26% bi-allelic, 22% homozygous, 12% heterozygous, and 3% chimeric and
17 T-DNA-free lines in T1 generation. The homozygous mutant lines revealed enhanced resistance to
blast without affecting the major agronomic traits. Furthermore, comparative proteome profiling
was adopted to study the succeeding proteomic regulations, using iTRAQ-based proteomic analysis.
We identified 372 DEPs, among them 149 up and 223 were down-regulated, respectively. GO analysis
revealed that the proteins related to response to stimulus, photosynthesis, carbohydrate metabolic
process, and small molecule metabolic process were up-regulated. The most of DEPs were involved
in metabolic, ribosomal, secondary metabolites biosynthesis, and carbon metabolism pathways.
40S ribosomal protein S15 (P31674), 50S ribosomal protein L4, L5, L6 (Q10NM5, Q9ZST0, Q10L93),
30S ribosomal protein S5, S9 (Q6YU81, Q850W6, Q9XJ28), and succinate dehydrogenase (Q9S827)
were hub-proteins. The expression level of genes related to defense mechanism, involved in signaling
pathways of jasmonic acid (JA), salicylic acid (SA), and ethylene metabolisms were up-regulated in
mutant line after the inoculation of the physiological races of M. oryzae as compared to WT. Our results
revealed the fundamental value of genome editing and expand knowledge about fungal infection
avoidance in rice.
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1. Introduction

Rice blast is a devastating disease threatening rice production worldwide, causing about 30%
estimated yield losses annually [1–3]. The most practical approach for managing the blast disease
is the development of cultivars with durable resistance by introducing resistance (R)-genes and it
is the most economical, sustainable, and environment-friendly [1,4]. The immune system of plants
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has evolved sophisticated defense mechanisms against the various invading pathogens. The plant
immune system consists of PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI).
PTI response activated by pattern recognition receptors (PRRs), which detects pathogen-associated
molecular patterns (PAMPs), is relatively weak and restricts colonization of invading pathogens. PTI is
prophesied to confer broad-spectrum and long-lasting resistance without race specificity. Typically,
hypersensitivity associated strong response is triggered by the normal defense system. Because of the
persistent changes in the pathogenicity of the fungus, generally. the ETI-mediated resistance is highly
specific and expected with low durability [5]. Nearly one hundred resistance genes (R-genes) have
been identified and mapped which induce resistance to M. oryzae, and 25 of them have been cloned
and characterized until now [6]. The R-gene mediated defense mechanism still needs to be elucidated
because it is likely to be broken down by highly variable pathogenicity of M. oryzae, which makes the
rice breeding difficult for durable blast resistance [2].

The comprehensive understanding of defense mechanisms of R genes can improve the breeding
of rice for durable resistance. Pi21 is a gene with broad-spectrum resistance that encodes a proline-rich
protein that includes a putative heavy metal–binding domain and putative protein-protein interaction
motifs. Wild-type (WT) Pi21 showed plant susceptibility to M. oryzae which may support the defense
mechanism optimization. The deletion of putative proline-rich motifs for protein–protein interaction
causes a loss of function mutation [7]. The Pi21 knock-out results in non-race specific and durable
blast resistance. The rate of hyphal penetration from cell to cell is significantly higher in plants with
Pi21 as compared to the plants having pi21, which clearly suggests that the Pi21 allele negatively
regulates the resistance due to its susceptibility factor. The response after the fungus invasion in
resistant plants having pi21 is not as strong or as fast as compared to the response mediated by the
R-gene. The incomplete resistance or induction of defense mechanisms slowly may lead to a durable
resistance [7]. Despite the pi21 has been identified and cloned already, however. the mechanisms
behind resistance against pathogen mediated by the Pi21 loss of function and the partial and durable
resistance is largely unidentified in rice.

As a sequence-specific nuclease (SSN). the CRISPR/Cas9 (clustered regularly interspaced short
palindromic repeats/CRISPR-associated protein 9) system has been established as an effective tool for
accurate mutagenesis [8–10] and is basically derived from Streptococcus pyogenes (SpCas9) adaptive
immunity system, in which Cas9 protein is loaded with a synthetic 20 bp long sgRNA (single-guided
RNA) and short insertions or deletions (indels) are introduced at the double-strand DNA breaks (DSBs)
during the NHEJ (non-homologous end-joining) repair pathway [10]. This system has successfully
been applied and targeted mutations were generated at high frequency both in mammalian and plant
species, including rat [11], mouse [12,13], human [14,15], rice [16–18], Arabidopsis [19–21], tobacco [22],
maize [23,24], and soybean [25,26]. The CRISPR approach has been successfully employed for the
induction of mutation in multiple genes simultaneously [27–29] and for target gene activation and
repression [30,31]. In early studies. the large fragment deletions in plant cells were rarely achieved but
with the advancement in CRISPR/Cas9, numerous reports showed large deletions [17,32].

To perceive the effects of mutations on plant proteome. the proteomics analysis strategy is
the most powerful way to explore the diverse changes in complex biological processes and iTRAQ
(isobaric tags for relative and absolute quantification)-based proteome analysis is an effective technique
for quantitative measurement of protein abundance, regardless of the causes of mutations [33,34].
It has been widely used in plant species to recognize the diverse biological processes including,
Arabidopsis [35], rice [36], wheat [37], and maize [38]. A rising number of CRISPR-Cas9 applications
necessitate a good understanding and better management of its efficiency and off-targets. Many
experimental approaches and prediction tools have been established for achieving these aims [39,40],
but it is still required to realize the vastly complex mechanisms underlying cellular signaling processes,
which together arrange the response of the cell to genetic mutations and perturbations.

Despite the rapidly emerging efficient technologies, there are presently no iTRAQ-based proteomic
studies available to completely understand the phenotype induced by Pi21 knockout mutants generated



Genes 2020, 11, 735 3 of 23

by CRISPR/Cas9. In the present study, we used iTRAQ-based proteomic approaches to understand
the cellular signaling changes in the Pi21 mutants compared to the WT. To obtain broad-spectrum
resistance. the CRISPR/Cas9 vector containing two target sites of the Pi21 gene was constructed. In the
present report, homozygous and heterozygous Pi21 mutants were obtained. The homozygous mutant
plants with large fragment deletion displayed complete resistance to blast. In summary, our work
suggests that the CRISPR/Cas9-based mutagenesis in Pi21 holds a great potential to improve the
resistance of rice against M. oryzae and will provide source material for future breeding programs.

2. Materials and Methods

2.1. Material Used and Experimental Conditions

The seeds of rice variety (VP 1636) were obtained from Prof. Rongbai Li, Wild Rice Group,
Rice Research Institute, Guangxi University. The WT and mutant generations were sown during
the normal rice-growing season in the experimental field of Guangxi University, and at the Farm of
Divisional Headquarters, Sanya Hainan., China. Vector and promoters (Supplementary file 1, Figure S1,
S2A–D) were provided by Prof. Yaoguang Liu, South China Agriculture University, Guangzhou, China.
The vector pYL CRISPR/Cas9Pubi-H containing hygromycin selectable marker with modified ccdB
fragment flanking by two BsaI sites, employed for introducing sgRNA cassette (Supplementary file 1,
Figure S3A) [28].

2.2. Construction of Vector and Rice Transformation

Guide RNAs targeting the second exon of Pi21 were designed as previously reported [41] using
CRISPR-GE (http://sk1.scau.edu.cn/) [42], with higher targeting specificity (Supplementary file 1,
Table S2; Figure S3B). The secondary structures of all sgRNA’s were checked by CRISPR-P (http:
//crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR) (Supplementary file 1, Figure S4A,B). The expression
cassette with two sgRNAs was constructed by overlapping PCR. The primers used for constructing
sgRNA vectors are given in Supplementary file 1, Table S1. The construction of the expression cassette
was accomplished by inserting the oligos into the BSaI site of pYLCRISPR/Cas9 (I) [28]. The expression
cassette was transformed into E. coli DH5α and transformed by the heat shock method as previously
explained [43].

Specific primers (SP-L1/SP-R) were used to confirm both target sites in expression cassette
(Supplementary file 1, Table S1). The arrangement of sgRNA cassettes driven by U6 promoter-was
as follows; LacZ-OsU6a-T1-OsU6b-T2 with corresponding sizes of 629 bp and 515 bp for T1 and T2

respectively (Supplementary file 1, Figure S5A,B). The positive colonies were detected after DH5α
transformation (Supplementary file 1, Figure S5C). The sequence of Pi21 in WT was amplified, and
primers were designed for both targets (Supplementary file 1, Figure S5D). The transformation of
embryonic calli of rice seeds was done by Agrobacterium tumefaciens-mediated co-cultivation protocol
as previously established [44]. In brief, rice grains were sterilized and cultured at 30 ◦C using a
2N6 medium after de-husking. The scutella were excised from seeds after five days and used for
transformation. After three weeks. the proliferated calli were sub-cultured for four days on a fresh
2N6 medium. Actively growing calli were suspended in 2N6L medium and cultured in dark at 25 ◦C
at 125 RPM, and fresh medium was replaced every week. After the four days of the third sub-culture.
the cells with the logarithmic phase of growth were selected for transformation. Transformed EHA105
strains were grown on AB medium (containing 50 mgL−1 hygromycin and kanamycin) and suspended
in AAM medium at a density of 3–5 × 109 cells mL−1. The rice tissues were transferred to 2N6-AS
medium without rinsing after immersing several minutes in the bacterial suspension. The culture
was incubated in dark for three days at 25 ◦C and after that. the material was rinsed with 250 mgI−1

cefotaxime in ddH2O and placed on 2N6-CH medium and cultured for three weeks. Proliferated cells
were cultured on the N6-7-CH medium and plated on the regeneration medium after ten days and

http://sk1.scau.edu.cn/
http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR
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incubated under illumination at 25 ◦C. The regenerated plants were transferred to the pots and placed
in a greenhouse up to maturity.

2.3. Genotyping, Screening of Transgene-free Plants, and Off-target Assessment

The genomic DNA extraction from the leaf samples of T0 generation was done by established
CTAB method [45] and target-specific primers (Pi21 F&R) were designed for the amplification of
both target sites (Supplementary file 1, Table S1). Sequencing results were decoded and analyzed
via an online tool DSDecode (http://skl.scau.edu.cn/dsdecode/) [42]. The T-DNA free plants were
screened by using Cas9 detection primers (Cas9-F/Cas9-R), HPT (Hygromycin phosphotransferase),
and expression cassette primers (SPL-1/SP-R) (Supplementary file 1, Table S1). Five putative off-target
sites were selected against both targets with 3–4 bp mismatches in each site by using CRISPR-GE
(http://skl.scau.edu.cn/) (Supplementary file 1, Table S3). The specific primers flanking off-target sites
were designed and sequencing was performed (Supplementary file 1, Table S4).

2.4. Pathogen Inoculation and Disease Scoring

To assess the resistance level of rice seedlings to M. oryzae. the inoculation was done according
to a previously established method [46]. Wild-type (WT) and homozygous mutants (GN-3, GN-5,
GN-9, and GN-13) seedlings grown in the greenhouse for two weeks. Seedlings were inoculated by
the fungal spore spraying (5 × 105 spores/mL) of M. oryzae isolates Guy-11 and YN716. The disease
scoring performed according to the typical assessment scheme of the IRRI (International Rice Research
Institute) and standardized protocol of Mackill and Bonman [47].

2.5. Phenotyping of Mutant Lines

The data for agronomic traits such as plant height (PH), flag leaf length (FLL), flag leaf width
(FLW), number of panicles (PN), panicle length (PL), number of grains per panicle (GNPP), seed setting
rate (SSR), and 1000 grain weight (GW) were recorded for homozygous mutant lines in T1, T2, and
T3 generations.

2.6. Protein Extraction and Digestion

Total of 100 mg leaf samples of WT (VP-1636) and homozygous mutant line (GN-5) were ground
into fine powder in liquid N2 and transferred to pre-cooled acetone (−20 ◦C) having 65 mM dithiothreitol
(DTT) and 10% (v/v) TCA (trichloroacetic acid) was added and mixed thoroughly, precipitated (2 h
at −20 ◦C) and centrifuged (16,000× g for 30 min at 4 ◦C). After careful removal of the supernatant.
the pellet was washed thrice with 20 mL pre-cooled acetone. It was kept for half an hour at −20 ◦C
after centrifugation (20,000× g for 30 min at 4 ◦C). The precipitate was vacuum freeze-dried soon after
collection and the pellets obtained were mixed with SDT buffer containing 4% SDS, 100 mMTris-HCl,
100 mM DTT, pH 8.0, boiled for 5 min, and then sonicated on an ice bath. After centrifugation.
the obtained supernatant filtered over a 0.22 µm Millipore filter. The concentration of proteins was
measured by using a BCA kit (Beyo time Institute of Biotechnology, Shanghai, China) and the extracted
proteins digested by the FASP procedure [48].

2.7. iTRAQ Labeling and Mass Spectrophotometry Analysis

iTRAQ labeling of the digested peptides was conducted by using iTRAQ Reagents 8PLEXKit
(Applied Biosystems, Foster City, CA, USA) following the manufacturer’s instructions. The peptides
labeled with iTRAQ tags and were combined and vacuum dried by centrifugation. The reversed-phase
fractionation of iTRAQ labeled and mixed peptides were done in an 1100 Series HPLC Value System
(Agilent Technologies, Santa Clara, CA, USA), reversed-phase nanoflow HPLC (high-performance
liquid chromatography), and MS/MS measurements were conducted according to a previously
described procedure [49].

http://skl.scau.edu.cn/dsdecode/
http://skl.scau.edu.cn/
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2.8. Data Analysis

Proteomics data were analyzed by using Proteome Discoverer 2.1 (Thermo Fisher Scientific,
Waltham, MA, USA) against (Rice) database with default parameters. The annotations of the DE
proteins were conducted using GO database (http://www.geneontology.org/) and proteins were grouped
according to their participation in the biological processes (BP), cellular components (CC), and molecular
functions (MF). The proteins were further assigned to the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database (http://www.genome.jp/kegg/pathway). Enriched GO terms were identified with
Fisher’s Exact Test and the Cluster 3.0 software used to perform analysis of DAPs (differentially
accumulated proteins). Pathways with FDR-corrected p-values ≤ 0.05 considered significant and were
displayed by color intensity. STRING was utilized to analyze PPI networks.

2.9. RT–qPCR-Based Validation of Proteomic Data

Total RNA was extracted from thirty days old rice plants by using the RNeasy kit (Qiagen).
RT-qPCR was performed with the rice Actin gene as an internal control and primers used for qPCR are
mentioned in Supplementary file 1, Table S1. The expression levels of genes were measured by 2-∆∆CT

(cycle threshold) method as explained previously [50]. The expression levels of, Pi21, phenylalanine
ammonia-lyase gene (OsPAL1), pathogenesis-related protein 1a (OsPR1a), Oryza sativa pathogenesis-related
protein 10a (OsPR10a), jasmonic acid (JA) synthesis-related gene (allene oxide synthase gene; OsAOS2),
salicylic acid (SA) synthesis and signaling pathway-associated gene (ethylene response transcription
factor; OsRAP2.6), and plant defense-related gene Osβ-1, 3-glucanase (Osg1) were also analyzed before
inoculation and 12 h and 24 h after inoculation.

2.10. Statistical Analysis

The agronomic data were analyzed using SPSS 16.0 Statistical Software Program. GraphPad
Prism (version 7.0, GraphPad Software Inc., San Diego, CA, USA) was used to develop the graphs.
The data were analyzed by a two-tailed Student’s t-test and presented as the mean ± SD. The data
were considered statistically significant at a p-value of <0.05.

3. Results

3.1. Construction of Vector

The overlapping PCR was performed for the amplification and confirmation of sgRNA expression
cassette and TaKaRa MiniBEST Purification Kit Ver.4.0 was used to purify the PCR product. Specific
SP-L1/SP-R primers (Table S1) were used for Sanger sequencing. The sequencing results confirmed
the successful construction of the CRISPR/Cas9 binary vector having both the sgRNAs sequences
(Supplementary file 1, Figure S5E).

3.2. Mutation Frequency, Off-Target Effects, and Segregation of Mutants

Hygromycin phosphotransferase primers (HPT-F/R) were used to select mutant plants
(Supplementary file 1, Table S1), and the amplified product was confirmed in 25 regenerated mutant
lines by gel electrophoresis (Supplementary file 1, Figure S5F). From 145 A. tumefaciens inoculated calli
we obtained a total of 25 rice seedlings with a transformation efficiency of 17.24%. The results showed
that for Target1 there were 6 homozygous (24%), 9 heterozygous with 2 mono and 7 biallelic (36%),
2 chimeric (8%), and 8 (32%) were WT plants; while, for the Target2, there were 5 homozygous (20%),
10 heterozygous with 4 mono and 6 biallelic (40%), 1 chimeric (4%) and 9 (36%) were WT plants. We
observed some large fragment deletion of 51 bp in homozygous line GN-5 and biallelic line GN-23
showed 2 and 50 bp deletion in first and second allele respectively. A high mutation rate in both the
targets of Pi21 was observed with a total mutation frequency of 66% (68% for T1 and 64% for T2) with
heterozygous mutations were more frequent (Table 1; Supplementary file 1, Table S5).

http://www.geneontology.org/
http://www.genome.jp/kegg/pathway
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Table 1. Mutation rates of both targets in T0 generation.

Mutation Type

Targets Bi-Allelic Homozygous Heterozygous Chimeric WT Total

Pi21T1
NOP 7 6 2 2 8 25
MR 28.00 24.00 8.00 8.00 68.00

Pi21T2
NOP 6 5 4 1 9 25
MR 24.00 20.00 16.00 4.00 64.00

Mean MR 66.00%

NOP: number of plants; MR: mutation rate (%); WT: wild type.

All the T1 plants obtained from T0 homozygous plants of GN-3, GN-5, GN-9, and GN-13 showed
homozygosity for the same mutations, which indicated the stable transmission of mutations following
the Mendelian law. The Biallelic and heterozygous T1 plants of GN-19, GN-15, and GN-25 segregated
according to Mendelian inheritance (1:2:1) by the chi-square test (Supplementary file 1, Table S6).
The target regions of Pi21 were amplified from the genomic DNA of T0 transgenic plants separately and
the sequencing chromatograms with overlapping traces were decoded. The DNA of 35 mutant plants
was amplified by using specific primers for five selected putative off-target sites of each target showing
3 to 4 mismatching bases. The results showed that there were no secondary off-target mutations
detected (Supplementary file 1, Table S3)

3.3. T-DNA-Free Plants in T1 Generation

Screening of T-DNA free plants was carried out by using Cas9 detection primers (Cas9-F/Cas9-R),
HPT (Hygromycin phosphotransferase), and expression cassette primers (SPL-1/SP-R) (Supplementary
file 1, Table S1). We selected four homozygous, 2 biallelic, and one heterozygous line and tested 50 plants
of each to confirm the presence or absence of T-DNA. All the lines resulted in the different numbers of
transgene-free plants (Supplementary file 1, Table S6). The homozygous line GN-5 showed 17 T-DNA
free plants (Supplementary file 1, Figure S5G). Furthermore. the four T-DNA free homozygous lines
(GN-3, GN-5, GN-9, and GN-13) were investigated to assess the stability of mutations. GN-3 showed
homozygous mutations with 9 bp and 6 bp deletions on the first and second target sites, respectively.
Homozygous mutant GN-5 showed 51 bp and 0 bp deletions on first and second target sites, and a 51 bp
large fragment deletion between two targets respectively. The homozygous mutant line GN-9 resulted
in 2 bp insertion and 3 bp deletion on the first and second target sites. Finally, GN-13 exhibited 4 bp
and 7 bp deletions on the first and second target sites, respectively (Figure 1A). The results obtained
through Sanger sequencing of T1, T2, and T3 generations confirmed that the resulted mutations were
inheritable (Figure 1B).
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Figure 1. Detection of mutations induced by CRISPR/Cas9; (A) chromatograms showing the sequencing results for both the target sites in mutant lines; (B) inheritance
of mutations in T1 and T2 and T3 generations. Red hyphens and letters represent the deletions and blue letters represent insertions, respectively while the PAM
sequence is highlighted in green.
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3.4. Resistance to Pathogen in Pi21 Mutants

To investigate the resistance of homozygous mutant lines to M. oryzae, we selected four mutant
lines GN-3 with 9 bp and 6 bp deletions, GN-5 with 51 bp and 0 bp deletions, GN-9 with 2 bp insertion
and 3 bp deletion, and GN-13 with 4 bp and 7 bp deletions on first and second target sites, respectively.
WT and homozygous T2 mutants were inoculated with M. oryzae isolates GUY-11 and YN716 to
evaluate the resistance at the seedlings stage. At 5 dpi (days post-inoculation), WT plants were more
severely infected, with obvious lesions spreading, while the lesions on the homozygous mutant lines
were significantly smaller than those of the WT (Figure 2A). The plants with resistance to the blast were
scored as 0–3, while plants scored as 4–9 were considered susceptible. The WT showed the blast lesion
degree score of 9, while mutant line GN-3, GN-5, GN-9, and GN-13 showed the blast lesion degree
of 3.83, 2.97, 3.62, and 4.22 respectively. The homozygous line GN-5 with large fragment deletion
of 51 bp showed the highest resistance against M. oryzae among all. These results indicate that Pi21
loss-of-function mutants developed by CRISPR/Cas9 system had enhanced resistance to rice blast at
the seedling stage compared to wild type (Figure 2B).
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Figure 2. Phenotypic appearance of wild-type and mutant lines inoculated with M. oryzae (A) after
5 dpi and (B) Blast disease scoring in WT and mutant plants “**” denotes the significant difference,
student’s t-test, p ≤ 0.01, n = 10.

3.5. Agronomic Performance Assessment of Wild Type and Mutant Lines

To investigate whether the mutants generated by the targeted mutagenesis of the CRISPR/Cas9
system can cause changes in the agronomic traits of the mutant plants, we recorded data for the main
agronomic traits like PH, FLL, FLW, PN PL, GNPP, SSR, and GW (g) for WT and the four homozygous
mutant lines GN-3, GN-5, GN-9, and GN-13 in T1, T2, and T3 generations respectively. The agronomic
traits of WT and homozygous mutants remained the same indicating that the CRISPR/Cas9 system
targeting the Pi21 gene has no significant effect on the major agronomic traits (Table 2).
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Table 2. Performance of wild type and homozygous mutant plants for main agronomic traits in T1, T2, and T3 generations.

Generation Line PH (cm) FLL (cm) FLW (cm) PN PL (cm) GNPP SSR (%) GWT (g)

WT 105.8 ± 4.3 37.36 ± 1.4 1.63 ± 0.2 10.81 ± 0.7 21.36 ± 1.8 155 ± 12 82.12 ± 5.5 29.34 ± 1.1
GN-3 102.5 ± 2.3 ns 36.55 ± 1.6 ns 1.51 ± 0.3 ns 10.44 ± 0.4 ns 21.84 ± 1.9 ns 158 ± 10 ns 83.10 ± 4.1 ns 28.63 ± 1.6 ns

T1 GN-5 106.6 ± 3.4 ns 35.23 ± 1.5 ns 1.67 ± 0.2 ns 9.98 ± 0.6 ns 20.70 ± 2.2 ns 159 ± 11 ns 85.33 ± 4.5 ns 29.93 ± 1.1 ns

GN-9 107.4 ± 3.8 ns 35.88 ± 1.3 ns 1.64 ± 0.3 ns 10.12 ± 0.5 ns 21.30 ± 1.7 ns 157 ± 12 ns 82.03 ± 3.7 ns 28.43 ± 1.5 ns

GN-13 108.1 ± 3.6 ns 36.28 ± 1.6 ns 1.59 ± 0.4 ns 10.29 ± 0.3 ns 21.88 ± 1.5 ns 156 ± 13 ns 83.44 ± 4.3 ns 28.90 ± 1.2 ns

WT 103.5 ± 3.9 38.16 ± 1.4 1.70 ± 0.3 9.94 ± 0.9 20.75 ± 1.6 157 ± 11 84.52 ± 3.9 28.75 ± 1.2
GN-3 105.2 ± 2.3 ns 37.21 ± 1.3 ns 1.62 ± 0.1 ns 9.70 ± 0.4 ns 20.99 ± 1.7 ns 159 ± 10 ns 84.30 ± 4.1 ns 29.21 ± 1.5 ns

T2 GN-5 104.8 ± 3.6 ns 34.29 ± 1.9 ns 1.56 ± 0.2 ns 9.50 ± 0.6 ns 20.26 ± 1.9 ns 158 ± 12 ns 85.80 ± 3.6 ns 28.27 ± 1.2 ns

GN-9 108.6 ± 3.8 ns 35.12 ± 1.3 ns 1.59 ± 0.3 ns 9.75 ± 0.5 ns 21.60 ± 2.1 ns 156 ± 13 ns 83.83 ± 4.7 ns 29.34 ± 1.3 ns

GN-13 103.3 ± 2.7 ns 35.50 ± 1.6 ns 1.54 ± 0.1 ns 10.50 ± 0.7 ns 21.40 ± 2.8 ns 158 ± 12 ns 82.85 ± 4.9 ns 28.72 ± 1.4 ns

WT 107.5 ± 4.1 36.46 ± 1.3 1.58 ± 0.2 10.21 ± 0.8 21.15 ± 1.5 156 ± 13 83.12 ± 3.8 29.60 ± 1.4
GN-3 101.4 ± 2.5 ns 36.12 ± 1.6 ns 1.69 ± 0.3 ns 10.17 ± 0.3 ns 20.41 ± 1.4 ns 158 ± 11 ns 83.65 ± 3.3 ns 28.93 ± 1.3 ns

T3 GN-5 105.9 ± 3.7 ns 35.91 ± 1.5 ns 1.62 ± 0.3 ns 9.72 ± 0.5 ns 20.55 ± 2.1 ns 157 ± 12 ns 85.00 ± 4.4 ns 29.95 ± 1.2 ns

GN-9 104.6 ± 3.2 ns 36.10 ± 1.4 ns 1.67 ± 0.3 ns 9.60 ± 0.6 ns 20.95 ± 2.3 ns 155 ± 14 ns 85.52 ± 3.5 ns 28.75 ± 1.5 ns

GN-13 106.7 ± 2.8 ns 35.85 ± 1.7 ns 1.60 ± 0.2 ns 10.21 ± 0.7 ns 21.75 ± 2.4 ns 157 ± 12 ns 84.28 ± 5.3 ns 29.29 ± 1.2 ns

WT (wild type); PH (plant height); FLL (flag leaf length); FLW (flag leaf width); PN (panicle number); PL (panicle length); GNPP (grain number per plant); SSR (seed setting rate); GWT
(1000-grain weight). ns represents a non-significant difference. Student’s t-test, p ≤ 0.01. The data is from the individual plant of T0 generation and the mean of five independent samples
from T1, T2, and T3 generation.
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3.6. Proteins Extraction and Quantification

A total of 543,998 spectra, 40,859 peptides, 6597 proteins, 4208 protein groups, were found in
proteomic analysis. The deviation between the measured molecular weight of the peptide precursor
and the theoretical molecular weight is shown in (Supplementary file 1, Figure S6a). The concentrated
peak around 0 means the mass deviation is small. Proteins with 30–40 kDa accounted for more protein
numbers in the protein molecular weight distribution (Supplementary file 1, Figure S6b). Total of 6597
proteins were identified by arranging the data, and finally, 4208 proteins were obtained after adjusting
10 filter cutoff. The comparison of WT (VP-1636) and its CRISPR/Cas9 mutant GN-5 showed 372
differentially expressed proteins (DEPs), 223 down-regulated, and 149 upregulated proteins according
to the log2 fold change≥ 1.2 and p-value < 0.05 (Figure 3A). Some DEPs having a higher association with
photosynthesis, response to stimulus, and biotic stress tolerance are considered as important proteins
(Table 3). The complete information of all the identified proteins is mentioned in Supplementary file 2.
The A0A0P0XMI4 (γ-tubulin complex component), A0A0P0W7E9 (Glycosyltransferase), and B9ETE3
(Glutaredoxin domain-containing protein) exhibited higher expression in GN-5 and lower expression
level in WT while B9FDQ2 (Uncharacterized protein), B9FQS9 (Uncharacterized protein), and Q6Z3R6
(Os08g0506700) were highly expressed in WT, while exhibited a lower expression level in GN-5
(Figure 3B).
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Figure 3. Identified proteins and heatmap of wild type and CRISPR mutant line (GN-5). (A) The
number of the total, and differentially expressed proteins (up and down-regulated). (B) Proteins with
higher expression difference among WT and mutant. Red color denotes higher while the green color is
representing the lower level of expression.
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Table 3. Important differentially expressed proteins related to photosynthesis, response to stimulus biotic, and abiotic stress.

Protein ID Gene Annotation Regulation

Q6Z9C3 Os08g0547100 Probable 6-phosphogluconolactonase 3, chloroplastic Up
Q5KQI6 SNAT1 Serotonin N-acetyltransferase 1, chloroplastic Up
Q69PS6 OsNTRA Thioredoxin reductase NTRA Up
Q0IZQ2 Os09g0556500 Cysteine—tRNA ligase CPS1 homolog, chloroplastic Up
Q6ATB2 CRSH2 Probable GTP diphosphokinase CRSH2, chloroplastic Up
Q7XTK3 AMI1 Amidase 1 Up
Q6K8R2 Cht6 Pathogenesis related (PR)-3 chitinase 6 Up
Q67WM9 OS9 Protein OS-9 homolog Up
Q75T45 RSOsPR10 Os12g0555000 protein Up
Q10HD0 RCABP89 Chlorophyll a-b binding protein, chloroplastic Up
Q6ESR4 DHN1 Dehydration stress-inducible protein 1 Up
Q6K4P5 Os02g0787800 diacylglycerol kinase Up
Q84ZE8 OsJ_24279 Auxin-regulated protein-like Up
A0A0P0XMI4 Os09g0446200 γ-tubulin complex component Up
Q2R351 LOC_Os11g33120 Respiratory burst oxidase protein D Up
A3BUY8 OsJ_27981 PEROXIDASE_4 domain-containing protein Up
A0A0P0VAH1 Os01g0849000 Os01g0849000 protein Up
Q75IS1 Os05g0162000 Peroxidase Up
Q5U1N1 prx62 Peroxidase Up
Q8HCQ0 nad3 NADH-ubiquinone oxidoreductase chain 3 Up
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3.7. Functional Networks of DEPs

STRING database was used to retrieve the protein interactions to reveal a putative protein
association network. The maximum confidence (score) cutoff was adjusted to 0.60 with 20 maximum
additional interactions. The proteins with a higher interactor score of ≥5 were selected. The results
showed that the higher co-expression was found between ribosomal protein S5 (Q850W6, Q6YU81),
50S ribosomal protein L4, L5, L6, L13, L15, L17 (Q10NM5, Q9ZST0, Q10L93, Q94J17, Q10PV6, Q75GR6,
succinate dehydrogenase (Q9S827), 40S ribosomal protein S15, SA (P31674, Q10QU9, Q8H3I3),
30S ribosomal protein S9, S10, S13 (Q9XJ28, Q10QH0, Q75IA5, and ribonucleoprotein (Q10PA5, Q7G60)
(Figure 4).
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Figure 4. STRING predicted protein to protein interaction (PPI) of differentially expressed proteins
(DEPs) between wild type and mutant lines (GN-5). Nodes with redder color show a higher
co-expression level.

3.8. Gene Ontology (GO) Annotation of DEPs

Most of the up-regulated DEPs related to biological processes (BP) were associated with
photosynthesis, response to the stimulus, small molecule metabolic process, translation, carbohydrate
metabolism, and catabolic process. Proteins conferring cellular component (CC) associated with the
cell, cell part, intracellular part, and intracellular process were significantly presenting. Finally, from the
molecular function (MF) perspective DEPs involved in structural molecule activity and structural
constituent of ribosome, were up-regulated (Figure 5). GO annotations for biological process (BP)
exhibited that the down-regulated DEPs mostly participated in the metabolic process, derivative
metabolic process, catabolic process, and cellular ketone metabolic process. Proteins conferring
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cellular component (CC) associated with the cell part, cell, membrane, and membrane part were
down-regulated significantly. For molecular function (MF) the down-regulated DE proteins were
mainly enriched in oxidoreductase activity, tetrapyrrole binding, iron ion binding, and heme-binding
(Supplementary file 1, Figure S7A).
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Figure 5. Gene ontology (GO) pathways of up-regulated proteins of WT and mutant line GN-5.

3.9. Pathway Enrichment Analysis

KEGG enrichment analysis of up-regulated DEPs evidenced that the pathways related to metabolic
process, ribosome, secondary metabolites biosynthesis, carbon metabolism, glycolysis/gluconeogenesis,
spliceosome, amino sugar, and nucleotide sugar metabolism, photosynthesis - antenna proteins, carotenoid
biosynthesis, plant-pathogen interaction, aminoacyl-tRNA biosynthesis, and phenylpropanoid
biosynthesis (Figure 6). While the down-regulated DEPs showed significant enrichment in glyoxylate
and dicarboxylate metabolism, metabolic pathways, processing of proteins in endoplasmic reticulum,
secondary metabolites biosynthesis, biosynthesis of phenylpropanoid, mRNA surveillance pathway
and alanine, aspartate, and glutamate metabolism pathways (Supplementary file 1, Figure S7B).
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Figure 6. KEGG pathway enrichment histogram for up-regulated proteins (p-value ≤ 0.05).

3.10. Identification of Hub-Proteins

The analysis for top-ten hub proteins revealed that the 40S ribosomal protein S15 (P31674),
50S ribosomal protein L4, L5, L6 (Q10NM5, Q9ZST0, Q10L93), 30S ribosomal protein S5, S9 (Q6YU81,
Q850W6, Q9XJ28), and succinate dehydrogenase (Q9S827) were hub proteins (Figure 7).
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Figure 7. The hub-proteins selected from the total DEPs of WT and GN-5. Every node represents proteins
and the edges indicate connections between the nodes. the red color denotes the higher co-expression.
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3.11. RT-qPCR-Based Analysis of CRISPR Mutants

Total RNA extracted from thirty-days-old rice plants and RT-qPCR was performed to assess
the expression level of Pi21 in mutant lines. The RT-qPCR results unveiled that the expression
of Pi21 was significantly suppressed in mutant lines as compared to WT (Figure 8A). For the
verification of differential expression levels of some genes, eight genes were selected for DEPs based
on publicly available microarray database. In total, four key genes encoding downregulated proteins
including serine carboxypeptidase 3 (OsACBP3), MAP kinase phosphatase (OsMKP1), probable
L-ascorbate peroxidase 3, peroxisomal (OsAPX3), probable glutathione S-transferase (OsDHAR1),
and light-regulated protein (OsLIR1), and four genes encoding up-regulated proteins including,
probable GTP diphosphokinase CRSH2, chloroplastic (OsCRSH2), pathogenesis-related (PR)-3 chitinase
6 (OsCHT6), peroxisomal (S)-2-hydroxy-acid oxidase (OsGLO3), and inositol-3-phosphate synthase
1 (OsRINO1) were selected. The results of RT-qPCR validated the proteomic data findings (Figure 8B).
The expression level of the defense-related genes in WT and the homozygous mutant line is shown in
Figure 8C. The expression levels of OsPAL1, OsPR1a, OsPR10a, OsAOS2, OsRAP2, and Osg1 in mutant
line were significantly up-regulated compared with WT after 12 h and 24 h of inoculation while the
expression of defense-related genes (OSPAL1 and Osg1) was greater than that of the WT before the
inoculation, and the expression level was continuously up-regulated after 12 h and 24 h of inoculation.
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Figure 8. RT-qPCR results for target genes and proteomic data. (A) Pi21 and (B) eight selected DEPs
responsive genes. (C) Relative expression of defense-response genes in WT and the homozygous mutant
line inoculated with M. coryza. hpi; hours post-inoculation. “*” denotes the significant difference,
p ≤ 0.05 and “**” denotes the significant difference, student’s t-test, p ≤ 0.01, n = 3.

4. Discussion

Genome editing using SSNs to create specific knockouts have been extensively used in important
crops. However. the development of novel disease-resistant genotypes remained limited. In previous
studies. the sucrose efflux transporter gene OsSWEET14 was targeted by TALENs and disease-resistant
lines were successfully attained with normal phenotype [51]. Moreover. the stable wheat mutant lines
showing durable resistance to powdery mildew were developed by knock-out of three mildew-resistance
locus (MLO) through TALENs [52]. The transgene-free resistant lines were developed through
CRISPR/Cas9-directed editing of Os8N3 against Xanthomonas oryzae pv. oryzae with normal phenotype
in rice [53]. In this study, we obtained homozygous Pi21 mutant plants without any T-DNA integration.
The inoculation experiments proved that the mutants were highly resistant to M. oryzae, thus can
be useful for future breeding programs. The mutant lines were obtained without any off-target
mutations. the previously reported work also suggests that the Cas9 rarely tempts off-target mutations
in rice [54,55]. The transgene-free plants were screened in a frequency ranging between 18–34%
in different homozygous, heterozygous, and biallelic lines with stable transmission of mutations
(Supplementary file 1, Table S6). The homozygous mutant lines revealed improved blast resistance
with the highest degree of resistance against M. oryzae, while the WT plants were completely dead
(Figure 2A).

Here we performed the comparative iTRAQ-based proteomic analysis of WT and homozygous
mutant line GN-5 to elucidate the changes induced by gene editing at the proteome level. A total of
372 DEPs were identified containing 149 up and 223 down-regulated proteins respectively. The KEGG
analysis showed that the metabolic pathways, ribosome, secondary metabolites biosynthesis, carbon
metabolism, metabolism of amino and nucleotide sugar, gluconeogenesis/glycolysis, spliceosome,
photosynthesis-antenna proteins, carotenoid biosynthesis, and plant-pathogen interaction were highly
enriched pathways. Metabolic processes play a significant role within a variety of plant species.
the differentially expressed protein Q6ATB2 (probable GTP diphosphokinase CRSH2, chloroplastic)



Genes 2020, 11, 735 18 of 23

related to this process was up-regulated in mutant line. CRSH2 possesses calcium-dependent ppGpp
(guanosine 3′-diphosphate 5′-diphosphate) synthetase activity, it may be involved in response to
environmental stress, physical injury, and pathogen attack [56].

In Arabidopsis. the overexpression of chloroplastic NADPH-dependent thioredoxin reductase
enhances leaf growth while the cytosolic NTRA confers stress tolerance in plants [57,58]. Secondary
metabolites like flavonoids and phenolic acid are ubiquitous in plants and described as markers of
abiotic and biotic stress tolerance [59]. In plants, photosynthetic assimilation of carbon is reduced by the
carbon metabolism which enhances the ROS production through cellular homeostasis disruption [60].
Previous reports revealed important immune modules that are critical for rice defense responses
against blast disease, such as the improved ability of ROS production [5].

GO analysis revealed that most of the DEPs participated in photosynthesis, response to stimulus,
metabolic process of small molecules and carbohydrates, translation, and catabolic processes.
The photosystem is badly affected by the damages caused by attacking pathogens and it may
lose its function, if not timely repaired [61]. Photosynthesis-related proteins (E9KIQ4, Q8W0E6,
Q6AVG2, Q2QTK0, Q67WJ2, Q10HD0, Q7FAS1, B9FFA5) were found to be upregulated in homozygous
mutant line. Proteins related to response to stimulus (A0A0P0W9C3, Q6K8R2) were up-regulated in
homozygous mutants, mainly involved in chitinase activity and defense response to the fungus in
rice, as pathogenesis-related protein-3 chitinase 6 play an essential role in plant defense [62], Q6K4P5
(diacylglycerol kinase) play an imperative role in PA signaling of plants [63] evolving as the unique
second messengers in the defense system of plants [64] overexpression of OsBIDKI showed elevated
resistance to disease in tobacco transgenic plants [65]. DEPs belonging to the peroxidases, which create
a blockade to pathogen entry [66], were upregulated (Q2R351, A3BUY8, Q75IS1,) in GN-5 compared to
WT, suggesting a possible resistance mechanism of Pi21 mutants to the rice blast.

In hub-proteins network analysis, we found some essential proteins related to metabolic processes
and response to stimuli, including ribosomal protein S5 containing protein, expressed (RPS5),
50S ribosomal protein L5, chloroplastic (RPL5), 40S ribosomal protein S15 (RPS15), 50S ribosomal
protein L6, putative, expressed (Os03g0356300 protein), 30S ribosomal protein S9, chloroplast, putative,
expressed (RPS9) and Succinate dehydrogenase (SDH2-1), protein were top co-expressed. The ribosomal
protein S5 containing protein (RPS5) play a prominent role in photosynthesis in plants [67]. Furthermore.
the ribosomal proteins are mainly involved in RNA-binding and translation activities and have a key
role in the plant immune system, development, and growth [68,69]. Succinate dehydrogenase (SDH)
regulates the plant development and salicylic acid (SA)-based signaling, plays an important role in
stress response [70–72]. The results of proteomic data were validated by RT-qPCR for eight selected
genes (OsMKP1, OsAPx3, OsCRSH2, OsCHT6, OsDHAR1, OsGLO3, OsLIR1, OsINO1-1). According to
the expectations. the results were highly correlated with proteomic findings (Figure 8B). The expression
level of SA, JA, and ethylene signaling pathways-related genes (OsPAL1, OsPR1a, OsPR10a, OsAOS2,
OsRAP2, and Osg1) was higher in mutant plants as compared to wildtype. Ethylene, JA, and SA
play a central role in plants against many types of stresses including abiotic and biotic stresses [73].
Previous studies have reported that the Osg1 gene encodes a glucanase that degrades the fungal cell
wall and found in the cell walls of plant tissues and plant fungal pathogens [74]. OsRAP2.6 gene is an
ethylene-responsive transcription factor that interacts with RACK1 to participate in innate immune
responses in rice plants [75].

These results provide an exceptional molecular mechanism underlying loss of function mutations
in Pi21. Previously so much work has been done on rice blast resistance but. the generation of resistant
mutant lines through CRISPR/Cas9-directed mutagenesis of Pi21 and iTRAQ-based proteomics analysis
to unravel changes at the proteomic level is a novel approach. The homozygous mutant lines will
provide a source material for rice breeding programs against M. oryzae and will present a valuable
channel for studying the mechanism of Pi21-mediated defense in rice.
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5. Conclusions

The generation of T-DNA free homozygous mutant lines with the stable inheritance of mutations
without any off-target effects are of great value. In this study, we have developed the transgene-free
homozygous mutant lines having no off-targets without affecting the major agronomic traits.
The comparative proteome profiling of the mutant lines and its WT was performed for the further
elucidations of gene editing effects on the proteome profiles of Pi21 mutants. the comparison of WT
(VP-1636), and its CRISPR/Cas9 mutant GN-5 showed 372 differentially expressed proteins (DEPs),
223 down-regulated and 149 upregulated proteins and DEPs related to abiotic and biotic stress
resistance were investigated. We have generated the mutant lines with a different frequency of allelic
mutations and found that CRISPR/Cas9-guided targeted mutagenesis of Pi21 resulted in improved
resistance to rice blast in elite rice line. The results provided an exceptional molecular mechanism
underlying the Pi21 loss of function mutations. The homozygous mutant lines will provide source
material for rice blast resistance improvement.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/735/
s1, Table S1: All the primers used in the study, Table S2: Efficiency score and positions of both targets,
Table S3: Detection of mutations on the putative off-target, Table S4: List of primers for off-targets, Table
S5: Type of mutations in T0 generation obtained by two CRISPR/Cas9 constructs, Table S6: Segregation of
CRISPR/Cas9-induced mutations in homozygous transgenic plants during the T0 to T1 generation, Figure S1:
Structure of pYLCRISPR/Cas9Pubi-H binary vector with a fragment containing a modified ccdB flanking two
BsaI sites, Figure S2: Embedded view of plasmids (a) pYLsgRNA-OsU6a (3289 bp); (b) cloning strategy of
PYLsgRNA-OsU6a showing sticky ends created by cutting with two enzymes (BamH1 and HindIII), selected
fragments replaced indicated in white and the remaining vector fragment is in black; (c) pYLsgRNA-OsU6b (3175
bp); (d) cloning strategy of PYLsgRNA-OsU6b showing sticky ends created by cutting with two enzymes (BamH1
and HindIII), selected fragments replaced indicated in white and the remaining vector fragment is in black, Figure
S3: Vector map, schematic diagram, and target sites of sgRNAs in Pi21. (A) Vector map of Cas9/gRNA. LB: Vector
left border; Ubi: ubiquitin promoter; pCas9, Cas9 protein; gRNA: Guided RNA; rU6: Rice U6 promoter; 35S:
CaMV 35S promoter; Hyg: Hygromycin; RB, Vector right border; (B) exons are represented as black boxes. T1 and
T2 represent Target1 and Target2, respectively. Target1 was from 1073 bp to 1092 bp and Target2 was 1130–1149
bp in the second exon, Figure S4: Secondary structures of sgRNAs (A) sgRNA1 and (B) sgRNA2, used in the
experiment, Figure S5: Schematic representations, detection of T-DNA integration, and Pi21 target sequences
assembly in vector. (A) Schematic representation of Target1 and Target2 driven by U6 promoters on vector; (B) gel
electrophoresis detection of expression cassettes for target sites, M: DNA marker DL2000; (C) expression cassettes
verification after the transformation of DH5α; M: DNA marker DL2000; bacterial colonies amplified; 1144 bp;
(D) schematic presentation of Pi21 target regions displaying the location and corresponding sequences of gRNA1
and gRNA2 are represented in green while the PAM is underlined. Locations of forward and reverse primers
flanked by the target region are highlighted in yellow and indicated with arrows, respectively; (E) sequencing
peak map of both target sites assembled in pYLCRISPR/Cas9 Pubi-H vector; (F) T0 positive mutant lines; M:
DL2000 DNA marker; WT: wild type; 1-25: T0 transgenic lines; (G) screening of T-DNA free GN-5 mutant lines; M:
DL2000 DNA marker; WT: wild type, Figure S6: Identification and analysis of the proteome of wild type (WT) and
CRISPR/Cas9 mutants. (A) The deviation among the measured molecular weight of the peptide precursor and
the theoretical molecular weight; (B) protein molecular weight distribution. The X-axis represents the molecular
weight and Y-axis is the number of identified proteins, Figure S7: GO and KEGG pathway enrichment histogram
for down-regulated proteins. (A) DEPs GO enrichment, X-axis indicating the classification and the name of the GO
terms. Y-axis represents the enrichment rate. (B) DEPs KEGG pathway enrichment histogram, X-axis indicating
the classification and the name of the KEGG pathways. Y-axis represents the enrichment rate.
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