
rspa.royalsocietypublishing.org

Research
Cite this article: Tant KMM, Mulholland AJ,
Langer M, Gachagan A. 2015 A fractional
Fourier transform analysis of the scattering
of ultrasonic waves. Proc. R. Soc. A 471:
20140958.
http://dx.doi.org/10.1098/rspa.2014.0958

Received: 12 December 2014
Accepted: 20 January 2015

Subject Areas:
applied mathematics, electrical engineering

Keywords:
ultrasonics, non-destructive testing,
inverse problems, scattering theory

Author for correspondence:
Katherine M. M. Tant
e-mail: katy.tant@strath.ac.uk

A fractional Fourier transform
analysis of the scattering
of ultrasonic waves
Katherine M. M. Tant1, Anthony J. Mulholland1,

Matthias Langer1 and Anthony Gachagan2

1Department of Mathematics and Statistics, and 2Centre for
Ultrasonic Engineering, University of Strathclyde, Glasgow, UK

ML, 0000-0001-8813-7914

Many safety critical structures, such as those found
in nuclear plants, oil pipelines and in the aerospace
industry, rely on key components that are constructed
from heterogeneous materials. Ultrasonic non-
destructive testing (NDT) uses high-frequency
mechanical waves to inspect these parts, ensuring
they operate reliably without compromising their
integrity. It is possible to employ mathematical
models to develop a deeper understanding of the
acquired ultrasonic data and enhance defect imaging
algorithms. In this paper, a model for the scattering
of ultrasonic waves by a crack is derived in the time–
frequency domain. The fractional Fourier transform
(FrFT) is applied to an inhomogeneous wave equation
where the forcing function is prescribed as a linear
chirp, modulated by a Gaussian envelope. The
homogeneous solution is found via the Born
approximation which encapsulates information
regarding the flaw geometry. The inhomogeneous
solution is obtained via the inverse Fourier transform
of a Gaussian-windowed linear chirp excitation. It
is observed that, although the scattering profile of
the flaw does not change, it is amplified. Thus, the
theory demonstrates the enhanced signal-to-noise
ratio permitted by the use of coded excitation, as well
as establishing a time–frequency domain framework
to assist in flaw identification and classification.

1. Introduction
Non-destructive testing (NDT) is an umbrella term for
a wide and varied group of analysis techniques used to
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evaluate and characterize materials non-invasively [1]. Of particular interest to this paper are
ultrasonic phased array systems, which have become increasingly popular as tools for flaw
detection and characterization within the NDT industry. They provide improved resolution and
coverage by transmitting and receiving ultrasound signals over multiple elements, which, when
fired in predefined sequences, can provide increased control of beam directivity [2]. The existence
and location of flaws are then deduced via images generated by post-processing the data captured
by these arrays [3–5].

The examination of welds is of particular interest to the NDT community, given their role in
safety critical structures in nuclear power plants, aeroengines, pipelines, etc. They are subject
to cyclic loads and, as with any type of bond, constitute the weak point of the structure.
Austenitic steel welds are notoriously difficult to inspect [1,6]. Owing to thermal effects as the
weld is forming, a spatially heterogeneous structure is formed by local fluctuations in the crystal
orientation. This complex internal geometry is highly scattering and results in low signal-to-noise
ratio (SNR) levels, which can subsequently lead to the obscuration of defects. To combat this
problem, two approaches are suggested and combined in this paper: the use of chirp excitations
and the post-processing of the collected data in the time–frequency domain.

(a) Chirp excitations
Coded excitations are an effective way of delivering large amounts of energy using relatively low
acoustic pressure amplitudes. Inspiration for coded signal design can be drawn from bioacoustics;
bats and dolphins use frequency-modulated sweeps to navigate and hunt [7,8]. The use of coded
excitations in signal processing has been shown to improve SNR and lessen trade-offs between
sample penetration and image resolution [9,10]. Chirps contain multiple frequencies which vary
in time, typically in a linear or exponential manner. Their broad frequency content increases the
likelihood of reaching the resonant frequency of a defect, in turn causing stronger vibrations and
consequently improving the probability of detection. For the purposes of this work, a Gaussian-
modulated linear chirp in time (t) of the form

q(t) = exp[−2π if1(t + mt2)] exp

[
− (t − t1)2

σ 2

]
(1.1)

has been used, where m is the gradient of the chirp (the rate at which it sweeps through a
prescribed range of frequencies), f1 is the initial frequency, t1 is the centre of the Gaussian
envelope and σ is its standard deviation. By varying f1, m and σ , the bandwidth of the chirp can
be altered. Setting m = 0 Hz, the chirp reverts back to a time harmonic signal with frequency f1.
For a fair comparison of the chirp with a continuous gated waveform (the typical signal emitted
by the transducer), it is imperative both are optimized for the same transducer and hence use its
full bandwidth. Figure 1 shows one such matched pair. In the time domain, the gated continuous
sine wave (in black) spans a far shorter time interval than that of the Gaussian-modulated linear
chirp (both signals have the same peak amplitude). Studying the plots of their respective Fourier
transforms in figure 1b, it is apparent that they have similar −6 dB bandwidths (approx. 50%) but
observe that the chirp contains a far greater amount of energy.

(b) The fractional Fourier transform
An alternative approach to differentiating between flaw scattering and noise can be taken via
the analysis of the collected data in the time–frequency domain. In an ideal case, a received
ultrasound signal would exhibit signs of scattering at the time interval pertaining to the location of
the flaw, facilitating detection and subsequent characterization. However, in practice, scattering
by the microstructure of the host media can dominate the signal. To improve identification of
defects it is suggested that the scattered signals are analysed for their frequency content; the
frequency spectrum of the wave scattered by a flaw should be different from that scattered by a
heterogeneity. However, time information must be retained in order to locate the flaw. This can be
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Figure 1. (a) A gated continuous sine wave with frequency f = 1 MHz modulated by a Gaussian envelope with
parameters σ = 1µs, t1 = 20µs (in black) and a Gaussian-modulated linear chirp with parameters σ = 8µs, t1 = 20µs,
m= 0.22 MHz and f1 = 0.1 MHz (in grey). Their respective Fourier transforms (power spectra) are shown in (b).

achieved via (i) the time windowed Fourier transform [11], where the discrete Fourier transform is
applied to short time intervals allowing the frequency content at that specific time to be analysed
independently of the rest of the signal, or (ii) the fractional Fourier transform (FrFT) [12–14],
which enables continuous movement between the time and frequency domains, allowing the
simultaneous retention of both frequency and time domain information. In this work, the FrFT is
employed to analyse the benefits of chirp excitation over gated continuous wave excitation.

As a generalization of the ordinary Fourier transform, the FrFT is more flexible in its
applications and hence of potential interest to any area in which the Fourier transform is
frequently implemented. Its main advantage is that it allows continuous movement between the
time and frequency domains, retaining information from each, thus presenting an alternative to
using the time windowed Fourier transform. There exist several conventions for defining the
FrFT, each of which gives a slightly different physical interpretation. For the purposes of this
work, the FrFT of order a is given as the linear integral transform [12]

Fa(u) ≡
∫∞

−∞
Ka(u, u′)f (u′) du′, (1.2)

where

Ka(u, u′) ≡ √
1 − i cot α exp[iπ (cot αu2 − 2 csc αuu′ + cot αu′2)] (1.3)
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and α = aπ/2. When a is an integer, it denotes the number of repeated applications of the ordinary
Fourier transform. Hence, setting a = 1 (and, consequently, α = π/2), equation (1.2) simplifies to

F1(u) ≡
∫∞

−∞
f (u′) e−i2πuu′

du′, (1.4)

the ordinary Fourier transform.

2. Solving the inhomogeneous wave equation in time–frequency space
To build a mathematical framework to allow for analysis of the scattering of an ultrasonic chirp
by a flaw, the wave equation with a time-dependent forcing function, q(t), will be solved in the
time–frequency space. Note that q(t) is spatially independent and hence acts like a body force,
affecting the whole flaw domain simultaneously. To justify this, it is assumed that the length of
the flaw is smaller than the wavelength. This is in keeping with the low-frequency assumption
made in the Born approximation [15] which is used later. A second assumption inherent to the
Born approximation is that the transmission and reception of waves takes place at a distance from
the flaw which is much larger than the wavelength: the far-field assumption. To begin, consider
the non-homogeneous wave equation

∂2

∂t2 f (x, t) − c2∇2f (x, t) = q(t), (2.1)

where x ∈ R
3, t ∈ R and c is the wave speed. We demand that the solution is bounded in time and

space and satisfies the Sommerfeld radiation condition

∂f
∂r

− ikf =O(r−1) for r = |x| → ∞, (2.2)

guaranteeing that the waves are outgoing and decay sufficiently fast so there exist no sources at
infinity. It is also assumed that an initial pressure amplitude of h0 is present at the ultrasonic
array. This simplified case will of course cover the detection of an object in a fluid host but
is also relevant to certain restricted classes within elastodynamics such as the propagation of
horizontal shear waves in an isotropic solid. As mentioned above, the applications of interest will
involve heterogeneous materials (with spatially dependent wave speeds) but this is a reasonable
model with which to start this investigation and the methodology will extend naturally to these
more general cases. By [12], the FrFT, taken with respect to time, of a derivative of a function
is given by

Fa

([
(2π i)−1 d

du

]n
f (u)

)
=
[

u sin α + cos α(2π i)−1 d
du

]n
fa(u). (2.3)

Hence, taking the FrFT of every term in equation (2.1) gives

(2π i)2 sin2 αu2fa(x, u) + 4π i sin α cos αu
∂

∂u
fa(x, u)

+ cos2 α
∂2

∂u2 fa(x, u) = c2∇2fa(x, u) + qa(u), (2.4)

the non-homogeneous wave equation in time–frequency space.

(a) The homogeneous solution
To solve equation (2.4), we start by finding the solution to the homogeneous differential equation
via separation of variables. The solution is written in product form

f h
a (x, u) = h(x)ga(u) (2.5)
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and substituted into the homogeneous wave equation to give

(2π i)2 sin2 αu2 + 4π i sin α cos αu
g′

a(u)
ga(u)

+ cos2 α
g′′

a (u)
ga(u)

= c2 ∇2h(x)
h(x)

= −b2, (2.6)

for some b ∈ R. This can then be separated into two equations
(

−4π2 sin2 αu2 + i4π sin α cos αu
d

du
+ cos2 α

d2

du2

)
ga(u) = −b2ga(u) (2.7)

and

c2∇2h(x) = −b2h(x), (2.8)

from which the temporal and spatial components of the homogeneous solution can be derived.
To solve equation (2.7), a chirp-like ansatz of the form

ga(u) = exp[γ u2 + βu] (2.9)

is chosen. Substituting this into equation (2.7) gives

[−(4π2 sin2 α u2 − b2) + 4π i sin α cos αu(2γ u + β) + cos2 α(2γ + (2γ u + β)2)] eγ u2+βu = 0, (2.10)

that is,

[u2(4γ 2 cos2 α + 8π iγ sin α cos α − 4π2 sin2 α) + u(4γβ cos2 α + 4π iβ sin α cos α)

+ (2 cos2 αγ + β2 cos2 α + b2)] = 0. (2.11)

Equating coefficients of powers of u, one can calculate γ and β as

γ = −π i tan α and β = ±
√

−b2 sec2 α + 2π i tan α, (2.12)

where the square root is taken so as the real part is positive. Hence

ga(u) = d1 exp
[
u(−π i tan αu −

√
−b2 sec2 α + 2π i tan α)

]
+ d2 exp

[
u(−π i tan αu +

√
−b2 sec2 α + 2π i tan α)

]
. (2.13)

However, to ensure that the solution is bounded in u, d2 is set equal to zero.
Turning our attention now to the spatially dependent component of the homogeneous

solution, equation (2.8) can be recognized as the homogeneous Helmholtz equation

∇2h(x) + k̂2h(x) = 0, (2.14)

where k̂ = b/c (c is the plane wave speed and b is analogous to the circular frequency). An explicit
approximation of the scattered wave at a specified b, h(x, b), is derived via the Born approximation
[15], giving

h(y, b) = h0
eik̂rs

rs

a1a2a3[γλ − γρ (ei · es)]

|ei − es|2r2
e

[
sin(k̂|ei − es|re) − k̂|ei − es|re cos(k̂|ei − es|re)

k̂|ei − es|re

]
, (2.15)

where a1, a2 and a3 represent the flaw dimensions (the flaw is modelled as an ellipsoid),
γρ = 1 − ρ0/ρ1 (ρ0 and ρ1 are the material densities of the host and flaw materials, respectively),
γλ = 1 − λ0/λ1 (λ0 and λ1 are the bulk moduli of the host and flaw materials, respectively), rs is the
distance of the flaw from the array, h0 is the initial pressure amplitude, ei and es are unit vectors in
the incident and scattered wave directions, respectively, and re is the effective radius of the flaw,
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given by

re =
√

a2
1(eq · u1)2 + a2

2(eq · u2)2 + a2
3(eq · u3)2, (2.16)

where

eq = ei − es

|ei − es| (2.17)

and the unit vectors u1, u2 and u3 lie along the axes of the flaw. Thus, a solution to the
homogeneous equation can be written as

f h
a (x, u, b) = d1 exp

[
u(−iπ tan αu −

√
−b2 sec2 α + i2π tan α)

]

× h0
eik̂rs

rs

a1a2a3[γλ − γρ (ei · es)]

|ei − es|2r2
e

×
[

sin(k̂|ei − es|re) − k̂|ei − es|re cos(k̂|ei − es|re)

k̂|ei − es|re

]
. (2.18)

Because any superposition of solutions of a linear, homogeneous PDE is again a solution, the
dependence on b can be removed by integrating over b

f h
a (x, u) =

∫∞

−∞
d1 exp

[
u(−iπ tan αu −

√
−b2 sec2 α + i2π tan α)

]

× h0
eik̂rs

rs

a1a2a3[γλ − γρ (ei · es)]

|ei − es|2r2
e

×
[

sin(k̂|ei − es|re) − k̂|ei − es|re cos(k̂|ei − es|re)

k̂|ei − es|re

]
db. (2.19)

However, to ensure that this integral is finite, d1 must be chosen as some function of b with which
to bound the solution. For this work, the function

d1(b) = A exp

[
−(b − b1)2

σ ′2

]
(2.20)

has been chosen, where A, b1 and σ ′ are chosen to mimic the Gaussian envelope observed in the
plot of the power spectrum of the forcing function (figure 1b). Thus, the solution is effectively
summed over the range of frequencies received by the transducer array.

(b) The inhomogeneous solution
To find a time-dependent inhomogeneous solution f p

a (u) to equation (2.1), an ansatz of the form

f p
a (u) =

∫∞

−∞
va(b)sa(u, b) db (2.21)

is chosen, where

sa(u, b) = √
1 + i tan α exp[−iπ (u2 tan α + 2ub sec α + b2 tan α)]. (2.22)

This form is chosen since, using the identities tan α = − cot(α + π/2) and sec α = csc(α + π/2), one
can rewrite sa(u, b) as

sa(u, b) =
√

1 − cot
(
α + π

2

)

× exp
[
π i
(

u2 cot
(
α + π

2

)
− 2ub csc

(
α + π

2

)
+ b2 cot

(
α + π

2

))]
= Ka+1(u, b), (2.23)
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the kernel of the FrFT of order a + 1. The derivatives of sa(u, b) are given by

∂

∂u
sa(u, b) = √

1 + i tan α(−2π iu tan α − 2π ib sec α)

× exp[−π i(u2 tan α + 2ub sec α + b2 tan α)] (2.24)

and

∂2

∂u2 sa(u, b) = √
1 + i tan α[(−2π iu tan α − 2π ib sec α)2 − 2π i tan α]

× exp[−π i(u2 tan α + 2ub sec α + b2 tan α)]. (2.25)

Substituting these into equation (2.4) shows that the left-hand side can be written as

(2π i)2 sin2 αu2sa(u, b) + i4π sin α cos αu
∂

∂u
sa(u, b) + cos2 α

∂2

∂u2 sa(u, b)

= √
1 + i tan α exp[−π i(u2 tan α + 2ub sec α + b2 tan α)]

× [−4π2 sin2 αu2 + 8π2u2 sin2 α + 8π2ub sin α − 2π i sin α cos α

− 4π2u2 sin2 α − 8π2ub sin α − 4π2b2]

= √
1 + i tan α exp[−π i(u2 tan α + 2ub sec α + b2 tan α)](−4b2π2 − π i sin 2α)

= sa(u, b)(−4b2π2 − π i sin 2α). (2.26)

Substituting equation (2.21) into equation (2.4) then gives

∫∞

−∞
(−4b2π2 − π i sin 2α)va(b)sa(u, b) db = qa(u). (2.27)

Note that, when u lies along the a = 0 axis, it is analogous to the original time domain signal.
In the work below, q0(u) will be written as q(t) and q1(u) as q(b), to allow for easier physical
interpretation. By letting D(b) = (−4b2π2 − iπ sin 2α)va(b) (and remembering sa(u, b) = Ka+1(u, b))
equation (2.27) can be written as

Fa+1(D(b)) =Fa(q(t)), (2.28)

which holds for all orders a. Hence, by the index additivity rules it is shown that

F1(D(b)) = q(t). (2.29)

By taking the FrFT of order a = −1 (analogous with the inverse Fourier transform) of both sides,
it follows that

D(b) =
∫∞

−∞
q(t) ei2πtb dt, (2.30)

and the unknown function va(b) of the integral equation (2.27) can thus be found.

(c) The inverse Fourier transform of a Gaussian-modulated linear chirp
An analytical expression for the inverse Fourier transform of a Gaussian-modulated linear chirp
must now be derived. To evaluate equation (2.30), the chirp given by equation (1.1) must be
rewritten in the form

q(t) = E0 exp[−(p + ir)t2 − iw0t], (2.31)
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where E0 = exp(−t2
1/σ

2), p = 1/σ 2, r = 2π f1m and w0 = 2π f1 + 2t1i/σ 2. Applying the inverse
Fourier transform gives

D(b) =
∫∞

−∞
E0 exp[−((p + ir)t2 − i(2πb − w0)t)] dt. (2.32)

The standard integral for a general quadratic exponent is calculated using
∫∞

−∞
exp[−ax2 + bx + c] dx =

√
π

a
exp

[
b2

4a
+ c

]
, (2.33)

assuming that the real part of a is positive. It follows that

D(b) =
√

π√
p + ir

E0 exp

(
−(2πb − w0)2

4(p + ir)

)
, (2.34)

and thus

va(b) =
√

π√
p + ir

E0

(−4b2π2 − iπ sin 2α)
exp

(
−(2πb − w0)2

4(p + ir)

)
. (2.35)

Finally, by equations (2.22) and (2.35), the inhomogeneous solution of the wave equation in time–
frequency space is given by

f p
a (u) =

√
π√

p + ir

∫∞

−∞
E0

(−4b2π2 − iπ sin 2α)
exp

(
−(2πb − w0)2

4(p + ir)

)

× √
1 + i tan α exp(−iπ (u2 tan α + 2ub sec α + b2 tan α)) db. (2.36)

(d) The general solution
Using equations (2.19) and (2.36), the general expression for the scattering from a flaw owing to
the excitation by a linear chirp forcing function is given by

fa(x, u) =
∫∞

−∞
d1(b) exp

[
u(−iπ tan αu −

√
−b2 sec2 α + i2π tan α)

]

× h0
eik̂rs

rs

a1a2a3[γλ − γρ (ei · es)]

|ei − es|2r2
e

×
[

sin(k̂|ei − es|re) − k̂|ei − es|re cos(k̂|ei − es|re)

k̂|ei − es|re

]

+
√

π√
p + ir

E0

(−4b2π2 − iπ sin 2α)
exp

(
−(2πb − w0)2

4(p + ir)

)

× √
1 + i tan α exp(−iπ (u2 tan α + 2ub sec α + b2 tan α)) db. (2.37)

Note that the spatial component of the solution, which gives rise to the scattering profile of the
defect and encapsulates the geometry of the flaw, is amplified by the chirp excitation and this
suggests that an increased SNR will result.

3. Comparison of a gated continuous wave excitation with a chirp excitation
A general solution to the inhomogeneous wave equation in the time–frequency domain with
a Gaussian-modulated linear chirp forcing function has been derived. It can be observed that
the additive inhomogeneous solution does not carry flaw shape information but does involve
the chirp excitation parameters. Hence, to contrast the excitation by a chirp with that of a gated
continuous wave, attention can be restricted to the inhomogeneous solution only.

To compute the inhomogeneous solution numerically, the infinite integral over b is
approximated by the integral over the bandwidth of the transducer. This is justified as it can
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Figure 2. Three-dimensional surface plots of the inhomogeneous solution given by equation (2.36) with chirp parameters
(a) f1 = 1 MHz, m= 0 MHz, t1 = 20µs and σ = 1µs (gated continuous wave) and (b) f1 = 0.1 MHz, m= 0.22 MHz,
t1 = 20µs andσ = 8µs (Gaussian-modulated linear chirp). (Online version in colour.)

be assumed that the integral is zero outside this interval (the received signal will not contain
any frequencies outside of the bandwidth). This approach also resolves any issues around the
singularity in the integrand when b = 0 and α = 0. The inhomogeneous solution is plotted as
a time-order plot in figure 2 for the cases where the forcing function is set as (i) a gated
continuous wave and (ii) a Gaussian-modulated linear chirp. Each point within the plot is the
additional amplitude at that point in time–frequency space obtained by using the particular
excitation. It can be seen that, since the linear chirp contains more energy, it provides a marked
increase in the scattering amplitude over the entire time–frequency space. In the case of the gated
continuous wave in figure 2a, some orders of the FrFT (for example a = 0.55) offer no additive
amplification at any point along u. To further demonstrate the benefits of excitation by the chirp,
the corresponding frequency domain scattering matrices for a crack-like flaw (generated by the
spatial component of the homogeneous solution over a range of transmit/receive directions, ei
and es, which mimic inspection by a linear array) have been summed over the frequency range of
the hypothetical transducer. The amplitudes along the a = 1 axes in figure 2a,b are used to amplify
the scattering matrices at the corresponding frequencies for the continuous gated wave excitation
and the linear chirp excitation, respectively. The results are shown in figure 3. Geometrically, the
scattering matrices are identical; however, it can be observed that the scattering profile of the flaw
is amplified in the case of chirp insonification (figure 3b). It is clear that, if noise were present
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Figure 3. Sum of the scattering matrices as generated by the Born approximation arising from (a) gated continuous wave
excitation and (b) linear chirp insonification. (Online version in colour.)

in the signal, the higher amplitudes exhibited in the case of chirp excitation would provide an
increased SNR.

(a) Choosing the optimal order a
It is shown in [16] that the FrFT of a Gaussian function has the form of a Gaussian for all orders
a. The standard deviation of these Gaussian functions, σa, varies in time–order space, with the
narrowing of the function being synonymous with an increase in maximum amplitude. Hence, it
can be concluded that the optimal value of a at which to employ the FrFT is the value at which the
minimum σa occurs. As the chirp rate m increases, this maximum peak (which occurs at min σa)
moves further away from the frequency domain. This is explained schematically in figure 4. The
long-dashed horizontal line in figure 4a represents a continuous wave (where m = 0) and hence
results in a single value on the frequency axis. As the gradient increases (see the dotted and
solid lines), the breadth of the frequency spectrum increases. The curves in figure 4b demonstrate
how the width of the Gaussian changes in the fractional Fourier domain (of course, the Gaussian
is infinite but here the width is approximated by 6σa as 99.73% of the signal lies within this
interval). The fractional order which exhibits the widest Gaussian is orthogonal to the order
with the narrowest distribution (i.e. there is a difference of 1 between the orders at which these
extremes occur). It then follows that, as the bandwidth of the chirp decreases, the order at which
the narrowest Gaussian form arises approaches the frequency domain. Now, plotting the rate of
frequency change (with respect to time) of the linear chirp results in the plot as seen in figure 5.
The angle made with the frequency axis can thus be calculated as α = tan−1( 1

2 f1m). This provides
the optimum angle at which to take the FrFT [17] and translates to order a = 2 tan−1( 1

2 f1m)/π . To
assess the formula’s success in predicting this order in regards to the inhomogeneous solution
derived above, f p

a (u) (as defined in equation (2.36)) is plotted over orders −2 ≤ a ≤ 2 in figure 6.
As the Gaussian function is not centred at zero, the plot appears skewed; however, the narrowing
phenomena can still be observed. Owing to the low gradient of the chirp excitation, the location of
the narrowest distribution approaches the frequency domain as predicted. The simple algebraic
formula derived for the optimal order of the FrFT of a Gaussian-windowed linear chirp exhibits
an error in application to the inhomogeneous solution and does not incorporate the maximum
amplitude (which is circled in black). However, the error is small (within 0.1 of the order at which
the maximum does occur) and the formula could potentially guide the implementation of the
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Figure 4. (a) Schematic demonstrating the increase in bandwidth with the increase of chirp rate m. The long-dashed line
is representative of a single frequency pulse and its bandwidth is a delta function at that frequency. The dotted and solid lines
represent linear chirpswith increasinggradientswhich result in increasedbandwidths. (b) Schematic demonstrating the change
inσa in the fractional Fourier domain. (Online version in colour.)

discrete FrFT [18], effectively reducing the neighbourhood (and, subsequently, the computational
expense) over which the FrFT is taken. It is hoped that the general solution as derived above
(equation (2.37)) will act as a basis for further work on improving the extraction of the optimal
order a at which to implement the FrFT for signals which have encountered a defect and been
subsequently scattered, thus eventually reducing the time–order space to one dimension for
numerical implementations.

4. Conclusion
A wealth of information regarding the detection, imaging and sizing of flaws is contained within
the scattering matrices as constructed by data arising from ultrasonic phased array inspections.
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Figure 6. The inhomogeneous solution as given by equation (2.36), arising from linear chirp excitation with parameters
m= 0.22 MHz, f1 = 0.1 MHz,σ = 8µs and t1 = 20µs. The dashed linemarks the order a atwhich the formula derived in [17]
predicts the optimal value of a should occur. The predicted optimal a does not correspond to the order at which the maximum
peak occurs (which is circled in black). (Online version in colour.)

Of course, the successful extraction of this information relies on the received data having a
reasonable SNR. This paper examined the use of chirp excitation as a means of improving the SNR
by increasing the amplitude of the recovered signal. A general solution to the inhomogeneous
wave equation, and the subsequent scattering by a flaw, in the time–frequency domain, with
a Gaussian-modulated linear chirp forcing function has been derived. This was achieved by
taking the FrFT of the inhomogeneous wave equation and finding the homogeneous solution via
separation of variables and the Born approximation. The inhomogeneous solution was obtained
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by choosing an ansatz that, once substituted into the inhomogeneous wave equation, resulted in
a linear integral equation which could be solved by formulating a Fourier transform pair for
a Gaussian-modulated linear chirp. Since the excitation parameters are exclusively contained
in the additive term provided by the inhomogeneous solution, the comparison between gated
continuous wave excitation and chirp excitation can be drawn by focusing solely on that term.
It was plotted in a time–order plot for the cases where the forcing function was set as (i) a gated
continuous wave and (ii) a Gaussian-modulated linear chirp and it was shown that, since the
linear chirp contained more energy, there was a marked increase in the scattering amplitude. This
was reinforced by plotting and comparing the corresponding scattering matrices for a chosen
peak in the time–order plot, which further demonstrated the increased amplification provided by
the chirp. Thus it is anticipated that an improved SNR will result when applied to experimental
data.

Recent studies on the use of the FrFT with regard to chirp signals [16,17] suggest a potential
methodology for studying the wave scattering problem considered in this paper. Indeed, the
findings from that work were assessed for their applicability in this paper and, whilst the
discrepancies were clear, they did provide a reasonable estimate of the optimal order at which
to implement the FrFT. It is envisaged that the analytical formulation of the general solution in
§2d will allow for improved extraction of the optimal a for the more complicated case of a chirp
which has been scattered by a defect. The benefit in doing so would be the effective reduction
of the time–frequency space to one dimension, thus enabling reduced computational cost in
NDT applications.
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