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Abstract

Changing environmental conditions, including those caused by human activities, reshape

biological communities through both loss of native species and establishment of non-native

species in the altered habitats. Dynamic interactions with the abiotic environment impact

both immigration and initial establishment of non-native species into these altered habitats.

The repeated emergence of disease systems in urban areas worldwide highlights the impor-

tance of understanding how dynamic migratory processes affect the current and future distri-

bution and abundance of pathogens in urban environments. In this study, we examine the

pattern of invasion of Trypanosoma cruzi—the causative agent of human Chagas disease—

in the city of Arequipa, Peru. Phylogenetic analyses of 136 T. cruzi isolates from Arequipa

and other South American locations suggest that only one T. cruzi lineage established a pop-

ulation in Arequipa as all T. cruzi isolated from vectors in Arequipa form a recent monophy-

letic group within the broader South American phylogeny. We discuss several hypotheses

that may explain the limited number of established T. cruzi lineages despite multiple introduc-

tions of the parasite.

Introduction

Habitat alterations are transforming biological communities worldwide [1–3]. The current

and future geographic distributions of many species in disturbed environments depends upon

their interactions with novel biotic and abiotic features during immigration and while estab-

lishing a growing population [4]. Although many species fail to establish thriving populations

in altered habitats, others are well-suited to migrate to, and prosper in, these novel environ-

ments. For example, several populations of plant [5–7], insect [8–11], mammal [12,13], and

bird [14,15] species are severely diminished or suffer local extinctions in recently urbanized
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environments [1], while several microbial species benefit from the abundance of humans and

human-associated hosts or vectors in similar habitats [16]. Although conservation efforts have

focused primarily on the impacts of environmental changes on native plant and animal spe-

cies, establishment or population growth of disease-causing microbial populations can have a

strong negative impact on populations of native flora and fauna [17] in addition to their

impact on human health and economy [18]. The rate or impacts of invasions of infectious

microbes may be mitigated through public health programs based on an understanding of the

dynamic processes determining immigration and establishment rates. The regularity at which

disease systems are emerging in many urban and urbanizing areas underscores the importance

of understanding how disease-causing microbes migrate to, and establish in, urban environ-

ments [16], one of the most dramatic examples of habitat alteration [19,20]. In this study, we

examine the patterns that govern how Trypanosoma cruzi—the causative agent of Chagas dis-

ease in humans—invaded and colonized the city of Arequipa, Peru.

Invasion of a new environment by a pathogen occurs in three stages: (1) immigration, or

the movement of an individual to the new environment; (2) establishment of a population via

reproduction and population growth; and (3) local dispersal [4]. The many studies focusing on

the emergence of disease systems have generated a wealth of knowledge concerning factors

affecting population growth [21,22] and considerable progress in understanding local dispersal

[23]. For example, prior studies concluded that human-created containers increase the abun-

dance of standing water that provide breeding habitats for the mosquitos that spread dengue

virus [24]. Relatively few studies, by contrast, have investigated the early stages of invasion, the

immigration and establishment processes, due to the practical difficulties of collecting the nec-

essary data in the early stages of establishment of a novel species.

The Chagas disease system in Arequipa, Peru, provides an ideal system in which to study

the early invasion processes in urban environments. Arequipa has experienced rapid urbaniza-

tion and human population growth in the previous half century [25]. The expansion in popula-

tion sizes and geographic ranges of humans and their domestic animals provide T. cruzi and

its only known insect vector in Arequipa, Triatoma infestans, with abundant and accessible

hosts [26–31]. Estimates suggest that T. cruzi infection prevalence among humans in Arequipa

exceeded 5% [27,29–30]. The population history of the T. cruzi currently in Arequipa—includ-

ing the geographic locations of the migrants that established the current population, the rate at

which migrants enter and establish in the area, and the age of each established lineage—have

not been investigated. Here, we performed phylogenetic analyses of maxicircle DNA, a non-

recombining circular element analogous to mitochondrial DNA, to estimate the number of

independent T. cruzi lineages established in Arequipa and to estimate the timing of each estab-

lishment event. We assessed whether extant T. cruzi in Arequipa form a single monophyletic

group, indicative of the establishment of a single migrant lineage, or multiple diverse clades,

indicative of multiple independent immigration and establishment events.

Results

The maxicircle sequence is ideal for population genetic and phylogenetic analyses because it is

conserved among diverse T. cruzi lineages and is non-recombining [32], unlike the nuclear

genome which undergoes regular recombination [33]. Further, phylogenies based on multiple

combinations of T. cruzi maxicircle and nuclear genes yield largely similar topologies [34].

While there was substantial maxicircle sequence diversity among samples across South Ameri-

can isolates, almost no diversity was observed among the samples from Arequipa. Over 13%

(2055/15367bp) of the maxicircle sites were polymorphic among all 136 samples while only 16

sites were polymorphic (0.1%) among the 123 samples collected within Arequipa (Table 1).

Immigration and establishment of natural Trypanosoma cruzi populations
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Similarly, estimates of diversity among the samples from Arequipa derived from population

genetic statistics were substantially lower than the total diversity across all samples (π =

6.8�10−5 vs 8.18�10−3; θ = 1.93�10−4 vs 2.44�10−2; average pairwise distance 1.04 vs 126). In

contrast to the limited genetic diversity within Arequipa, other locales from which multiple

isolates were sampled contain substantial genetic diversity among limited samples (N<3;

Fig 1).

The monophyletic group containing all 123 samples derived from T. infestans and domestic

animals collected in Arequipa coalesce in the very recent past, despite collection sites extend-

ing throughout Arequipa and surrounding towns across 7 years (Fig 1). The extremely low

genetic diversity among these 123 samples provided insufficient information to resolve any

phylogenetic relationships within this monophyletic group. The estimated divergence time

suggests that the common ancestor of Arequipan T. cruzi lived 8.8-19kya (S1 Fig). However,

care should be taken when interpreting divergence time estimates because of the low sequence

diversity within the Arequipan clade and because of the uncertainty in divergence time at the

root of the phylogeny. One sample derived from an infected human in Arequipa (Fig 1C)

belongs to a lineage that is more closely related to samples collected in Rio Grande, Brazil than

to the other samples collected in Arequipa (Fig 1). This sample is distinct from all other sam-

ples in Arequipa suggesting that T. cruzi can immigrate to Arequipa but may not establish in

the vector population. The population size of an unsampled T. cruzi lineage–if present in the

T. infestans population–must be at least 42 times smaller than the dominant population in Are-

quipa to have remained undetected by chance (p<0.05). A maximum likelihood phylogeny

that included 18 additional partial maxicircle sequences obtained from NCBI (S1 Table) sup-

ports the result that all T. cruzi isolates collected in Arequipa form a monophyletic group

derived from a recent common ancestor (S2 Fig).

In contrast to the monophyletic ancestry found in Arequipa, genetic diversity was apparent

in the samples collected from other regions, despite limited numbers of samples (N<3). Popu-

lation genetic diversity among the three samples collected La Esperanza, a town of 57 houses

in the Cutervo Province of Cajamarca, Peru (π = 4.18�10−2; θ = 4.18�10−2), are much larger

than those in Arequipa despite the limited number of samples [35]. The genetic relatedness

and geographic distance among South American isolates are not correlated (Mantel test

among DTU I: r = 0.79, p = 0.083, Mantel test among DTU VI: r = -0.5, p = 0.833; Linear

regression, r = 0.22, p = 0.534; Table 2; S3 Fig). For example, while proximal towns La Esper-

anza and Campo Florido, Peru have closely related T. cruzi, isolates from cities around Brazil

encompass nearly the total genetic diversity.

Discussion

The invasion of recently altered environments by non-native species impacts the population

health of native species as well as human health and economy. Investigation of the dynamic

process of immigration and establishment of non-native species into these disturbed habitats

has the potential to mitigate the impacts of pests and pathogens that are detrimental to human

Table 1. Population genetic statistics.

Average Pairwise Distance π θ Segregating Sites

All samples (N = 136) 126 8.18�10−3 2.44�10−2 2055

Arequipa (N = 123) 1.04 6.80�10−5 1.93�10−4 16

South America (N = 13) 728 4.73�10−2 4.24�10−2 2022

La Esperanza (N = 3) 643 4.18�10−2 4.18�10−2 964

https://doi.org/10.1371/journal.pone.0221678.t001
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Fig 1. The extant T. cruzi population in Arequipa arose from a single, recent introduction. Maximum clade credibility (MCC) tree shows

that (A) all 123 T. cruzi isolated from bugs and domestic mammals in Arequipa form a monophyletic group with a single, recent common

ancestor, indicative of a single immigration event in the recent past. Despite substantial genetic diversity among T. cruzi throughout South

America, those collected in Arequipa show little diversity. (B) Three samples collected in Campo Florido and Naranjal, Peru and one sample

from La Esperanza, Peru have nearly identical maxicircle sequences and form a monophyletic group. La Esperanza, Peru contains at least two

distinct T. cruzi lineages, suggesting multiple independent introductions. (C) The only T. cruzi sample isolated from a human in Arequipa is

distinct from all other samples from Arequipa, suggesting that this introduction has not established in the city. All tips represent a single sample

except (A) (N = 123) and (B) (N = 4). All nodes have strong support (posterior probability�0.99). Nodes are collapsed when the samples

contained have nearly identical maxicircle sequences. Roman numerals signify DTU.

https://doi.org/10.1371/journal.pone.0221678.g001

Table 2. Distance matrix showing average pairwise SNP distance between samples (bottom triangle) and Euclidean distance between sample collection locations

(top triangle).

(A)

Arequipa,

Peru

La Esperanza,

Peru

(B) La Esperanza,

Campo Florido, &

Naranjal, Peru

Bolivia (C) Arequipa,

Peru—Human

São Paulo,

Brazil

Para State,

Brazil

Bahia

State,

Brazil

Rio Grande,

Brazil

(A) Arequipa, Peru 1400km 1400km 700km 0km 2700km 2500km 3200km 2500km

La Esperanza, Peru 95 60km 2000km 1400km 4000km 3000km 4100km 3900km

(B) La Esperanza,

Campo Florido, &

Naranjal, Peru

970 966 2000km 1400km 4000km 3000km 4100km 3900km

Bolivia 137 137 957 700km 2000km 1800km 2500km 2000km

(C) Arequipa, Peru—

Human

975 971 89 967 2700km 2500km 3200km 2500km

São Paulo, Brazil 1044 1045 1033 1045 1058 2100km 1300km 1100km

Para State, Brazil 216 216 984 205 992 1059 1500km 2800km

Bahia State, Brazil 1284 1289 1234 1287 1258 68 1308 2500km

Rio Grande, Brazil 1005 1003 82 1001 77 1052 1026 1284

(A) 123 samples isolated from bugs, dogs, and guinea pigs in Arequipa are represented here.

(B) 4 samples collected in Campo Florido, Naranjal, and La Esperanza are represented here. Euclidean distances (top triangle) are displayed for Santa Cruz.

(C) The only sample isolated from a human in Arequipa is represented here.

https://doi.org/10.1371/journal.pone.0221678.t002
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populations as well as agricultural and native species [17]. The analyses presented here suggest

that the population of T. cruzi in Arequipa, Peru, descended from a recent invasion consisting

of only one evolutionary lineage. This conclusion is supported by the extremely limited genetic

diversity observed among T. cruzi isolates sampled within and around the city, in contrast

with considerable genetic diversity observed regionally and at other locales (Table 1; Fig 1).

Several non-exclusive hypotheses that can be experimentally tested in the future may explain

these results, including a low immigration rate, that immigration is common but immigrants

rarely establish populations as a result of the low transmission rate between hosts and vectors,

or that there is a high turnover rate among T. cruzi lineages.

Successful invasion of a novel geographic area is a function of the rate of immigration, the

temporal duration that a habitat has been suitable for establishment, and the probability that

an immigrant can reproduce and establish a population. The influx of humans and associated

products and domesticated animals into Arequipa over the last ~60 years due to rapid urbani-

zation and economic growth [25,36] has provided many opportunities for T. cruzi immigra-

tion. However, many migrants to Arequipa come from areas in which they were not exposed

to T. cruzi, such as the neighboring regions of Puno and parts of Cusco which are beyond the

range of T. infestans [37]. Nevertheless, one T. cruzi lineage that does not appear to be circulat-

ing within the T. infestans population was detected in an infected human (Fig 1), suggesting

that T. cruzi immigration through human movement can occur. These data suggest that multi-

ple T. cruzi lineages may have immigrated to Arequipa with all but one failing to transmit suffi-

ciently to establish a population. Future studies will be necessary to identify the source, rate,

and potential mechanism of T. cruzi immigration, independent of establishment probability,

through analyses of the genomic diversity in human infections.

Prior studies across multiple species suggest that the majority of immigrants in most species

that reach a novel geographic area fail to establish a population due to both inhospitable local

environmental conditions [1,38] and stochasticity [39,40]. Environmental factors that can

reduce establishment probabilities include unfavorable abiotic conditions, limited food

resources or vectors, or an abundance of predators or competitors. The establishment proba-

bility of immigrant T. cruzi in an urban environment is likely depressed by a low contact rate

between infected humans and vectors [41–44]. For example, many human immigrants moved

to locations in the city without established T. infestans populations [25,37], which would result

in few opportunities for T. cruzi transmission from infected immigrant humans to insect vec-

tors, thus curtailing establishment probabilities. Further, the probability of an infected T. infes-
tans transmitting T. cruzi to novel hosts is low [42,45,46], thus reducing the probability that a

recently-immigrated T. cruzi lineage will establish a population. Both a low probability of

establishing a population due to limited contact between T. infestans and infected immigrant

humans or due to the limited probability of transmission from vectors to host are consistent

with the observation of only a single established T. cruzi lineage in vectors in Arequipa.

The observed establishment probability is likely independent of competition among T.

cruzi lineages. Competitive exclusion—where an existing population prevents the invasion of

new immigrants—appears unlikely as the majority of city blocks do not contain T. cruzi
[25,47] despite substantial vector populations [48]. Under the competitive exclusion hypothe-

sis, one might expect different T. cruzi lineages establishing in different areas of the city.

Indeed, multiple T. cruzi lineages do co-circulate within the same locality [44,49–53], as seen

in the samples sequenced here from La Esperanza (Fig 1), and even within the same host

[54,55], suggesting that competition is not preventing the establishment of multiple lineages in

Arequipa.

The limited genetic diversity within Arequipa could result from a recent replacement of a

previously dominant lineage through natural population processes. While the continuous

Immigration and establishment of natural Trypanosoma cruzi populations
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substitution of a dominant strain through natural selection or drift is common in well-mixed

populations, geographic structure within populations tends to result in the persistence of

genetic diversity [56]. The absence of samples deriving from a previously established T. cruzi
lineage in the fragmented urban and inter-district landscapes, much of which contains an

active vector population but no T. cruzi [25,47,48], is suggestive that no previous lineages dom-

inated this area. Passaging T. cruzi through animal hosts in order to isolate T. cruzi from

infected bugs presents a potential for selection bias against specific genotypes. However, no

other T. cruzi lineages were detected circulating in the vector population, despite the spatial

and temporal range of samples in our dataset (7 years), suggesting that selection bias does not

occur unless both guinea pigs and mice completely exclude the same genotypes.

In conclusion, all relevant data suggest that the T. cruzi circulating in vector populations

prior to the recently-controlled epidemic in the city of Arequipa descended from a single

immigrant lineage. While the ancestral lineage that gave rise to all extant T. cruzi in Arequipa

did not necessarily reside in Arequipa, the data suggest that the common ancestor of all ana-

lyzed isolates immigrated recently and founded a population. The single divergent lineage

found in a human patient suggests that T. cruzi may regularly immigrate to the city but that

immigrants rarely establish populations.

Methods

Ethics statement

The Institutional Animal Care and Use Committee (IACUC) of Universidad Peruana Caye-

tano Heredia reviewed and approved the animal-handling protocol used for this study (identi-

fication number 59605). The Universidad Peruana Cayetano Heredia Ethics Committee

approved human subject research and approved the collection of bugs from households (iden-

tification number 52186). Human subject research participants provided written consent for

the collection of bugs from his or her household and for human subject research. The IACUC

of Universidad Peruana Cayetano Heredia is registered in the National Institutes of Health at

the United States of America with PHS Approved Animal Welfare Assurance Number A5146-

01 and adheres to the Animal Welfare Act of 1990 [57].

Sample collection

DNA from 133 T. cruzi isolates were analyzed to determine phylogenetic relationships (Fig 2;

Fig 3; S1 Fig). The majority of samples were isolated from T. infestans bugs collected from

houses throughout Arequipa (N = 114). T. cruzi isolated from bugs provide the most unbiased

sample because there is no host selection for a specific genotype as T. cruzi from all hosts must

pass through this vector in order to infect a new host. Additionally, there is only one vector

species in Arequipa and thus there is no vector-specific selection bias. Samples were collected

from houses throughout 11 districts in Arequipa from 2008 to 2015, encompassing the major-

ity of the parasite’s range within Arequipa. The subset of isolates used in this study (S2 Table)

were chosen to maximize the chance of detecting diversity 1) by choosing isolates derived

from bugs collected in different houses each year in all but six cases (15 isolates from 6 houses,

1 derived from all other houses) in order to minimize the chance of isolating sibling parasites

and 2) by using samples that are spatially and temporally distributed to minimize sampling

closely related isolates. Samples were collected as the epidemic was expanding and continued

as it was controlled. This sampling scheme represents the optimal chance of detecting minor

lineages and capturing diversity within the major lineage. Three of these samples were

obtained using xenodiagnosis as described in Chiari & Galvão (1997) [58]. An additional ten

samples from Arequipa were isolated from the blood of guinea pigs (N = 7), dogs (N = 2), and

Immigration and establishment of natural Trypanosoma cruzi populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0221678 August 27, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0221678


a human (N = 1). Six isolates were derived from Panstrongylus lignarius (N = 5)–also known as

P. herreri [59]–and one guinea pig (N = 1) collected in the small towns of La Esperanza,

Campo Florido, and Naranjal in northern Peru [35]. Cultures of three previously established

strains isolated from humans in Bolivia (Bol-SH001 and Bol-DH29) and São Paulo, Brazil

Fig 2. Spatial distribution of samples collected in (A) Arequipa, Peru and (B) South America. (A) The names of ten districts from which T. cruzi
samples were collected are labeled. Houses from which isolates were collected are represented by red dots. Map of Arequipa was obtained from https://

landlook.usgs.gov and QGIS v. 2.18 [75] was used to plot sample locations. (B) The sites where isolates were collected are represented by blue dots.

Neighboring towns of La Esperanza, Campo Florido, and Naranjal are represented by a single blue dot labeled “Northern Peru”. Sequences obtained from

NCBI database are represented by red dots. Map of South America was modified from https://commons.wikimedia.org/wiki/Atlas_of_the_world.

Figure was modified from Berry et al. (2019) [33].

https://doi.org/10.1371/journal.pone.0221678.g002

Fig 3. Number of samples collected from each host species per location. Most samples (N = 124) were collected in Arequipa and 6 from small

towns in northern Peru. 3 isolates were provided by the Infectious Diseases Research Laboratory at Universidad Peruana Cayetano Heredia.

Maxicircle sequences for 3 T. cruzi lineages were downloaded from the NCBI database.

https://doi.org/10.1371/journal.pone.0221678.g003
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(TC-y) were provided by the Infectious Diseases Research Laboratory at Universidad Peruana

Cayetano Heredia (Fig 3).

T. cruzi was isolated from vertebrates (N = 8) using an adaptation of an artificial feeding

system that was originally described in Harington (1960) [60]. Briefly, each blood sample was

collected with citrate-phosphate-dextrose, transferred into a small plastic jar, and covered with

a latex membrane fitted tightly with a rubber band. The jars were placed into an incubator and

gradually heated to 35˚ C. Once the temperature was reached, the jars were inverted to allow

uninfected T. infestans to feed through the membrane for 15 minutes. T. cruzi from the eight

laboratory-infected T. infestans, all 114 naturally-infected T. infestans, and five naturally-

infected P. lignarius were passaged through guinea pigs or mice in order to avoid isolating

other microbes present in the vector, as described in Castillo-Neyra et al. (2016) [61]. Feces

from infected vectors were injected into guinea pigs or mice and T. cruzi was isolated from the

blood of each experimentally-infected mammal. T. cruzi were directly isolated in LIT culture

media from the blood samples of three naturally-infected guinea pigs collected in Arequipa

without passage through T. infestans.
Reference sequences of three T. cruzi isolates obtained from NCBI database were used in

subsequent analyses: Silvio, isolated from a human in Para State, Brazil; Esmeraldo, isolated

from a human in Bahia State, Brazil; and CL Brener, isolated from a human in Rio Grande,

Brazil [62] (Fig 3).

Sequencing

DNA from all laboratory cultures was extracted using Qiagen DNEasy DNA Purification Kit.

150bp single-end read libraries were prepared using TruSeq Nano kit and sequenced to an

average depth of>50X using Illumina’s NextSeq500. Six T. cruzi isolates were prepared in

duplicate, and one in triplicate, to allow estimation of sequencing error. Low quality bases

were trimmed from raw reads using trimmomatic-0.32 [63].

Sequence assembly

Bowtie2 [64] was used to assemble maxicircle sequences to the most closely related reference

sequence, Silvio (gi|225217165|gb|FJ203996.1), obtained from NCBI [62]. Duplicate reads

were removed from the assembly using Picard’s MarkDuplicates functionality [65]. The

assembly had an average depth of>600X across all maxicircles. Maxicircle consensus

sequences were determined using VarScan [66], ensuring highly-confident base calls by

requiring a 60% match to call each SNP.

Maxicircle alignment

The T. cruzi maxicircle contains several conserved genes spanning more than 15kb. All assem-

bled maxicircle sequences and the reference were aligned to the Silvio partial maxicircle

sequence (gi|225217165|gb|FJ203996.1|), Esmeraldo strain complete maxicircle (gi|85718082|

gb|DQ343646.1), and the CL Brener complete maxicircle (gi|85718081|gb|DQ343645.1)

downloaded from the NCBI database. The sequences were aligned using MUSCLE as imple-

mented in MEGA7 [67]. The ends were trimmed so that all sequences started and ended on

the same nucleotide, resulting in a final alignment of 15357bp.

Phylogenetic analyses

The non-recombining T. cruzi maxicircle is ideal for coalescent analyses because such analyses

are based on the assumption that there is no recombination. Phylogenetic analyses of the
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15357bp maxicircle sequence from all samples and reference strains were performed using

BEAST 1.8.4 [68]. Phylogenetic analyses assumed a model of sequence evolution in which the

rates of A!T, C!G, and G!T are equal (123343) with γ-distributed rate heterogeneity. An

Extended Bayesian Skyline tree prior [69] with constant evolutionary rates across lineages

(strict clock) was chosen based on BEAST Model Test implemented in BEAST2 [70]. Starting

with a UPGMA tree and running one Markov chain Monte-Carlo chain for each of five inde-

pendent runs of 20 million iterations sampling every 2000 iterations ensured sufficient mixing

after a 10% burn-in (ESS values>200 in Tracer v1.6.0) [71]. Tree files were combined using

LogCombiner1.8.4, excluding a 10% burn-in for each. A Maximum Clade Credibility tree was

generated from the combined tree file using TreeAnnotator 1.8.4 and FigTree v1.4.2 was used

to visualize tree files (available at http://beast.bio.ed.ac.uk). Phylogenetic analyses were per-

formed using the BEAGLE library to increase computation speed [72,73].

Eighteen partial T. cruzi maxicircle sequences (>4.5kb) available on NCBI (S1 Table) were

aligned to the samples sequenced here and the reference sequences. Gaps were removed, yield-

ing a final alignment of 2551bp. These eighteen sequences were chosen because they provided

the longest overlapping regions of the maxicircle and provide sufficient information for phylo-

genetic analyses. A Maximum Likelihood estimation was performed using MEGA7 with a

Tamura-Nei model and 1000 bootstrap replicates (S2 Fig).

Statistical Analyses

Metrics of population genetic variation, π and θ, were calculated using MEGA7 [67]. Assum-

ing the sample from 123 infected T. infestans is representative of the T. cruzi population in vec-

tors in Arequipa, the probability that a distinct lineage could be co-circulating but not detected

by chance can be calculated using a binomial distribution. The minor lineage must constitute

less than 2.41% of the total population in order for there to be a statistically significant chance

that a distinct lineage was not detected in any of 123 sampled T. cruzi. Mantel tests and linear

regression were used to test for a correlation between geographic and genetic distance. Mantel

tests were performed using the vegan package in R [74]. Two Mantel tests were performed:

one testing for correlation among samples belonging to DTU I and another among samples

belonging to DTU VI. Statistics were based on Spearman’s correlation using 100,000 permuta-

tions. A linear regression based on Spearman’s correlation was performed using the rcorr func-

tion in R (S3 Fig). Linear regression was performed on all pairwise distances between samples

belonging to the same DTU.

Supporting information

S1 Fig. Most recent common ancestor to extant T. cruzi population in Arequipa lived as

recently as 8.8kya. Estimates for divergence timing are displayed as 95% confidence intervals

at each node. Estimates are based on rooting the phylogeny at 3mya. Sample collection loca-

tions are shown at the tips. The DTU each sample belongs to is labeled with its corresponding

Roman Numeral in superscript. Due to the low diversity in maxicircle sequence among Are-

quipan isolates and the uncertainty in dating the tree root, care should be taken when inter-

preting divergence time estimates.

(TIF)

S2 Fig. The 123 Arequipan isolates form a monophyletic group even after adding all 18

DTU I partial maxicircle sequences greater than 4.5 kb obtained from NCBI. Short maxi-

circle sequences (<4.5kb) were not included in the analyses due to limited overlap with each

other and the limited number of informative SNPs. The total alignment length was 2551 base
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pairs. Clades and branches that include samples sequenced here (Fig 1) are in bold font. Boot-

strap support greater than 0.8 is labeled on nodes.

(TIF)

S3 Fig. Euclidean distance is not correlated with genetic distance between maxicircles.

Only within-DTU distance data was used to perform the linear regression (red line).

(TIF)

S1 Table. 18 additional partial maxicircle sequences obtained from NCBI.

(DOCX)

S2 Table. Sample collection data.

(DOCX)
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