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ABSTRACT: Articular cartilage (AC) has a very limited intrinsic repair capacity after injury or disease. Although 

exogenous cell-based regenerative approaches have obtained acceptable outcomes, they are usually associated with 

complicated procedures, donor-site morbidities and cell differentiation during ex vivo expansion. In recent years, 

endogenous regenerative strategy by recruiting resident mesenchymal stem/progenitor cells (MSPCs) into the 

injured sites, as a promising alternative, has gained considerable attention. It takes full advantage of body’s own 

regenerative potential to repair and regenerate injured tissue while avoiding exogenous regenerative approach-

associated limitations. Like most tissues, there are also multiple stem-cell niches in AC and its surrounding tissues. 

These MSPCs have the potential to migrate into injured sites to produce replacement cells under appropriate 

stimuli. Traditional microfracture procedure employs the concept of MSPCs recruitment usually fails to 

regenerate normal hyaline cartilage. The reasons for this failure might be attributed to an inadequate number of 

recruiting cells and adverse local tissue microenvironment after cartilage injury. A strategy that effectively 

improves local matrix microenvironment and recruits resident MSPCs may enhance the success of endogenous 

AC regeneration (EACR). In this review, we focused on the reasons why AC cannot regenerate itself in spite of 

potential self-repair capacity and summarized the latest developments of the three key components in the field of 

EACR. In addition, we discussed the challenges facing in the present EACR strategy. This review will provide an 

increasing understanding of EACR and attract more researchers to participate in this promising research arena. 
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Articular cartilage (AC) injury is a common disease that 

usually caused by sport injuries, accidental trauma or joint 

diseases [1]. Once injured, AC has a very limited self-

repair ability [2]. Even small injuries would progress to 

larger lesions over time if left untreated, and eventually 

lead to osteoarthritis (OA) [3]. AC injuries are often result 

in severe knee pain, swelling and joint stiffness, which 

seriously affect patient’s quality of life. The medical costs 

associated with the treatment of AC injuries have been 

increasing due to the high prevalence around the world 

[4]. Biological repair of injured AC may significantly 
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reduce these costs by restoring the healthy native tissue 

and providing long-term symptom control. 

Exogenous cell-based approaches, including 

autologous chondrocyte implantation (ACI) [5], and 

application of various mesenchymal stem/progenitor cells 

(MSPCs) either alone [6] or in combination with scaffolds 

[7, 8], have been developed for injured AC repair, and 

acceptable therapeutic outcomes have been obtained. 

However, these methods are usually associated with 

complicated procedures, donor-site morbidities and less 

controllable regulation during ex vivo cell expansion [9, 

10]. Endogenous regenerative approaches by recruiting 

resident MSPCs into the injured sites take full advantage 

of the body's own regenerative potential to achieve tissue 

repair and regeneration while avoiding the 

aforementioned drawbacks [11]. Through initiating 

endogenous regenerative mechanisms, a range of tissues, 

such as adipose, bone, tendon, etc., have been successfully 

regenerated [12-14]. 

Microfracture is the most commonly applied surgical 

technique that triggers the migration of endogenous 

mesenchymal stem cells (MSCs) from bone marrow to 

injured regions to regenerate AC tissue [15]. However, the 

neo-tissues are mostly comparatively weak fibrous 

cartilage relative to native hyaline cartilage [16]. The 

reasons for this failure could be attributed to an inadequate 

number of recruiting cells and adverse local tissue 

microenvironment after AC injury [17]. A strategy that 

improves local matrix microenvironment and recruits a 

large number of endogenous cells into the injured sites 

might enhance the success of endogenous AC 

regeneration (EACR) [18, 19]. In this review, we 

discussed: 1) what is the endogenous self-repair potential 

of AC and what are the regenerative limitations in AC 

self-repair? 2) what are the latest developments of the 

three key elements (endogenous stem cells, 

chemoattractants and scaffolds) in the field of EACR? 3) 

what are the challenges facing in the present EACR 

strategy? The objective of this review is not only to give 

readers an increasing understanding of the present EACR 

strategy, but also to attract more researchers to participate 

in this promising research arena with the aim of exploiting 

more effective AC regenerative approach. 

 

Endogenous self-repair otential of AC  

 

In almost all tissues, there is a resident population of 

mesenchymal stem/progenitor cells (MSPCs) [20]. These 

cells exist inside stem-cell niches which maintain the state 

of quiescence, self-renewal or active differentiation of 

MSPCs [21]. They could undergo directional migration 

under appropriate stimuli to maintain tissue homeostasis 

and repair injured tissues [21, 22]. A resident population 

of progenitor cells, also referred to as cartilage-derived 

progenitor cells (CPCs), has been found in the normal and 

degenerative AC [23]. In addition, some tissue-specific 

MSPCs also have been found in other areas of the joint 

including synovium [24], synovial fluid (SF) [25], 

meniscus [26], infrapatellar fat pad [27], suprapatellar fat 

pad [28], and perichondrial groove [29], perichondrium 

[30]. Some previous studies demonstrated that many 

injured-associated products (such as cell lysates, ECM 

fragments, high-mobility group box 1, HMGB1 and 

stromal cell derived factor-1, SDF-1) could stimulate in 

vitro migration of MSPCs [31, 32]. More importantly, an 

increased percentage of MSPCs-marker positive cells was 

observed in the injured cartilage tissue in comparison to 

the normal cartilage tissue [33, 34]. In addition, MSPCs 

were present in higher numbers in the SF after cartilage 

injury [35]. All these findings indicate that when AC 

becomes injured, MSPCs in multiple stem-cell niches 

surrounding the injured sites would be activated in 

response to the stimulation of injured signals and migrate 

into the injured sites to produce replacement cells. 

Moreover, many in vitro and ex vivo studies have shown 

that chondrocytes are also able to migrate under different 

external stimuli, although in vivo chondrocyte migration 

remains to be further determined [36, 37]. To sum up, an 

endogenous self-repair attempt exists after AC injury. 

However, full recovery of the structure and function of the 

injured cartilage in human adults is rare or even 

considered to be absent. If cartilage tissue cannot 

regenerate itself, what are the limitations in injured 

cartilage self-repair?  

 

Limitations of endogenous AC self-repair 

 

Endogenous tissue self-repair is a very complicated 

process, which involves cell migration and extensive 

crosstalk between the migrated cells and the local tissue 

microenvironment. The questions arise as to whether 

endogenous cells can migrate smoothly into the injured 

sites, whether the number of the migrated cells is 

sufficient, and what will happen to the migrated cells in 

the local tissue microenvironment？  

 

Effect of AC structure and injured stimuli on migration 

of endogenous cells 

 

AC is an avascular tissue that consisted of a dense, well-

organized collagen fibrillar network with a low cell-to-

matrix ratio [38]. Such a unique structure might hinder 

cartilage self-healing to a certain degree. Firstly, unlike 

the tissues with powerful stem-cell niches (such as bone), 

the cartilage tissue contains a very small number of 

resident CPCs [38, 39]. The self-repair capacity of AC 

might be greatly restricted because of the limited number 

of CPCs available for migration. Secondly, the ECM of 
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AC is relatively dense. The structural feature is essential 

for the mechanical stability and the proper function of the 

cartilage tissue [38]. However, it might partly hinder the 

migration of chondrocytes and CPCs embedded in the 

ECM. In addition, when the lesion is completely located 

within the cartilage layer without penetrating the 

tidemark, the matrix molecules within the remaining 

hyaline cartilage, such as dermatan sulfate and other 

proteoglycan, can inhibit cell migration and adhesion 

[40]. Lastly, AC does not contain blood vessels that are 

critical for tissue repair [38]. For partial- and full-

thickness chondral defects (Fig. 1), the nutrients and 

regulatory molecules required for tissue repair and 

regeneration are only obtained by diffusion through 

normal cartilage and SF, and are therefore very limited 

[38, 41]. Also, due to the absence of blood vessels, there 

might be no immediate-early repair response with 

monocytes and macrophages to injured cartilage [42]. 

Therefore, the avascular nature of AC may also explain in 

part lack of cartilage regeneration. 

The weak natural recruitment signals might also be 

partly responsible for the failure of endogenous AC self-

repair. As mentioned above, the injured cartilage tissue 

can release a large number of injured-associated products. 

They, as recruitment signals, can stimulate surrounding 

chondrocytes and multiple MSPCs to migrate into the 

injured sites to produce replacement cells [31, 32]. 

However, these recruitment signals are normally too 

limited to recruit sufficient endogenous cells to result in 

successful regeneration of injured AC [43]. 

 

 
Figure 1. Cell types involved in EACR and their potential migration routes. CPCs, cartilage-derived progenitor cells; 

IPFSCs/SPFSCs, infrapatellar/suprapatellar fat pad-derived stem cells; BMSCs, bone marrow-derived mesenchymal stem cells; 

S-MSCs, synovium-derived mesenchymal stem cells; SF-MSCs, synovium fluid-derived mesenchymal stem cells; MPCs, 

meniscus-derived progenitor cells; RMSCs, Ranvier groove derived mesenchymal stem cells. Depending on the type of AC 

lesions, MSPCs involved in the repair process might differ. Partial- and full-thickness chondral defects: chondrocytes, CPCs, 

IPFSSCs/SPFSCs, S-MSCs, SF-MSCs, MPCs and RMSCs (not exhibited in the picture); Osteochondral defect: chondrocytes, 

CPCs, IPFSSCs/SPFSCs, S-MSCs, SF-MSCs, MPCs, RMSCs and BMSCs.  

Potential effects of local tissue microenvironment on 

migrated cells 

 

AC injuries, either acute injury (such as sport injury and 

trauma) or chronic injury (such as OA), usually cause 

substantial changes in local tissue microenvironment [44, 

45]. These changes can significantly influence cell 

survival, proliferation and differentiation. In such cases, 

even if the number of the migrated cells is sufficient, it is 

difficult to repair the injured AC. A good understanding 

of the local tissue microenvironment is of great 

significance for us to exploit more effective tissue 

regenerative approaches. 

The (sterile) inflammation response plays a critical 

role in tissue healing [46]. When AC is injured, the injured 

tissue will release damage-associated molecular patterns 

(DAMPs), such as HMGB1 and S1008/9 [47-49]. These 

DAMPs subsequently induce the surrounding cells (such 

as chondrocytes, MSPCs and synoviocytes) to release 

pro-inflammatory chemokines which attract 

inflammatory cells into the injured sites to trigger the 

inflammation response [48]. Of note, compared with 

chondrocytes, CPCs express higher levels of pro-



Hu H., et al                                                                                         Endogenous Regeneration of Articular Cartilage 

Aging and Disease • Volume 12, Number 3, June 2021                                                                              889 

 

inflammation genes, such as interleukin-6 (IL-6) and IL-

8 [50, 51]. Acute inflammatory response after AC injury 

primarily involves IL-1, IL-6, IL-18 and tumor necrosis 

factor-α (TNF-α) [45, 52, 53]. The production of these 

cytokines is not exclusive to cartilage tissue; on the 

contrary, much of it comes from synoviocytes, adipocytes 

derived from intraarticular fat pad and circulating immune 

cells derived from synovial and intramedullary vessels 

[44]. These inflammatory cytokines significantly inhibit 

the proliferation and differentiation of MSPCs and 

chondrocytes [54-57]. Han et al. [54] reported that both 

IL-1 and TNF-α inhibited the expression of chondrogenic-

related genes in synovium-derived mesenchymal stem 

cells (SMSCs). Similar findings were observed in another 

study by Wehling et al. [55], in which both IL-1 and TNF-

α inhibited chondrogenesis of human BMSCs in a dose-

dependent manner. In addition, Martensson et al. [57] 

found that both IL-1β and TNF-α inhibited differentiation 

of growth plate chondrocytes. 

The chronic cartilage injury, usually caused by OA, 

is characterized by low-grade inflammation, ECM 

breakdown and osteogenic microenvironment. Compared 

with acute inflammation, the chronic inflammatory 

response involves more inflammatory cytokines. For 

example, IL-17 is exclusively produced by a group of T 

helper cell and therefore is primarily involved in OA-

associated chronic cartilage injury [52]. In addition to 

affecting the biological behaviors of cells, these 

inflammatory mediators also lead to chronic breakdown 

of the ECM by stimulating the overproduction of 

aggrecanases, collagenases, tissue plasminogen activator, 

nitric oxide (NO) and reactive oxygen species (ROS) [58-

61]. NO, which is induced by IL-1 and TNF [58], inhibits 

chondrocyte proliferation and ECM synthesis [59]. 

Overproduction of ROS results in chondrocyte 

senescence, death and ECM degradation [60]. 

Additionally, along with the development of OA, the 

subchondral bone begins to become more permeable, and 

some osteogenic cytokines, such as bone morphogenetic 

proteins (BMPs) and transforming growth factor-β (TGF-

β), potentially leak into cartilage tissue [44, 61]. These 

osteogenic microenvironment favors chondrocyte 

hypertrophy and osteogenesis [44]. Hypertrophic 

chondrocytes express type X collagen and some 

additional molecules, such as matrix metalloproteinase-13 

(MMP-13) and vascular endothelial growth factor 

(VEGF) [62], which substantially alter the pericellular 

microenvironment of local cell populations. 

Tissue engineering approaches that overcome these 

obstacles might improve and enhance EACR. Currently, 

the trend is to deliver bioactive factors or anti-

inflammatory drugs to regulate local highly inflammatory 

or osteogenic micro-environment [63]. For example, 

Wang et al. [64] combined collagen scaffold with 

resveratrol to form an anti-inflammatory scaffold, once 

implanted in a rabbit osteochondral region, revealed 

remarkable anti-inflammatory and regenerative 

properties. However, injured AC is present in a more 

complicated local tissue microenvironment, more efforts 

are needed to further understand it.

 
Figure 2. Therapeutic options of the present endogenous chondral/osteochondral regeneration. (A) Bone 

marrow stimulation; (B) Bioactive factors injection; (C) Bioscaffold/designed scaffold implantation with or without 

microfracture; (D) Bioactive factors/scaffold composition implantation with or without microfracture. 
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AC regeneration based on endogenous regenerative 

mechanisms 

 

Recently, there is growing evidence demonstrated that 

endogenous regeneration approach is a very promising, 

cost-effective alternative for cartilage repair and 

regeneration [65, 66]. Compared with tissue regeneration 

based on exogenous cells, it offers greater advantages in 

terms of handling, cost, time, and regulation. An enhanced 

endogenous tissue regeneration achieved by tissue 

engineering technology has largely repaired those injured 

ACs [67, 68] (Fig. 2) We here systematically reviewed the 

latest developments of the three key components in the 

field of EACR?  

 

Cells for endogenous cartilage regeneration  

 

Endogenous MSPCs play an important role in EACR. On 

the one hand, they can migrate into the local defect under 

appropriate stimuli and participate in cartilage repair and 

regeneration directly. On the other hand, they can also 

secret bioactive factors (such as growth factors, 

exosomes, etc.) to influence cartilage regeneration 

indirectly [63].  

 

Cell types 

 

Multiple resident MSPCs and abundant chondrocytes are 

present in or around the injured sites. They can be 

activated by the injured signals and then migrate into the 

injured sites to participate in the repair events [69]. These 

MSPCs mainly include CPCs, BMSCs, SMSCs, SF-

derived MSCs (SFMSCs), infrapatellar fat pad-derived 

stem cells (IPFSCs), suprapatellar fat pad-derived stem 

cells (SPFSCs), meniscus progenitor cells (MPCs), and 

MSCs in perichondrium and Ranvier groove [17, 18]. 

Depending on the type of AC lesions, chondral or 

osteochondral defects, MSPCs involved in the repair 

process differs (Fig.1). 

 

Potential migration routes of endogenous repair cells 

 

CPCs and chondrocytes 

 

Due to their beneficial localization and innate 

chondrogenic phenotype, CPCs are considered to be a 

promising cell source for AC regeneration [70]. Although 

distributing through the whole cartilage layer, CPCs are 

mainly located in the superficial zone and specifically 

express proteoglycan 4 (Prg4) [71]. A lineage analysis in 

mice demonstrated that these Prg4 expressing-cells would 

migrate into the deeper layers during the development of 

cartilage and serve as the progenitor population of all 

mature chondrocytes [72]. In addition to the vertical 

migration, CPCs can also migrate horizontally to 

replenish the stem cell pool and effect a lateral expansion 

of the AC layer [73]. Therefore, when the AC is injured, 

CPCs would migrate into the injured sites from vertical 

and horizontal directions to produce the replacement cells. 

Chondrocytes are the most abundant cells within AC. 

In the past, it is believed that chondrocytes in adult 

cartilage are unable to migrate due to the surrounding 

highly tensile ECM [17, 74]. However, a recent study 

showed that a significant percentage of articular 

chondrocytes also express alpha-smooth muscle actin, 

indicating their potential migration ability [75]. More 

importantly, a growing body of in vitro and ex vivo 

evidence supports the migratory potential of chondrocytes 

[35, 37]. Therefore, these chondrocytes, as a new 

promising target cell, can be utilized to improve the 

endogenous regeneration of injured AC. Serial cartilage 

studies have showed that segmental neo-cartilage was 

formed by adjacent tissue protruding during AC 

regeneration [76, 77]. These findings suggest that the 

chondrocytes around the injured sites would migrate 

horizontally under the simulation of injured signals and 

participate in AC defect healing. 

 

BMSCs 

 

BMSCs, usually as an exogenous seed cell type, were 

used for cartilage repair and regeneration [78]. In fact, 

they also have been widely investigated as an endogenous 

seed cell type in the past three decades [79, 80]. Self-

repair of the partial- and full-thickness cartilage defects is 

rare or even considered to be absent, which might be 

greatly attributed to the dense subchondral bone plate 

(SBP) between the cartilage and bone marrow cavity [81, 

82]. Although SBP is a thin tissue, it can effectively block 

BMSCs from migrating into cartilage tissue. The 

commonly used microfracture technique employs the 

concept of endogenous BMSCs migration to regenerate 

the injured cartilage tissue [79]. In this procedure, some 

holes are created on the injured sites of AC through SBP 

to the bone marrow cavity, and subsequently BMSCs 

migrate into the injured sites via these holes under the 

stimulation of chemotactic signals from the microfracture 

site. Although the neo-tissues are not as satisfactory as 

expected, the successful use of this procedure provides 

sufficient evidence for the potential migration route of 

BMSCs in EACR. 

 

Other intraarticular resident MSPCs 

 

As mentioned above, other intraarticular resident MSPCs, 

such as SMSCs, SFMSCs SPFSCs, IPFSCs, MPCs and 

MSCs in Ranvier groove, might also involve in the 

endogenous cartilage regeneration [28, 29, 83-87]. Due to 
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special intraarticular anatomic sites, they exhibit higher 

chondrogenic potential than those MSPCs from adipose 

tissues, periosteum and bone marrow. Unfortunately, to 

date, there is no direct evidences on the migration routes 

of these intraarticular resident MSPCs. Considering the 

distance between these stem-cell niches and the injured 

sites, a possible route is that tissue-resident MSPCs firstly 

enter into SF, and subsequently migrate into the injured 

sites (Fig. 1). Some findings also implicitly indicate this 

potential migration route. For example, Jones et al. found 

that the number of the progenitor cells in the SF 

significantly increase during acute/chronic AC injury 

[88]. Of note, the migration route may vary because of the 

difference between joint morphology in big and small 

animals [89, 90]. For instance, in rabbit knee joint, 

synovium tissue extends to the surface of meniscus, which 

facilitates SMSCs to migrate directly from synovium to 

the injured sites [89].  

 

Chemoattractants for endogenous cartilage 

regeneration  

 

MSPCs recruitment is the first and most important step for 

endogenous tissue regeneration [11]. MSPCs express a 

number of receptors for chemokines and growth factors. 

The ligand-receptor binding activates intracellular 

signaling pathways (such as JAK/STAT, MAPK, PI-

3K/Akt, ERK1/2 and Wnt) to induce or modulate 

migration of MSPCs [91-93]. The pattern of MSPCs 

recruitment is chemotaxis, which allows their directional 

migration along a chemoattractant gradient [94]. In view 

of the fact, because the natural endogenous chemotactic 

signals are normally too weak to execute the successful 

repair and regeneration of many tissues including AC. 

Approaches by adding additional chemoattractants (such 

as chemokines and growth factors) to enhance migration 

of endogenous MSPCs may accelerate and improve 

endogenous tissue regeneration. Although several 

previous articles have systematically reviewed these 

chemoattractants, they set their sights on the whole 

endogenous regenerative medicine [11, 18]. Of note, 

chemotactic responses vary among MSPCs isolated from 

different tissue types [94, 95]. Hence, we here 

summarized those chemoattractants which were 

specifically used for EACR (Table 1). In addition, the 

potential side effects of these chemoattractants are also 

shown in this table.  

 

Table 1. Chemoattractants for endogenous cartilage regeneration. 

 
Chemoattractants 

(Ligands) 

Chemoattracta

nts (Receptors) 

Evidence of migration of chondrocytes 

or MSCs induced by various 

chemoattractants 

Potential side effects 

Chemokines   

SDF-1(CXCL12;) CXCR4 Homing BMSCs and facilitating their 

chondrogenic differentiation in vitro and 

in vivo [76, 96]. 

Inhibiting the migration of human 

subchondral mesenchymal progenitor 

cells in vitro [97]. 

Inducing subchondral bone deterioration 

by erroneous recruitment of MSCs [98]. 

IL-8 (CXCL8;) CXCR1,2 Recruiting autologous BMSCs to the 

injured site of articular cartilage [99]. 

Inducing articular chondrocyte 

hypertrophy [100, 101]. 

MCP-1 (CCL2;) CCR2 Inducing directional migration of 

various adult stem/progenitor cells [102, 

103]. 

Inhibiting the chondrogenic differentiation 

of MSCs in vitro [104]. 

MIP- 3α (CCL20;) CCR6 Triggering the homing of BMSCs for 

cartilage repair in vitro and in vivo [99]. 

Inducing osteoclast formation and 

osteoblast proliferation [105]. 

SCM-1 

(lymphotactin/XCL1) 

XCR1 Recruiting the stem cell migration from 

the subchondral bone [97]. 

- 

Growth factors   

TGF-β1 

 

TGF-βR Promoting endogenous MSCs 

recruitment [106]. 

Inducing synovial proliferation, fibrosis 

inflammatory responses and osteophyte 

formation [107-109]. 

TGF-β3 TGF-βR Enhancing endogenous stem cell 

recruitment and facilitating in situ 

articular cartilage regeneration [110]. 

- 

BMP-2 

 

BMPRIs, 

BMPRIIs 

Recruiting endogenous MSCs to 

regenerate injured cartilage [111, 112]. 

Causing osteogenic differentiation and 

osteoblast growth [44]. 

Inhibiting the cartilage repair response 

[113]. 

BMP-4 

 

BMPRIs, 

BMPRIIs 

Recruiting endogenous MSCs to 

regenerate injured cartilage [111]. 

- 
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BMP-7 BMPRIs, 

BMPRIIs 

Recruiting endogenous MSCs to 

regenerate injured cartilage [111]. 

Inhibiting MSCs proliferation [114]. 

PDGF PDGFRa/b 

(CD140a/b) 

Promoting recruitment of endogenous 

progenitor cells and chondrocytes in vivo 

[111, 115, 116]. 

Involved in atherosclerosis, fibrotic 

conditions, as well as malignancies [117]. 

IGF-1 IGF-1R Promoting MSCs and chondrocytes 

homing and recruitment [118-120]. 

Inducing hypoglycemia, seizures, jaw 

pain, myalgia, edema, headaches, 

increased liver and kidney mass, altered 

liver function, erythema and 

lipohypertrophy at the injection-site [121-

123]. 

FGF-2 FGFR-1 

(CD331), -2 

(CD332), -3 

(CD333), -4 

(CD334) 

Contributing to the migration of the 

BMSCs and chondrocytes [113, 124]. 

Inducing inflammation and osteophyte 

formation when used alone [125]. 

NGF 

 

NGFR Showing the promigration effect for 

CSPCs [126]. 

Stimulating both the growth of tumor cells 

and angiogenesis [127]. 

HGF HGFR (c-Met) Exerting an important role in 

chondrocyte migration and cartilage 

remodeling [128, 129]. 

Involved in osteophyte formation under 

certain circumstances [130]. 

MGF - Facilitating the recruitment of 

endogenous stem cell for cartilage 

regeneration [110]. 

- 

Other factors   

PRP - Enhancing the migration and stimulated 

the chondrogenic differentiation of 

MSCs [131-133]. 

Causing allergy reaction [134]. 

BMC - Facilitating recruitment of MSCs and 

chondrocytes [135]. 

- 

MSCs-derived 

exosomes 

- Enhancing the migration of 

chondrocytes [136, 137]. 

- 

LPP BMP-RII Stimulating the site-directional 

migration of CPCs in vitro [138]. 

- 

Platelet lysate - Supporting the migration of both 

chondrocytes and MSCs [139]. 

- 

FN Integrin ɑ5β1 Enhancing the proliferation, migration, 

and chondrogenic differentiation 

capacity of CPCs [140]. 

- 

* Although many other factors (such as interferon inducible protein, IP-10; thymus and activation-regulated chemokine, TARC; B-lymphocyte 

chemoattractant, BLC; etc.) also have the ability to facilitate MSCs migration and tissue repair, they are not discussed in this review. In our study, we 

only focus on those chemoattractants that have been shown to contribute to EACR. 

MSCs Mesenchymal stem cells; SDF-1 Stromal cell derived factor; BMSCs Bone marrow mesenchymal stem cells; IL Interleukin; MCP Monocyte 

chemoattractant protein; MIP Macrophage inflammatory protein; SCM Single C motif; TGF-β transforming growth factor beta; BMP Bone morphogenetic 

protein; PDGF Platelet-derived growth factor; IGF Insulin-like growth factor; FGF Fibroblast growth factor; NGF Nerve growth factor; CSPCs Cartilage 

stem/progenitor cells; HGF Hepatocyte growth factor; MGF Mechano growth factor; PRP Platelet-rich plasma; BMC bone marrow concentrate; SMSC 

Synovium-derived marrow mesenchymal stem cells; LPP Link protein N-terminal peptide; CPCs Cartilage-derived progenitor cells; FN Fibronectin. 

Scaffolds for endogenous cartilage regeneration  

 

Along with cell recruitment, another important issue is 

how to create an appropriate microenvironment for cell 

residence, differentiation and new tissue formation. 

Scaffolds play a crucial role in these events. They allow 

the activated resident MSPCs to migrate into and serve as 

a temporary “home” for these migrated cells. Meanwhile, 

they provide specific microenvironment to direct cell 

differentiation according to the tissues that require 

repairing [141]. Apart from the aforementioned 

characteristics, the “perfect” scaffold for EACR should 

also allow for irregular fill and a good incorporation with 

surrounding cartilage, and be sufficiently strong to bear 

normal mechanical stress within the joint during the 

process of regeneration [142, 143]. In addition, the 

scaffolds can be implanted in a one-step procedure. In the 

past decades, a substantial body of studies have been 

published, in which various scaffolds, either alone or in 

combination with chemoattractants, have been used for 

endogenous chondral and osteochondral regeneration in 

vitro and in some in vivo models [132, 144, 145]. We here 

review the different scaffolds that are available for EACR 

(Table.2).  

Although many scaffolds represent themselves as 

potential candidates in AC regeneration based on 



Hu H., et al                                                                                         Endogenous Regeneration of Articular Cartilage 

Aging and Disease • Volume 12, Number 3, June 2021                                                                              893 

 

exogenous cells, they seem to be powerless in EACR 

because of the lack of the ability to induce cell homing 

[170]. By combining these scaffolds with bioactive 

factors, which promotes endogenous cells to migrate into 

the scaffolds as well as regulates cell proliferation and 

chondrogenic differentiation, it is helpful to improve and 

enhance EACR [143, 159, 171]. Zhang et al. [148] created 

an in-situ matrix environment conductive to CPCs and 

SMSCs migration and adhesion by mixing chemokine 

SDF-1 and collagen type I, which significantly promoted 

partial-thickness cartilage defect self-repair in rabbit knee 

joint. A scaffold system containing chemokines and 

growth factors might further improve the quality of neo-

cartilage by simultaneously promoting cell homing and 

chondrogenic differentiation. More recently, Chen et al. 

[155] fabricated a novel dual bioactive factor-releasing 

scaffold, SDF-1α/TGF-β1-loaded silk fibroin-porous 

gelatin scaffold (GSTS), to enhance the healing of 

cartilage defect. They found that GSTS facilitated in vitro 

MSCs homing, migration, chondrogenic differentiation, 

and SDF-1α and TGF-β1 had a synergistic effect on the 

promotion of in vivo cartilage forming. In addition, given 

that there were substantial differences in regeneration 

between cartilage and bone, several bilayer or multilayer 

scaffolds were developed, and their combination with 

bioactive factors have been used for endogenous 

osteochondral defect repair [157-159]. Collectively, many 

bioactive factors have been loaded into different scaffolds 

to repair and regenerate chondral or osteochondral defects 

and are summarized in Table 2. In addition, when 

bioactive factors are loaded into a scaffold, a release rate 

allowing a sustained therapeutic dose should also be 

considered [151, 154]. 

 

Table 2. Scaffolds for endogenous cartilage regeneration. 

 
 

 Scaffold type Layers Animal model Bioactive factors       Refs 

 

 

 

 

 

 

 

 

 

Scaffold + 

bioactive 

factors 

Poly-epsilon-caprolactone and hydroxyapatite - rabbit TGF-3 [146] 

CS glycerol-phosphate/blood - rabbit Thrombin (Factor IIa) [147] 

Type 1 COL scaffold - rabbit SDF-1 [148] 

DBM-chitosan hydrogel - rabbit BMSC specific affinity peptide E7 [149] 

HA-PCL - porcine TGF-3 [150] 

SF - rabbit TGF-, MGF [110] 

Photocrosslinkable hydrogel glue  rabbit PRP [151] 

Photoinduced hydrogel glue - rabbit Stem cell-derived exosomes [152] 

3D printed silk-fibroin-gelatin Scaffold - rabbit BMSC affinity peptide [144] 

PLGA  rabbit PRP [132] 

Acellular cartilage matrix - rabbit SAP-bone marrow homing peptide [66] 

Fibrin/hyaluronan hydrogel - mouse AntimiR-221 [145] 

SF/HA-tyramine hydrogel - rabbit Aptamer (Apt19s) [153] 

PEO–PPO–PEO thermosensitive hydrogel - minipig rAAV-sox9 [154] 

Extracellular matrix - rabbit Stem cell-derived exosomes [136] 

GSTS - rat SDF-1α/TGF-β [155] 

COL  Bilayer rabbit PRP [131] 

COL  Bilayer rabbit BMP-4 [156] 

COL-silk scaffold  Bilayer rabbit PTHrP [157] 

OSA/NSC-PCL/PEG-fibre-SA/nano HA  Multilayer rabbit FGF-2, BMP-2, TGF-β1, LIPUS [158] 

PLGA/polylysine heparin-COL/CS/HAS  Bilayer rabbit Kartogenin, TGF-β1 [159] 

 

 

 

 

 

Bioscaffold/ 

designed 

scaffold 

Non-woven multifilamentous - ewes N/A [160] 

CS-glycerol phosphate - rabbit N/A [161] 

PLCL - rabbit N/A [143] 

PGA - sheep N/A [162] 

Porous PLGA - rabbit N/A [163] 

PLA-PCL - rabbit N/A [164] 

Methacrylated HA-PLGA - rabbit N/A [165] 

Decellularized cartilaginous ECM - rabbit N/A [166] 

Oriented pores cylindrical PLGA - rabbit N/A [167] 

3D printed PLCL-aggrecan - rabbit N/A [142] 

Acellular cartilage sheets - swine N/A [168] 

Acellular bone matrix - minipig N/A [68] 

HA-based hydrogels - mouse N/A [116] 

COL/microporous electrospun nanofiber  Bilayer rabbit N/A [169] 

 

PLCL Polylactic acid poly-ε-caprolactone; PGA Polyglycolic acid; PLGA Poly (lactide-co-glycolide); PLA Polylactic acid; PCL Poly (ɛ-caprolactone); 

ECM Extracellular matrix; HCF Heparin-conjugated fibrin; HA Hyaluronan; PEO Poly (ethylene oxide); PPO Poly (propylene oxide); GSTS SDF-

1α/TGF-β loaded SF-porous gelatin scaffold; OSA Oxidized sodium alginate; NSC N-succinyl chitosan; PEG Polyethylene glycol; SA Sodium alginate; 

COL Collagen; CS Chitosan; SF Silk fibroin; HAS Hyaluronic acid sodium; TGF Transforming growth factor; MGF Mechano growth factor; SAP 

Self-assembling peptide; SDF Stromal cell-derived factor; PRP Platelet-rich plasma; PTHrP Parathyroid hormone-related protein; BMP Bone 

morphogenetic protein; DBM Demineralized bone matrix; FGF Fibroblast growth factor; rAAV recombinant Adeno-associated virus. 
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Some bioscaffolds alone, either native matrices or 

biomimetic materials, have the potential to recruit 

endogenous cells and do not require additional 

supplement of bioactive factors to exert beneficial effects 

[164, 165]. One good example of such bioscaffolds is the 

acellular/decellularized ECM (a/dECM) [68, 166]. They 

can not only mimic the natural tissue matrix environment 

in which cells reside and function, but also have the 

capacity to promote cell homing because of the various 

intrinsic growth factors contained in this environment. 

Xue et al. [168] found that acellular cartilage sheets alone 

could induce endogenous host cells migration and achieve 

generally satisfactory repair of cartilage defects. Instead 

of using whole dECM, some individual ECM proteins 

might also exert good functions. Vainieri et al. [116] 

reported that hyaluronic acid-based hydrogel alone 

supported endogenous cell infiltration and provided an 

amenable microenvironment for cartilage production. In 

addition, some specifically designed scaffolds exhibit 

potent potentials in EACR. Dai et al. [167] reported that 

the oriented macroporous PLGA scaffold promoted the 

migration of endogenous cells and successfully induced 

endogenous osteochondral defect regeneration. Other 

studies with similar design also obtained satisfactory 

outcomes [160, 161]. The use of three-dimensional (3D) 

bio-printing technology allows for more complex designs, 

which can precisely control the internal microstructure 

(such as pores and microchannel) of the scaffold, and 

therefore might provide a more suitable 

microenvironment for EACR [136, 144]. Recently, Guo 

et al. [142] used the 3D bio-printing technology to 

fabricate a functionalized scaffold (PLC-aggrecan), and 

they found that the 3D-printed scaffold had great potential 

to improve the quality of cartilage regeneration. 

 

Challenges facing in the present EACR strategy 

 

The regenerative approaches by enhancing the 

recruitment of endogenous cells have successfully 

regenerated the injured cartilage in many in vivo animal 

models [154, 162]. Although these results are exciting, 

only a scarce amount of methods have been able to move 

from the bench to the bedside [172, 173]. There are still 

many challenges and concerns that need to be addressed 

before their clinical application.  

Numerous studies demonstrated that both 

chondrocytes and various MSPCs derived from multiple 

stem-cell niches surrounding the injured sites had great 

potential to be ideal candidates for EACR [115, 174]. 

However, almost all studies focus on one or even two cell 

types, which is a far cry from reality. As shown in Figure 

1, EACR is a complicated process involving various cell 

types. How these migrated cells interact with each other 

and which type of cells plays the decisive role in EACR 

remain unclear [95]. For engineering endogenous cell 

recruitment, one of the most challenges is the selection of 

effective chemoattractant(s). Although many 

chemoattractants have potent chemotactic activities for 

MSPCs in vitro [175, 176], it is difficult to identify which 

one is the most appropriate chemoattractant. Firstly, the 

chemotactic responses vary among MSPCs isolated from 

different tissue types [94, 95]. Secondly, since most 

bioactive factors have multiple effects, exposure of 

MSPCs to a chemoattractant may stimulate many 

collateral responses (Table.2) in addition to the 

chemotaxis desired. Moreover, in a majority of the 

studies, MSPCs are typically exposed to one or two 

bioactive factors [110, 124], which is hard to simulate the 

complicated internal multiple signals. In the field of 

biomaterials, some scaffolds alone significantly support 

cell recruitment in vitro and regenerate cartilage tissue in 

vivo with some success [68, 116]. However, how the 

components and architecture of these scaffolds affect cell 

recruitment and cartilage regeneration are still unclear. 

The exploration of these potential mechanisms will be 

helpful for the design of the next-generation engineering 

scaffolds. Furthermore, the emerging 3D bio-

printing technology allows for fabricating personalized 

scaffolds with controlled internal micro-architecture 

structures [136, 142]. Theoretically, 3D-printed scaffolds 

have great potential for the application in EACR. 

However, more researches are needed to find the best 

suitable bio-inks.  

In addition, (sterile) inflammation is inevitable after 

cartilage injury. Therefore, the effects of inflammation on 

EACR should be taken into account. However, most of 

previous studies seem to have ignored and weakened the 

roles of inflammation and inflammatory factors during 

cartilage regeneration [42, 177]. Also, the local 

inflammatory microenvironment in the common cartilage 

defect models are not entirely consistent with those in 

patients with cartilage injuries, especially for OA patients 

[147, 150, 178]. Some improved in vitro and in vivo model 

systems that more closely resemble the actual 

inflammatory microenvironment in the damaged joint 

should be developed. 

 

Conclusion 

 

Despite certain challenges still exist, EACR is a 

promising, cost-effective strategy for injured cartilage. It 

can successfully repair the injured cartilage while 

avoiding exogenous regenerative approach-associated 

limitations. More importantly, it circumvents the complex 

processes involved in exogenous tissue regeneration, and 

thereby facilitates the clinical translational. The 

increasing understanding of the poor self-repair 

mechanisms underlying AC, the latest developments of 
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EACR and the challenges facing the present EACR will 

help researchers to explore problem-solving effective 

regenerative approaches. An interdisciplinary strategy 

that bridges tissue engineering with cell biology, 

biochemistry, physiology, and material science might 

further optimize EACR.  
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