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MALDI-TOF MS as a Novel Tool 
for the Estimation of Postmortem 
Interval in Liver Tissue Samples
Chengzhi Li1,2, Zhengdong Li2, Ya Tuo3, Dong Ma4, Yan Shi4, Qinghua Zhang4, Xianyi Zhuo4, 
Kaifei Deng2, Yijiu Chen2, Zhenyuan Wang1 & Ping Huang2

Estimation of the postmortem interval (PMI) is a complicated task in forensic medicine, especially 
during homicide and unwitnessed death investigations. Many biological, chemical, and physical 
indicators can be used to determine the postmortem interval, but most are not accurate. Here, we 
present a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) method that can be used for the estimation of PMI using molecular images and multivariate 
analyses. In this study, we demonstrate that both rat and human liver tissues of various PMIs (0, 2, 4, 
and 6days) can be discriminated using MALDI imaging and principal component analysis (PCA). Using 
genetic algorithm (GA), supervised neural network (SNN), and quick classifier (QC) methods, we built 
6 classification models, which showed high recognition capability and good cross-validation. The 
histological changes in all the samples at different time points were also consistent with the changes 
seen in MALDI imaging. Our work suggests that MALDI-TOF MS, along with multivariate analysis, can 
be used to determine intermediate PMIs.

Postmortem interval (PMI) estimation is an important task in daily forensic casework.
The physical changes that occur after death, including the cooling of the body, rigor mortis, and the devel-

opment of lividity, have long been recognized as early postmortem phenomena1. These signs continue to be the 
main basis for estimating the PMI1. For many years, various approaches have been used to determine the PMI, 
including examinations of thanatochemistry2, 3, DNA/RNA degradation4, 5, and forensic entomology6, 7. However, 
these methods estimate the postmortem interval using a few—or even just one—specific parameters, and their 
precision and time-frame of applicability are often limited. In recent years, studies of postmortem microbial com-
munities8–11, and postmortem metabolomics/lipidomics1, 12, 13, have emerged, and have been successfully applied 
to PMI estimation. These technologies may be a potential tool for PMI estimation in forensic practice.

Since its introduction in 1985 by Hillenkamp et al.14, matrix-assisted laser desorption ionization (MALDI) 
has seen rapid development in the life sciences and medicine15. An important component of the success of this 
technique has been MALDI imaging mass spectrometry (IMS) of tissue sections, which was introduced in 1997 
by Caprioli and coworkers16. The label-free nature and lack of requirement for prior knowledge make it highly 
suitable for both explorative, as well as comparative, research of various tissue samples17. The use of MALDI IMS 
offers the ability to investigate pathophysiological changes taking place directly in a tissue while retaining the 
histopathological context, allowing the simultaneous mapping of hundreds of peptides and proteins present in 
tissue sections, with a lateral resolution of approximately 50–75 microns18. MALDI IMS is evolving into a power-
ful tool for biomedical research19, and this technology has been applied to a variety of analyte classes, including 
pharmaceuticals20, 21, metabolites22, lipids23, peptides24, 25, and proteins26, 27.

When a rat or human dies, the internal organs will decay in a time-dependent manner. Therefore, the relative 
intensities of signals from peptides or proteins will vary by body organ and postmortem interval. To address 
the effect of the time since death on the decomposition of internal organs, we describe here results of a study on 
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postmortem rat and human liver tissues. We hypothesized that, as a rat or human body decomposes, the relative 
signal intensities from different peptides or proteins within the internal organs will change. To assess this hypoth-
esis, we measured rat and human liver samples at various time intervals after death (range = 0–144 hours) using 
MALDI-TOF MS on peptides and proteins, and used a profiling acquisition, imaging, and bioinformatics package 
for inspection and comparison of data sets.

Results
Observation of changes in rat and human liver samples at different PMIs with HE stain-
ing.  From a PMI of 0 h to that of 144 h, the severity of both rat and human liver cell autolysis continuously 
increased, as shown in the micrographs of postmortem liver cells (hematoxylin and eosin staining, 20× magni-
fication) (Fig. 1). At 0 h, all of the liver cells and cell nuclei were clearly visible. At 48 hours after death, the nuclei 
were observed to shrink, and partial degradation was seen in the hepatocytes (Fig. 1). After 96 hours, the nuclei 
completely disappeared, and 144 hours after death, the liver cell structure itself had mostly disappeared.

MALDI imaging of liver samples from rats and humans.  All of the liver tissue sections, obtained from 
different PMI groups, were examined using hematoxylin and eosin staining, as well as MALDI imaging. After 
acquiring imaging data from all the tissue sections, the FlexImaging 3.0 software program was used to select 
peptides with strong spectral signals to generate MALDI images (Fig. 2) for the different PMI groups. From the 
spectra, we found that most peaks were in the 700–4000 Da range (Fig. 3). Before the generation of ion density 
maps, the spectra were normalized to the total ion current to minimize spectrum-to-spectrum differences in 

Figure 1.  Histological changes at (a) 0, (b) 48, (c) 96, and (d) 144 h postmortem for liver tissues. (A) in SD rat 
liver samples; (B) in human liver samples.

Figure 2.  Ion signals showing an obvious change at different PMIs. (A) In SD rat liver samples; (B) in human 
liver samples.
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peak intensities. For the generated images, the peaks at m/z = 1364.038, 1461.061, and 1492.089 in the rat liver 
tissues, and 3197.037, 3233.081, and 3359.019 in the human liver tissues, for example, showed marked decreases 
in intensity between 0 h and 144 h postmortem (Fig. 2).

Processing MALDI IMS data using PCA.  Multiple spectra (n ≈ 150) per region of interest were selected 
from the MALDI IMS data. Comparisons of regions of interest for the different PMI groups were conducted with 
a principal component analysis (PCA) based on peptide or protein patterns. Using PCA, the different PMI groups 

Figure 3.  (a–d) Representative mass spectrum at (a) 0, (b) 48, (c) 96, and (d) 144 h postmortem for liver tissues. 
(e–h) Average peptide/protein profiles at (e) 0, (f) 48, (g) 96, and (h) 144 h postmortem for liver tissues. (A) In 
SD rat liver samples; (B) in human liver samples.
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were separated from each other successfully (Fig. 4). This means that the various peptides and proteins present in 
the rat and human liver samples change significantly with time after death.

Gel view of PMI group data.  The gel view displays all of the spectra from the loaded classes arranged into a 
pseudo-gel configuration. The x-axis records the m/z value, while the y-axis displays the running spectrum num-
ber originating from subsequent spectral loading. The peak intensity is expressed by a color code. The color bar 
and the y-axis indicate the relationship between the color of a peak and the corresponding intensity in arbitrary 
units. The intensities of the major peaks for each PMI group were significantly different from those of all other 
PMI groups (Fig. 5).

Figure 4.  Principal component analysis (PCA) of MALDI IMS data acquired in the liver samples at 0 h (red), 
48 h (green), 96 h (blue), 144 h (yellow) postmortem. (A) In SD rat liver samples; (B) in human liver samples.
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Differences in peaks at various PMIs and establishment of classification models.  Overall, 57 
peptide/protein peaks from rat liver samples, and 43 from human liver samples, showed significant differences 
in the spectra of the training group data sets generated by MALDI-TOF MS (Supplementary Tables S1 and S2). 
Peptide/protein peaks with m/z = 2825.524 and 1595.481 in rat liver tissues, and 3335.815 and 453.348 in human 
liver tissues, exhibited the greatest differences in peak intensity between different PMIs (p < 0.00001). Because of 
this, these peaks were plotted as 2D peak distributions (Fig. 6). Three algorithms, GA (optimized by adjusting the 
number of neighbors for k-nearest neighbor classification), SNN, and QC, were used for classification model con-
struction using spectral data from the training group generated by MALDI-TOF MS. The recognition capability, 
cross-validation, and overall accuracy of the models are presented in Tables 1 and 2.

Discussion
Precise estimation of the PMI has been difficult since the very beginning of forensic medicine. It is one of the 
fundamental tasks of the forensic pathologist summoned to the scene where a body has been found28. MALDI 
IMS is an effective tool that provides molecular images of tissues during the molecular discovery process29. It has 

Figure 5.  Gel view of data from different PMI groups. (A) In SD rat liver samples; (B) in human liver samples.

Figure 6.  Two-dimensional peak distributions of peptides with m/z = 2825.524, 1595.481, 3335.815, and 
453.348 for different PMI groups. (A) In SD rat liver samples; (B) in human liver samples.

Algorithm Model name Cross-validation (%) Recognition capability (%) Overall accuracy (%)

GA GA 92.16 95.50 92.20

SNN SNN 74.87 96.38 83.34

QC QC 79.85 79.53 75

Table 1.  Cross-validation and recognition capability of the three algorithms used to classify different PMIs in 
rat liver tissues.

http://S1
http://S2
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high speed and throughput, simple sample handling, and excellent reproducibility30. This powerful technology is 
widely used for proteome and peptidome imaging. By collecting mass spectra at discrete spatial points, one can 
generate ion images reflecting the localization of biomolecules. With this information, one can further map and 
study the 2D molecular profile of a tissue section. These benefits make it an ideal method for the estimation of 
PMI. The liver is optimal for this process because it exhibits autolysis, rapid putrefaction, and the presence of a 
homogenous cell population, which alleviates the effect of between-cell variation31.

MALDI IMS is being used increasingly often for disease diagnosis and classification32, 33. In this study, we 
investigated the use of MALDI IMS for profiling the proteins and peptides in rat and human liver tissue samples 
of different PMIs. The peaks at m/z = 1364.038, 1461.061, and 1492.089, for example, in rat liver tissues, and 
3197.037, 3233.081, and 3359.019 in human liver tissues, strongly decreased in intensity with increasing PMI 
(Fig. 2). These changes detected with MALDI IMS are consistent with the histological changes in rat and human 
liver tissues with intermediate PMIs Fig. 1. In our previous study31, we also found the infrared microspectral 
imaging changes were consistent with pathological postmortem changes in rat liver tissues.

The intensities of peptide/protein peaks, such as m/z 1595.481, 2825.524, 1426.773, 3810.226, 4621.661 in 
rat liver tissues and 453.348, 3335.815, 3208.154, 616.574, 3476.852 in human liver tissues, changed significantly 
from time zero to 144 h postmortem. In total, four protein signals in rat liver tissues, and three in human liver tis-
sues were identified (Tables 3 and 4). At 48 h postmortem, some new peaks appeared both in rat and human liver 
tissues, suggesting that the liver peptide/protein degraded obviously on account of autolysis or decomposition. At 
96 h postmortem, some peaks disappeared gradually, suggesting that the liver peptide/protein degraded seriously. 
After 144 h postmortem, few or no peaks can be detected by MALDI-TOF MS system, suggesting that the liver 
peptide/protein degraded completely. Our results showed that the significantly changed peptide/protein peaks 
in rat liver tissues were not the same as in human liver tissues. That may be result from the difference of internal 
environments, such as enzymes activity and microbial activities, in rat and human livers. Though the constructed 
PMI classification models with a high recognition capacity and good cross-validation in both the rat and human 
liver tissues, the model built in rats can’t be used to predict PMI in humans. Overall, the postmortem changes in 
rat liver tissues were similar with human liver tissues.

PCA is a common mathematical technique that is used for the analysis, visualization, and compression of 
biological data. The primary goal of PCA is to reduce the dimensionality of a data set, while simultaneously 
retaining the information present. This technique transforms the original variables, defined by peaks intensities, 
to new variables, which are called the principal components (PCs), which best explain the variance in the data 
set18. This variable transformation is defined in such a way that the first PC has the largest possible variance, with 
the ultimate goal of discarding the components that are not significant, while reconstructing images that contain 
most of the original information18.

In this study, MALDI imaging data for samples taken at PMIs of 0 h, 48 h, 96 h, and 144 h in both rat and 
human liver tissues were analyzed using PCA. The PCA score plots showed that the different groups were well 
separated from each other for both rat and human liver tissues Fig. 4. Respectively, PC1, PC2, and PC3 describe 
36%, 15%, and 12% of the original observation variability in rat liver tissues, and 30%, 19% and 11% in human 
liver tissues. These were chosen to generate score plots (Fig. 4). The potential chemical markers that contrib-
uted most to the differences of the different time groups were observed from the loading plot. In this plot, ion 
signals at m/z = 2825.524, 1595.481, 1426.773, 3810.226, and 3905.093 in rat liver tissue, and 790.992, 453.348, 
3476.852, 3335.815, and 616.574 in human liver tissue were selected as potential markers for the estimation of 
PMI. Generally, the intensity of these ion signals exhibited large differences among the different PMIs.

In our study, the GA, SNN, and QC algorithms were used to build classification models based on the MALDI 
IMS data set derived from the different PMI groups. The classification of different time group data yielded high 
recognition capacity and good cross-validation in both the rat and human liver tissues (Tables 1 and 2). The appli-
cation of our model to different test sets also achieved high accuracy in discriminating PMI groups. In short, we 
generated classification models both in rat and human liver tissues based on MALDI IMS-derived spectral data, 
and these models were well suited for the accurate estimation of PMI.

Previous studies have shown notable trends in the relative abundances of different bacterial taxa in the buccal 
cavities and rectums of rat corpses, as well as the internal organs, buccal cavities, and blood of human corpses 
throughout the decomposition process9, 34. Metcalf et al. also found that postmortem microbial communities 
changed in a clock-like manner that provided an estimate of absolute PMI, which is similar to the use of the 
development of fly larvae to estimate the PMI10. In this study, we found that the peptides or proteins of the rat 
and human livers also showed obvious changes at different PMIs. Takako Sato et al. detected 70 metabolites in 
cardiac blood and found that among these, 25 metabolites had a strong statistical correlation with the PMI, which 
was similar to the report of Donaldson et al.1, 12. Kaszynski et al. identified 175 and 163 metabolites in muscle and 
serum samples of mice, respectively, and found that 17 (9.7%) and 14 (8.5%) of the total number of metabolites 
demonstrated significant correlation with the PMI35. In our study, we detected 57 and 43 peaks in rat and human 

Algorithm Model name Cross-validation (%) Recognition capability (%) Overall accuracy (%)

GA GA 80.96 91.07 90.73

SNN SNN 88.12 95.54 92.40

QC QC 82.59 85.71 82.60

Table 2.  Cross-validation and recognition capability of the three algorithms used to classify different PMIs in 
human liver tissues.
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liver tissues, respectively, and found that these peaks had a strong statistical correlation with the PMI. In general, 
the results of this study in rat livers were in good agreement with our previous studies31, 36. To date, this study is 
the first to combine MALDI imaging mass spectrometry with multivariate analysis for the estimation of postmor-
tem interval in both rat and human models.

Although MALDI IMS is a promising method for PMI estimation, it also has limitations. The sample prepa-
ration process must be carried out as quickly as possible without exposing the samples to air, moisture, or high 
temperatures. Also, all types of sample treatments, including cutting, washing, or matrix application, can lead 
to sample contamination and molecular diffusion, which could negatively affect the reproducibility of the data, 
complicate the analysis, or affect the quality of the image37. Additionally, in this work, we only studied rat and 
human samples at constant temperature. The effects of various factors, such as temperature, humidity, and cause 
of death, should be considered in future studies.

In conclusion, we demonstrated that MALDI IMS, combined with multivariate analysis, can be utilized to 
estimate intermediate PMIs based on protein or peptide signatures in rat and human liver tissue samples. Large 
correlations between MALDI IMS and histological changes were also found in both rat and human liver tissues. 
The classification models constructed can be used for the estimation of PMI under specific conditions.

Materials and Methods
Materials and instruments.  Trifluoroacetic acid, acetonitrile, and ethanol were purchased from 
Sigma-Aldrich (St. Louis, MO). An Autoflex III SmartBeam MALDI-TOF MS system, MTP Slide Adapter 
II, ImagePrep, conductive slides, sinapinic acid, and α-cyano-4-hydroxy cinnamic acid were purchased from 
Bruker Daltonics (Bremen, Germany). Optimum cutting temperature (OCT) compound was obtained from Leia 
(Leica Microsystems Nussloch GmbH, Germany). A peptide calibration standard was also obtained from Bruker 
Daltonics, which included angiotensin II, angiotensin I, substance P, bombesin, adrenocorticotrophic hor-
mone clip 1–17, adrenocorticotrophic hormone clip 18–39, somatostatin 28, and rennin substrate. A Labconco 
Centrivap cold trap and concentrator was obtained from LabconcoCorp. (Kansas City, MO, USA). A Leica CM 
1950 cryostat was purchased from Leica (Leica Biosystems Nussloch GmbH, Germany).

Sampling procedures.  Thirty-six adult Sprague-Dawley rats weighing between 250 and 300 g, and 24 in 
vitro right posterior lobe of livers (human) weighing 200 g, were kept in an incubator under constant conditions 
(23 ± 1 °C, 30–45% relative humidity). Before euthanasia by mechanical asphyxia, the rats were sedated with 
subcutaneous injection of phenobarbital sodium (50–60 mg/kg). Rat liver samples were collected by dissection 
at four PMIs (0, 48, 96, and 144 h). In vitro right posterior lobe of livers (human) were obtained from individuals 
who suffered sudden cardiac death or car accident, and the corpses were kept in a freezer starting immediately 
after death (Supplementary Table S3). The time when a corpse was dissected was marked “0 h”. In vitro right pos-
terior lobes of livers (human) were collected after dissection at four “PMIs” (0, 48, 96, and 144 h). For sampling, 
the right posterior lobe of livers (human) were cut into broad strips using two parallel razor blades mounted 8 mm 
apart, and the strips were subsequently trimmed to an average size of 10 mm × 10 mm × 8 mm. Then, the liver 
strips were washed with phosphate-buffered saline (PBS), loosely wrapped in aluminum foil, and frozen in liquid 
nitrogen at temperatures below −70 °C by gently lowering the tissue into liquid nitrogen and maintaining it for 
30–60 s. Finally, all samples were stored in a freezer at −80 °C until they were required for analysis.

This study was approved by the Science and Ethics Committee of Xi’an Jiaotong University Health Science 
Center, and the methods were carried out in accordance with the approved guidelines and regulations. Informed 
consent was obtained from next-of-kin relatives of the cases.

Protein
Meas. 
M/z Calc. MH+

Number of 
matched peptides

Mascot 
Score Sequence

uncharacterized protein 
LOC102151723 9934.369 9939.046 6 56.10 TWAVVSDAVGCVEGALRPVAQVGQHQAPVTQVGQHQAPLTQITMSVY 

TVAALPGPWGCSRDSTTACSALAPWPSPSLPTATLPAHGAQTVPLLGVHI

basic proline-rich 
protein-like 6274.792 6275.068 4 54.80 LLQADQHRAPSTPAPTADGAGGSAASPAHPEPQPIAGGGGGGGGGA 

GTSSPAAGARPGPPRPAPPPACR

olfactory receptor 
2G3-like 6252.396 6258.314 7 63.20 ALGTCGSHLLVVSLFYGTITAVYIQPNSSYAHTHGKFISLFYTVVTPTLNPLIYTLR

interferon omega 5 
precursor 3918.777 3916.990 6 59.30 TQAISVLHEMLQQTFLLFHTERSSAAWDSTLLDK

Table 3.  The identification of the potential markers used for the estimation of PMI in rat liver tissues.

Protein Meas. M/z Calc. MH+
Number of 
matched peptides

Mascot 
Score Sequence

Rho GTPase-
activating protein 24 3233.339 3233.619 4 44.20 MGILNSDTLGNPTNVRNMSWLPNGYVTLR

Amine oxidase 3327.452 3328.533 5 32.70 QPVDRIYFAGTETATHWSGYMEGAVEAGER

Small vasohibin-
binding protein 686.286 686.329 1 14.50 MDPPAR

Table 4.  The identification of the potential markers used for the estimation of PMI in human liver tissues.

http://S3
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Sample preparation.  For MALDI-TOF MS analysis, serial sections (10 µm) were cut from the frozen tissue 
samples with a Leica CM 1950 cryostat at −20 °C. The sections were placed with forceps onto either a regular glass 
slide for hematoxylin and eosin (HE) staining or an indium tin oxide-coated glass slide (Bruker Daltonics) for 
MALDI analysis. Prior to rinsing with 70% ethanol and 100% ethanol for 12 s, the sections for MALDI analysis 
were transferred to a cold room (−4 °C) and dried for 10 min in a Labconco Centrivap cold trap and concentra-
tor. After washing with ethanol, the sample was dried again. Tissue fixation and removal of salts and other con-
taminants was carried out through a series of ethanol/water washing steps, as described in previous studies37–40. 
Later, the MALDI matrix was applied using the ImagePrep system, and the standard protocol provided with the 
instrument was followed. A solution of sinapinic acid (10 mg/mL) in water/acetonitrile 40:60 (v/v) with 0.2% 
trifluoroacetic acid was used as the matrix for the MALDI measurements of rat and human liver tissues. The 
Bruker default method consisted of 5 phases in total, each including individual cycles of incubation, nebulization 
and dehydration. Phases 2–5 were controlled by an optical sensor, which measured the moisture, matrix layer 
thickness, and dehydration parameters, by monitoring the scattered light intensity by refraction index matching41. 
The amount of matrix was then applied in a defined range (minimum/maximum number) of cycles based on a 
given sensor signal or the defined range of spray cycles that are specified within each phase41. Spray time was 
approximately 2 s, and incubation time was 30 s. The detailed pretreatments for peptide/protein analysis, such as 
fresh frozen tissue sample preparation and matrix application, were prepared as reported in earlier studies37–42.

MALDI-TOF MS analysis.  Analysis of tissue sections was performed using an Autoflex III SmartBeam 
MALDI-TOF mass spectrometer equipped with a 337-nm Nd:YAG laser. The spectra were recorded in the pos-
itive linear mode (delay: 200 ns; ion source 1 (IS1) voltage: 20.00 kV; ion source 2 (IS2) voltage: 18.90 kV; lens 
voltage: 6.5 kV; sampling rate, 0.1 GS/s; mass range: 400 Da to 10,000 Da; peak assignment tolerance: 20 ppm). For 
MALDI IMS data acquisitions, 500 shots were summed per array position with a spatial resolution of 1000 µm. 
Data acquisition was carried out at 44% of the maximum laser energy. Software used for data acquisition was 
Flex Control 3.0 (Bruker Daltonics) with the LP_ProtMix method,which is mainly used for peptides or proteins 
analysis. Prior to the analysis of a tissue sample on the plate, external calibration was accomplished to minimize 
the mass shift by using a calibration mixture of peptides and proteins, which was deposited on the surface of the 
sample support materials and covering the mass range of 700–4000 Da.

Statistical analysis and spectral classification.  The ClinProTools software 2.2 (Bruker Daltonics) was 
used for the analysis of all imaging data derived from the sections of the rat and human liver samples taken at 
different PMIs. All data comparisons were performed equally, summarizing signals above a signal-to-noise ratio 
greater than 3.0. All spectra were routinely baseline-corrected using the Top Hat algorithm with a 10.0% mini-
mal baseline width, and smoothed using the Savitzky–Golay algorithm with a 5.0 width (m/z) and 2 cycles. The 
intensities of the peaks of interest were normalized with the peak intensity of an ACTH internal standard. The 
pretreated data were then used for visualization and statistical analysis using ClinProTools.

Differences in peptide peaks among the different time groups were selected using the peak intensity as the 
basis of statistical differences. Built-in mathematical models in ClinProTools2.2 (the GA, SNN algorithm, and 
QC algorithm) were then used to select peptide peaks and set up classification models to determine the optimal 
separation planes between samples from different PMIs.

After each model was generated, a random cross-validation process was carried out with the software, and the 
percent to leave out and number of iterations were set at 20 and 10, respectively. The models were then validated 
using the test set in a blinded manner. To determine the accuracy of the class prediction model, the software 
quantifies recognition capability and cross-validation. Recognition capability describes the performance of an 
algorithm, i.e., the proper classification of a given data set43. Cross-validation is a measure of the reliability of a 
model and can be used to predict how a model will behave in the future. This method is used for evaluating the 
performance of an algorithm for a given data set and under a given parameterization43. To minimize sampling 
errors, the selection for the training and test sets was repeated 30 times. The classification results given in the 
tables are the average of the 30 single classification results. For multivariate analyses, PCA was performed to 
observe the differential distribution of masses at the surfaces of the tissues.

Peptide/protein Identity Assignment.  MALDI MS spectra of each selected peptide were obtained using an 
Autoflex III SmartBeam MALDI-TOF MS instrument operated in linear positive ion mode with spectra acquired in 
the range of m/z 400–10,000. The obtained spectra were processed using flexAnalysis 3.3 (Bruker Daltonik). Data were 
submitted to Mascot Server 2.5.14 (Matrix Science, Boston, USA) and run against the SwissProt database (SwissProt 
2016_10) in human sample and NCBIprot database (NCBIprot_20161127) in rat sample to match the peptide 
sequences to their corresponding intact proteins. Trypsin was chosen as the protease in the search parameter. SwissProt 
database search included 552884 sequences, and 197760918 residues; specifically from the taxonomy “Homo sapiens” 
20121 entries were searched. NCBIprot database search included 106762850 sequences, and 39119668168 residues; 
specifically from the taxonomy “Other mammalia” 1787181 entries were searched. The protein N-term, was selected 
for modification in human samples, and carbamidomethyl (C) for rat samples, respectively (Tables 3 and 4).

Application of the complete classification models.  Cadaver cases and sample collection.  Liver sam-
ples derived from four human corpses (2 males and 2 females) from routine forensic casework with postmortem 
intervals between 6–168 h were collected. This study was approved by the Science and Ethics Committee of Xi’an 
Jiaotong University Health Science Center, and the methods were carried out in accordance with the approved 
guidelines and regulations. Informed consent was obtained from next-of-kin relatives of the cases. PMIs were 
certified by local police departments. The age, sex, cause of death, ambient temperature, and PMI at the time of 
sampling were documented for each corpse (Table 5).
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MALDI-TOF MS analysis and PMI classification.  The details of the MALDI-TOF MS analysis were described 
in the section of MALDI-TOF MS analysis. After measurements of each collected sample, the representative 
data were then classified by the complete classification model of human liver tissues. The results were showed in 
Tables 6, 7 and 8.

Effectiveness of the complete classification models.  For the complete classification models, we tested whether it 
is possible to discriminate corpse liver tissues of different PMIs in routine forensic casework. The results showed 
that Case A (62 h postmortem), B (112 h postmortem), C (168 h postmortem), D (6 h postmortem) was classified 
for “48 h postmortem”, “96 h postmortem”, “144 h postmortem”, “0 h postmortem” with a high possibility, respec-
tively, by all classification models. These results indicate that the classification models we have set up are useful, 
additional tool for the PMI estimation in routine forensic casework.
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