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Abstract
Background  Nucleic acid-based gene therapy is a promising technology that has been used in various applications such 
as novel vaccination platforms for infectious/cancer diseases and cellular reprogramming because of its fast, specific, and 
effective properties. Despite its potential, the parenteral nucleic acid drug formulation exhibits instability and low efficacy 
due to various barriers, such as stability concerns related to its liquid state formulation, skin barriers, and endogenous 
nuclease degradation. As promising alternatives, many attempts have been made to perform nucleic acid delivery using a 
microneedle system. With its minimal invasiveness, microneedle can deliver nucleic acid drugs with enhanced efficacy and 
improved stability.
Area covered  This review describes nucleic acid medicines' current state and features and their delivery systems utiliz-
ing non-viral vectors and physical delivery systems. In addition, different types of microneedle delivery systems and their 
properties are briefly reviewed. Furthermore, recent advances of microneedle-based nucleic acid drugs, including featured 
vaccination applications, are described.
Expert opinion  Nucleic acid drugs have shown significant potential beyond the limitation of conventional small molecules, 
and the current COVID-19 pandemic highlights the importance of nucleic acid therapies as a novel vaccination plat-
form. Microneedle-mediated nucleic acid drug delivery is a potential platform for less invasive nucleic acid drug delivery. 
Microneedle system can show enhanced efficacy, stability, and improved patient convenience through self-administration 
with less pain.

Keywords  Microneedle · Nucleic acid · mRNA · siRNA · Vaccination

Introduction

Gene therapy is a promising technology for treating life-
threatening diseases by engineering a specific gene target 
(Mulligan 1993). In response to the recent COVID-19 pan-
demic, DNA and mRNA vaccines have been shown the util-
ity of nucleic acid-based vaccines with a rapid response to 
emerging infectious diseases as safe and useful treatment 
options (Haynes 2021; Dagan et  al. 2021). In addition, 
nucleic acid drug has been demonstrated to have a great 
potential for decades as a cancer vaccine that may not be 
achievable with conventional vaccine approaches (including 

previous small molecules and protein-based therapeutics 
approach or tools) for cellular reprogramming or trans-dif-
ferentiation (Kwon et al. 2018; Pardi et al. 2018; Hu et al. 
2020; Morshed et al. 2020).

Despite its potential, delivering a nucleic acid to target 
sites such as the nucleus and the cytoplasm inside the cell 
of target tissues faces several hurdles due to its charged and 
macromolecular nature (McCaffrey et al. 2015; Hu et al. 
2020). First, an exogeneous nucleic acid medication must 
pass through the skin's tight junctions and then the cell 
membrane or nucleus. Then it needs to resist degradation 
by endogenous enzymes such liver metabolism and nucle-
ases until its internalization into the cell (Sorrentino 2010). 
As a result, it relies on a drug delivery system that can pro-
tect against nuclease and protein binding while allowing for 
enhanced membrane penetration (McCaffrey et al. 2015; 
Pardi et al. 2018; Hu et al. 2020). Many previous studies 
on nucleic acid medicines have employed intramuscular 
or subcutaneous injection as a parenteral method coupled 
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with nanocarriers (Pardi et al. 2018; Hu et al. 2020). How-
ever, these parenteral injection routes might be unpleasant 
(I-Hong Hsu 2016). In addition, they need medical personnel 
to perform the injection. Furthermore, nucleic acid medi-
cines are less stable since the medication must be reconsti-
tuted in a liquid form prior to injection, which may present 
distribution, storage, and shelf-life concerns. Significant sta-
bility issues of mRNA vaccines for COVID have recently 
been addressed in this respect (Schoenmaker et al. 2021).

Microneedle (MN) can be used as one promising 
approach for nucleic acid delivery. As one of transdermal 
drug delivery systems, MN can create physical channels for 
drugs to bypass the stratum corneum layer, which serves 
as a strong barrier for transdermal administration. With a 
minimally invasive manner, MN system allows nucleic acid 
penetration and self-application. It also improves patient 
compliance by enhancing user convenience due to its simple 
application technique with reduced discomfort compared to 
parenteral preparations. It also has the benefit of improved 
stability of drugs because drugs are encapsulated in a dried 
state (Pearton et al. 2012; Liao et al. 2017; Schoenmaker 
et al. 2021).

This review examines the current state and characteris-
tics of nucleic acid drugs and delivery systems, as well as 
a brief overview of the various types and characteristics of 
microneedle systems. Recent advancements in MN-based 
nucleic acid drugs for vaccination against infectious dis-
eases or cancer are also discussed. Furthermore, research 
on microneedle formulation and morphology, as well as 
combination approaches of microneedles with other delivery 
systems, is reviewed as strategies to improve the transfection 
efficacy of microneedle-based nucleic acids. Finally, limita-
tions and factors to consider when developing microneedles 
for nucleic acid delivery are discussed.

Nucleic acid drugs

Plasmid DNA

Plasmid is a circular double-stranded DNA molecule that 
originates from the cytoplasm of bacteria (Wolff et al. 1990). 
It can be applied to gene therapy by expressing target pro-
tein in cells. It has the advantages of easy handling (such as 
storage and transport due to its high stability) and easy mass 
production. As a DNA vaccine, it can be used for treating 
infectious disease or cancer by encoding tumor-associated 
antigen (Lopes et al. 2019; Eusébio et al. 2021). Plasmid 
DNA has been studied in various applications such as 
regenerative medicine using induced pluripotent stem cells 
(iPSCs) by transfecting plasmid DNA encoding reprogram-
ming factors like Yamanaka factor (Karow et al. 2011).

However, because plasmid DNA may contain bacteria-
derived foreign genes, it may induce adverse effects such 
as inflammation (Yew et al. 2000). Furthermore, it faces 
an issue of poor transfection efficiency that needs to be 
addressed. Researchers have utilized viral vectors, non-viral 
vectors, and physical delivery system to improve its transfec-
tion efficiency (Chen et al. 2016).

In the case of using a viral vector, it may show a relatively 
high expression level. However, it has limited payload due to 
the size of the viral vector with a poor productivity (McCle-
ments and Maclaren 2017). Additionally, immunogenicity 
of viral vector itself limits repeated administration such as 
boost inoculations (Hardee et al. 2017). More critically, the 
viral-vector delivery system has shown significant risks of 
potential insertion mutation and carcinogenicity. As an alter-
native, a non-viral vector using cationic polymer or lipid 
nanoparticles can alleviate immunogenicity and decrease 
safety concerns associated with a viral vector (Schleef 2013; 
Hardee et al. 2017). However, it also has the issue of low 
expression efficiency that needs to be addressed. Recent 
achievements in non-viral vectors and physical delivery sys-
tems have enhanced the transfection efficiency and reduced 
the toxicity (Hardee et al. 2017; Kulkarni et al. 2018).

siRNA

In 1998, Fire et  al. discovered that RNA interference 
(RNAi) could be utilized for gene therapy (Fire et al. 1998). 
siRNA can mediate target mRNA degradation by forming 
RNA-molecules induced Silencing Complex (RISC) in a 
sequence-specific manner, followed by knock-down expres-
sion of a target gene encoding a protein (Setten et al. 2019; 
Hu et al. 2020). Unlike monoclonal antibodies or small 
molecules medicines designed to recognize complex struc-
tures of target proteins using screening technologies such as 
structure activity relationship (SAR), siRNA can inhibit a 
specific mRNA with a sequence-specific manner, allowing 
researcher to target specific genes of interest (Zhang et al. 
2021). Therefore, siRNA can be applied to treat a wide spec-
trum of diseases with a comparatively short development 
period (Hu et al. 2020).

However, in the early stage of research on siRNA-based 
therapies, systematically administered siRNA without a 
carrier (naked) was rapidly degraded by nuclease and rig-
orously excreted owing to its small size, resulting in poor 
pharmacokinetics and low efficacy (Huang et al. 2011). 
siRNA shows immunostimulatory properties by binding 
to pattern recognition receptors (PRRs) such as TLR3 at 
several locations (for example surface of target cell, endo-
somal, or cytosol level), which induces adverse effects such 
as inflammation (Cho et al. 2009). Furthermore, siRNA may 
face difficulties of escaping from the endosome or lysosome 
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to the cytoplasm after siRNA enter the cell, it may show a 
low efficiency (Kim et al. 2019; Hu et al. 2020).

These difficulties can be alleviated by the development of 
chemical modification and delivery systems such as nano-
carriers, which can protect systemically administered siRNA 
from various degrading enzymes or serum protein binding, 
thus greatly improving its stability and pharmacokinetic 
behaviors (Khvorova and Watts 2017; Setten et al. 2019; 
Hu et al. 2020). These developments have also increased 
siRNA intracellular permeability with improved efficacy. As 
a result, various therapeutics using advanced siRNA system 
have been reported, including cancer therapy. ONPATTRO® 
(Patisiran), the first authorized siRNA medicine, was suc-
cessfully introduced in 2018, demonstrating the promise of 
siRNA treatment, followed by GIVLAARI® (Givosiran) in 
2019 and OXLUMO® (Lumasiran) in 2020, all of which 
were successfully commercialized. Recently, the European 
Commission (EC) approved LEQVIO® (inclisiran) for the 
treatment of adults with hypercholesterolemia or mixed dys-
lipidemia. In September 2021, LEQVIO® received NICE 
(National Institute for Health and Care Excellence) approval 
for use by the National Health Service in the UK. Most of 
siRNA medicines including many other siRNA candidates 
in clinical trials are targeting rare diseases or diseases that 
urgently need novel and effective therapies (Zhang et al. 
2021).

mRNA

mRNA is a single-stranded RNA that encodes proteins. 
It usually has a rapid onset and better protein expression 
than plasmid DNA because protein expression from mRNA 
through translation is feasible at the cytoplasm level, as 
opposed to pDNA which must enter the nucleus (Kwon et al. 
2018; Liu 2019). In addition, it is safe since mRNA poses no 
potential risk of insertional mutagenesis or carcinogenesis 
shown in plasmid DNA treatment. mRNA is finally degraded 
by endogenous enzymes inside or outside of cells.

However, like an siRNA, the intrinsic poor stability of 
mRNA limits its applications in its early stage of develop-
ment (Kwon et al. 2018). mRNA can also induce immune 
responses due to its innate immunostimulatory properties 
by stimulating several pattern recognition receptors (PRRs) 
such as TLR7 and TLR8 on the cell surface and endosomal 
levels (Heil 2004; Pardi et al. 2018). These immunological 
properties can also lead to decreased expression levels of 
mRNA caused by type-1 interferon secretion (Pardi et al. 
2018). Furthermore, an efficient synthesis method of mRNA 
is lacking. As a result, mRNA has not received much atten-
tion compared to other nucleic acid drugs in the early stage 
of gene therapy development.

In the 1990s, along with the development of a simple and 
efficient method for in vitro transcription (IVT) of mRNA 

(Wolff et al. 1990; Sahin et al. 2014), the stability and effi-
cacy of mRNA were much improved by introducing chemi-
cally modified nucleosides or nanocarrier complexes, similar 
to siRNA (Karikó et al. 2008; Kwon et al. 2018). Further-
more, expression efficiency could be greatly increased by 
sequence optimization each structure of mRNA (for exam-
ple, 3’ and 5’ untranslated regions and poly A tail) (Kwon 
et al. 2018) and minimizing immune stimulation caused by 
dsRNA contamination through additional purification such 
as size exclusive chromatography (Karikó et al. 2011). In 
recent years, these advances have made mRNA a promising 
alternative to plasmid DNA. Through global inoculation, the 
safety and efficacy of mRNA vaccines have been consider-
ably established (Polack et al. 2020). Not only mRNA vac-
cines for infectious diseases, but also mRNA technologies 
can be applied as regenerative medicine via induced pluri-
potent stem cells or cancer vaccines using tumor-associated 
antigen encoding mRNA in a sequence-specific manner, 
showing significant potential and feasibility of gene therapy 
(Kwon et al. 2018; Pardi et al. 2018).

Nucleic acid drug delivery

To be effective, a nucleic acid drug should enter the body via 
a parenteral route and permeate the lipid membrane barrier 
of the cell so that it could be delivered to its site of action 
such as the cytoplasm or nucleus (McCaffrey et al. 2015; Hu 
et al. 2020). Although researchers have discovered several 
types of cells that can absorb nucleic acids, permeation of 
nucleic acid into cells is regarded a difficult process for most 
cells due to characteristics of nucleic acid such as a large 
size and surface charge. Therefore, a well-designed delivery 
system for nucleic acid to reach the target cell is a critical 
element that affects its clinical efficacy (McCaffrey et al. 
2015; Pardi et al. 2018; Hu et al. 2020).

Injection of naked nucleic acid drug

A naked nucleic acid delivery system refers to a system in 
which a nucleic acid drug has no covalent or non-covalent 
association with the delivery system. Because it is directly 
exposed to the environment it makes contact with, naked 
nucleic acid cannot be protected from various degrading 
enzyme or binding proteins. Thus, it can be metabolized or 
excreted rapidly (Huang et al. 2011; Hu et al. 2020). It is also 
difficult for a naked nucleic acid to permeate the cell mem-
brane due to its negative charge and large size. Even when 
nucleic acid is introduced into cells, it is usually difficult to 
escape from the endosome or lysosome (Kim et al. 2019; 
Patel et al. 2019). In addition, as mentioned above, nucleic 
acids can activate the immune system by stimulating various 
PRRs at the surface, cytosol, or endosome levels, inducing 
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interferon secretion, thereby causing inflammation or reduc-
ing protein expression efficiency. Therefore, to utilize naked 
nucleic acid, it is necessary to use chemical modified nucleo-
sides to prevent degradation or reduce immune stimulation 
(Hu et al. 2020).

On the other hand, facilitated excretion of naked nucleic 
acid drugs by kidney allows chemically modified nucleic 
acids to target renal diseases (Huang et al. 2011; Hu et al. 
2020). Rather than systemic injection, naked nucleic acid 
drugs can be administered directly into specific organs or 
tissues such as the eye with comparatively low excretion or 
low nuclease levels (Hu et al. 2020). In addition, immune 
stimulating properties by activating PRRs can be an effective 
strategy to deliver nucleic acid vaccine (Pardi et al. 2018; 
Hu et al. 2020).

Non‑viral vectors

Non-viral vectors for the delivery of nucleic acid drugs 
are expected to increase efficacy of nucleic acid drugs by 
preventing them from degradation and renal excretion, 
thus facilitating transcellular delivery by endocytosis with 
reduced charged nature of the complex or inhibiting their 
interactions with non-specific plasma proteins (Ramamoorth 
and Narvekar 2015). They are expected to induce endoso-
mal escape through a variety of mechanisms, including pore 
formation by endosomolytic agents, membrane fusion by 
fusogenic agents such as peptides or lipids, and an osmotic 
pressure-based proton-sponge mechanism (Patel et al. 2019; 
Hu et  al. 2020). Non-viral vectors can be utilized with 
nucleic acids by forming cationic lipid/polymer complexes, 
cationic or ionizable lipid nanoparticles (LNPs) (Kulkarni 
et al. 2018), cell penetrating peptides (CPPs) such as RALA 
peptides (McCaffrey et al. 2016), or by bioconjugating with 
N-acetylgalactosamine (GalNAc) (Hu et al. 2020). Several 
non-viral vectors and their characteristics are described in 
Table 1. The structure or composition of nanocarriers can be 
optimized with mRNA followed by characterization such as 
net charge, size, and pKa of the delivery system (Yin et al. 
2013; Yang et al. 2017; Ahmad et al. 2019). These non-viral 
vector systems have shown enhanced efficiency for deliver-
ing nucleic acid drugs with less toxicity (Hardee et al. 2017; 
Kulkarni et al. 2018). Furthermore, by conjugation with a 
specific ligand to a nanocarrier capable of interacting with 
a surface receptor of a target cell, a nucleic acid drug can 
be more selectively delivered to a target tissue or cell, thus 
increasing its therapeutic efficacy and reducing side effects 
(Kim et al. 2014; Hu et al. 2020).

The escape of nucleic acids from endosome or lysosome 
into the cytoplasm in cell has been an important issue in 
recent years (Patel et al. 2019). Several studies have found 
that only a very small fraction (less than 2%) of endocytosed 

nucleic acids can escape into the cytoplasm (Gilleron et al. 
2013; Kim et al. 2019). Several strategies for endosomal 
escape have been evaluated. One of such strategies using 
pH-sensitive components such as ionizable lipids has been 
shown to be able to enhance the escape of nucleic acids from 
endosome (Pack et al. 2005; Ahmad et al. 2019). Its mecha-
nism is called proton-sponge mechanism. When the pH 
inside the endosome or lysosome changes, the pH-sensitive 
unit becomes positively charged, allowing waters and ions 
to flow into the endosome due to increased osmotic pressure, 
which causes endosomal instability and escape of nucleic 
acids (Ahmad et al. 2019). In addition, various endosomo-
lytic agents are being tested with materials such as peptides, 
toxins, polymers, and small molecules (Ahmad et al. 2019). 
However, cytotoxic effects of these agents significantly 
limit their applications. Recently, Herrera et al. (2021) have 
shown that cholesterol substitution in LNPs can enhance 
endosomal escape of mRNA encoding a galectin8-GFP 
reporter protein capable of tracking damaged endosomes, 
supporting the strategy of modifying the structural relation-
ship of components interacting with sterol components.

LNP is a lipid-based carrier composed of lipids, phospho-
lipids (for structure support), cholesterol (stabilizing agents), 
and polyethylene glycol (PEG)-lipids (increase half-life) 
(Cullis and Hope 2017). Depending on charge properties 
of LNP at neutral pH conditions, LNPs can be classified 
into three types: ionizable LNPs, cationic LNPs, and neu-
tral LNPs. Ionizable LNPs appears in an uncharged state 
throughout circulation. However, in low-pH environments 
such as endosomes and lysosomes, they can be protonated 
to contribute to endosomal escaping of nucleic acid to the 
cytoplasm as mentioned above (Ahmad et al. 2019; Hu et al. 
2020). Cationic LNPs usually show positive surface charge 
in circulation. They have immunogenicity or interactions 
with serum proteins induced by static electricity, resulting 
less efficiency than ionizable LNP (Hu et al. 2020). Cationic 
LNPs also show higher in vivo toxicity than ionizable LNPs. 
As a result, most pharmaceutical companies and institutes 
are devoting a lot of resources to the development of novel 
ionizable lipids.

For siRNA, conjugation with a nanocarrier or siRNA with 
some ligands has been well demonstrated as a good deliv-
ery strategy (Osborn and Khvorova 2018; Hu et al. 2020). 
These conjugated siRNAs can enhance their delivery and 
cellular uptake, promote targeting due to ligand properties 
of conjugation molecules, and improve dose efficiency with 
fewer side effects (Hu et al. 2020). In addition, as compared 
to LNP, conjugation has the advantage of having smaller size 
with less toxicity and immunogenicity (Osborn and Khvo-
rova 2018; Hu et al. 2020). N-acetylgalactosamine (GalNAc) 
sugar is a representative conjugation molecule. Two com-
mercially available siRNA drugs (givosiran and lumasiran) 
employ this platform. GalNAc has ligand properties for 
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specificity on asialoglycoprotein receptor which is widely 
distributed in the liver. It has demonstrated an enhanced effi-
cacy with a long half-life, making it an important platform 
for siRNA delivery (Zhang et al. 2021).

Physical delivery system

Physical delivery systems of nucleic acids can be classified 
according to their delivery method which might be direct 
injection, electroporation, gene gun, or MNs. Although 
a physical delivery system uses a straightforward deliv-
ery process to enhance delivery efficiency by a series of 
mechanisms, it can show limitations with single utilization 
itself since it can cause instability related to naked nucleic 
acid drugs previously discussed or tissue damage which 
may cause apoptosis of cells (Chen et al. 2016; Pardi et al. 
2018). Physical delivery system coupled with a non-viral 
vector can be used as a possible strategy to deliver nucleic 
acids into cells more effectively than when either a physical 
delivery system or a non-viral vector is used alone (Huang 
et al. 2018).

Physical delivery system using electroporation method 
can cause electrical pulses to cells or tissue to form pores on 
their membranes so that nucleic acid drugs can be delivered 
directly to the cytoplasm, enabling bypass of endosome-
related problems (Pardi et al. 2018; Bernelin-Cottet et al. 
2019). Gene gun is a kind of microparticle delivery system 
with a needle-free method. It takes gene-loaded microparti-
cles to cells/tissues through an accelerator. However, these 
methods can significantly damage tissues and cause cell 
death (Chen et al. 2016; Pardi et al. 2018). In addition, they 
require expensive equipment.

Microneedle system

The MN system is a one of transdermal drug delivery sys-
tems that can promote drug permeation through skin by 
punching a physical channel through a metal or polymer nee-
dle of 1500 μm or less on the stratum corneum layer which is 

considered the largest barrier for transdermal delivery (Kau-
shik et al. 2001; Arora et al. 2008; Chen et al. 2016). With 
minimal invasiveness, permeation of nucleic acid drugs such 
as pDNA and mRNA as well as other macromolecules can 
be greatly enhanced with less pain (Kim et al. 2013; Yin 
et al. 2013). This straight method can be applied by self-
administration without a medical expert help, thus increas-
ing user convenience and providing enhanced stability of 
the nucleic acid drug due to a dried formulation (Pearton 
et al. 2012; McCaffrey et al. 2016). According to drug load-
ing location and properties as shown in Fig. 1, MN can be 
divided into four types: solid MN, coated MN, dissolving 
MN, and hollow MN (Chen et al. 2016). Characteristics of 
MNs used as nucleic acid delivery systems are described 
below and summarized in Table 2.

Solid microneedles

To enhance drug penetration, solid MN is composed of 
metal, silicone, polymer, or ceramic to pierce the skin before 
or after casting the drug solution on the skin. It is generally 
manufactured using a dry or wet etch technique (Chabri et al. 
2004; Martanto et al. 2004; Birchall et al. 2005). Because 
solid MN does not contain drugs, administration method 
using solid MN may be accomplished in two methods: 
1) Apply a drug-loaded solution/gel on the skin and then 
apply the solid MN, 2) Apply solid MNs on the skin and 
then apply a drug-loaded solution/gel loading. When these 
two solid MN application methods were compared using a 
reporter gene encoding plasmid DNA (Yan et al. 2014), the 
method of applying the microneedle after applying the plas-
mid solution showed 87 times higher luciferase expression 
than the method of applying the microneedle before applying 
the plasmid solution.

Solid MN is expected to have great penetration efficiency 
since it employs a material like metal or silicon to provide 
strong mechanical characteristics. However, fine fragments 
such as a sharp tip may be left as a residue in the skin. Fur-
thermore, the dosage given to the body is significantly lower 

Fig. 1   Types of microneedle systems
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than that of a drug given in a gel/solution form, resulting in 
huge loss and poor delivery reproducibility.

Coated microneedles

Coated MN is manufactured by dipping or spraying a solu-
tion containing a drug onto the surface of a solid MN (Gill 
et al. 2010; Li et al. 2021). The drug and polymer vehicle 
(such as sodium carboxymethylcellulose) on coated MN 
dissolve quickly after epidermal application, allowing the 
loaded medication to permeate into neighboring tissues or 
the bloodstream. Unlike solid MN, coated MN does not 
require an extra step such as drug solution deposition on 
skin before or after MN application. In addition, coated MN 
has less drug loss in the administration procedure than solid 
MN, and adding a stabilizer such as trehalose can enhance 
the drug's stability (Pearton et al. 2012; Kim et al. 2013).

Several coating techniques, such as dip coating, inkjet 
printing, drop coating, or spray coating, for manufacturing 
coated MN have been demonstrated and characterized in a 
recent review paper (Ingrole and Gill 2019). The coating 
height may be changed based on the dipping depth (Gill and 
Prausnitz 2007). The dose of the nucleic acid might depend 
on the number of dipping (Pearton et al. 2012). The coating 
efficiency can be enhanced utilizing a layer-by-layer coating 
technique and the electrostatic principle (Demuth et al. 2013; 
Kim et al. 2014; Seok et al. 2017; Duong et al. 2018a; Li et al. 
2019b). According to a previous report, the number of dipping 
can increase the dosage of loaded pDNA on the coated MN. 
It has been confirmed that coated MN array has a content of 
100 μg (Pearton et al. 2012). However, when manufacturing 
coated MN with dipping, a high-concentration (8 mg/mL) 
of drug solution may need to be prepared (Song et al. 2012), 
inducing considerable loss or waste by excessive consumption 
of nucleic acid. In addition, sharp tip pieces of MN compo-
nents may remain in the skin, as shown in solid MN. Since the 
MN and active pharmaceutical ingredients (APIs) are always 
in contact, the compatibility between the MN material and 
APIs should also be considered.

Dissolving microneedles

When applied to the skin, dissolving MN is rapidly dissolved 
by the tissue fluid, releasing drug molecules. Dissolving MN 
is composed of biodegradable polymers or saccharides, con-
taining drug vehicle inside the MN. Because it contains drug 
molecules, dissolving MN, like coated MN, can be admin-
istered in a single step. This can be manufactured using a 
micro-molding technique or a drawing lithography. The 
loading dose of dissolving MN is considered to be greater 
than that of coated MN (Chen et al. 2016). In addition, accu-
rate and flexible dose adjustment is possible. There is no 
concern about the sharp tip of metal MN remaining in the 

skin. Because release properties of drugs from dissolving 
MN are greatly affected by the composition of polymers 
and additives, its therapeutic efficacy could be enhanced by 
controlling release properties of dissolved MN. However, 
the mechanical strength of the dissolving MN must be suf-
ficient enough to penetrate the skin. In addition, dissolving 
MN is sensitive to storage conditions owing to moisture, 
which might affect its mechanical strength. It is also critical 
to consider degradation of the polymer that is absorbed into 
the body and biocompatibility of biodegradable polymers as 
these aspects can severely limit the range of materials. Waste 
of drugs in the manufacturing process, such as sidewalls of 
MNs and the baseplate part of MN considered less bioavail-
able than the needle tip itself appears to be considerable 
(approximately 50% of drugs are discarded after manufactur-
ing) (Cole et al. 2017). Thus, a manufacturing process using 
a micro-molding system should be developed to minimize 
such drug loss.

Hollow microneedles

A hollow MN is often a MN into which a liquid drug from 
the reservoir located underside of MN is delivered via a nee-
dle tube or an opened channel (Hickerson et al. 2013). The 
flow rate and pressure are generally controlled by a separate 
device (Mansoor et al. 2015; Bae et al. 2019; Cárcamo-Mar-
tínez et al. 2021). A comparatively large amount of drug can 
be delivered precisely with a hollow MN than with other 
types of MN. However, exceeding the threshold pressure or 
flow rate may induce backflow through the side wall around 
the needle (Mansoor et al. 2015). Therefore, it needs to be 
delivered with a suitable pressure and speed, this limiting the 
delivery rate. A flow rate of 200 nL/min used as a reference 
appears to be inefficient (Mansoor et al. 2015). Furthermore, 
because the drug is delivered in a liquid form, the stabil-
ity of the drug may cause a problem compared to coated 
or dissolving MNs with a dry condition for encapsulated 
drugs (Cárcamo-Martínez et al. 2021). Using a biomimetic 
construction, Bae et al. (2019) have created an open channel 
MN. Using microfluidics, a snake fang MN could spontane-
ously inject drug solutions from drug reservoirs into the skin 
(Bae et al. 2019).

Microneedles for nucleic acid delivery

Many studies have proven the efficacy of nucleic acid drug 
delivery systems using various types of MNs (Table 3). Fig-
ure 2 shows schematic configurations of several types of MN 
systems and physical delivery systems combined with MN 
for nucleic acid drug delivery. Many of them have focused 
on nucleic acid vaccine for cancer/infectious diseases. Sev-
eral investigations have compared the effectiveness of MN 
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systems for nucleic acid drug delivery to other delivery 
routes by adopting reporter gene encoding or reporter gene 
silencing nucleic acids (González-González et al. 2011; 
Demuth et al. 2013; Dul et al. 2017; Liang et al. 2020; Liu 
et al. 2021). A MN system coupled with well-designed non-
viral vectors, or a physical delivery method often exceeds 
the MN alone with naked nucleic acid delivery. This sec-
tion discusses recent advances in MN-based nucleic acid 
vaccination for infectious diseases or cancer. Furthermore, 
we highlighted research on the effects of MN morphology 
or formulation on the efficacy of nucleic acid-encapsulated 
MNs. In addition, studies on MN combined with other 
nucleic acid delivery systems are described. Finally, limita-
tions and considerations for developing MNs for nucleic acid 
delivery are discussed.

MN‑based nucleic acid vaccination

Because of the abundance of immune cells in the skin, 
conventional antigen vaccines and nucleic acid vaccines 
can successfully elicit an immune response with an MN 
system. Prow et al. (2010) have visualized MN-induced 
migration of thousands of antigen presenting cells (APCs) 
in epidermal area of mice after activating with a conven-
tional antigen or DNA vaccine through MN application 
(Prow et al. 2010). In addition to serving as a delivery 
system, MN system may serve as a physical adjuvant by 
increasing cell death-induced immunity during application 
(Depelsenaire et al. 2014; Takeuchi et al. 2016). Further-
more, because of its benefits of stability and simplicity, 
using MN is considered as a practical and efficient method 
for nucleic acid vaccination.

Compared to traditional delivery methods such as 
intramuscular (IM) or subcutaneous (SC) injection, MN-
based nucleic acid vaccines can produce efficient immune 
responses (Gill et al. 2010; Kim et al. 2012; Song et al. 2012; 
Ma et al. 2014; Fernando et al. 2016; Yang et al. 2017; Liao 
et al. 2017; Moreno et al. 2017; Duong et al. 2018b, 2020; 
Zhang et al. 2018; Yan et al. 2018). Song et al. (2012) have 
demonstrated that naked influenza hematogglutinin (HA)-
encoding plasmid DNA coated onto metal MN has protec-
tive effect. Furthermore, the dose utilizing MN system may 
be reduced more than five times when compared to IM. 
Yang et al. (2017) have reported that the thermostability of 
pDNA vaccine using a dissolving MN system for six weeks 
by encapsulating pDNA vaccine against Ebola virus with 
poly(lactic-co-glycolic acid) based nanoparticles carrier is 
enhanced. The pDNA MN for Ebola virus demonstrated 
higher IgG titer than an IM route, showing the efficacy of 
Ebola immunization using MN-based pDNA vaccine. In 
another research, Liao et al. (2017) have fabricated a dis-
solving MN vaccine utilizing a pDNA polyplex coupled with 

cationic branched PEI (polyethylenimine), which is 3.5 times 
more efficient than IM.

The effectiveness and potentials of nucleic acid based 
cancer vaccines using MN system by loading tumor-asso-
ciated antigen-encoding mRNA, pDNA, or siRNA which 
interferes with mRNA encoding tumor associated protein 
into MN have been demonstrated (Hooper et al. 2007; Prow 
et al. 2010; Gill et al. 2010; Song et al. 2012; Kim et al. 
2012, 2014; Ma et al. 2014; Kines et al. 2015; Fernando 
et al. 2016; Ali et al. 2017; Pamornpathomkul et al. 2017; 
Xu et al. 2017; Cole et al. 2018, 2019; Koh et al. 2018; Pan 
et al. 2018; Ruan et al. 2018; Duong et al. 2018b, 2020; Li 
et al. 2019b). Cole et al. (2019) have utilized a prostate stem 
cell antigen (PSCA) encoding pDNA with dissolving MN 
using RALA peptide (one of the cell penetrating peptides) 
nanoparticle carrier to establish prophylactic and therapeu-
tic efficacy. Li et al. (2019a) have generated pH-triggered 
release to promote rapid release at a relatively low pH (5.5) 
by coating PEI and p53-encoding pDNA on a pH-responsive 
poly-electrolyte multilayer (PEM), confirming its tumor sup-
pression ability.

Several research studies have used adjuvants with MN-
based nucleic acid vaccinations (Zhou et al. 2010; Qiu et al. 
2016; Xu et al. 2017; Duong et al. 2018b, 2020). Adjuvants 
can boost the vaccination effectiveness by inducing addi-
tional immunological response. Adjuvants such as poly I:C 
(Duong et al. 2018b, 2020) and paclitaxel (Xu et al. 2017) 
have been used in some cases for MN-based cancer vaccines. 
It has been demonstrated that the immunogenicity of MN-
based vaccine is improved in the group with adjuvant added.

In one work, photothermal therapy with IR820 NIR dye 
has been used in a hyaluronic acid based dissolving MN 
encapsulating p53-encoding pDNA. This complexed system 
substantially suppressed the growth of melanoma (Xu et al. 
2020).

Effect of morphology and formulation 
of microneedle

Since MNs operate by physically punching a hole in the 
stratum corneum, mechanical strength and morphology 
known to directly impact penetration properties of MN 
are critical for efficient delivery. Solid MN and coated 
MN are largely free of these issues in terms of mechani-
cal strength because these MNs are composed of strong 
enough materials such as metals. Nevertheless, mechanical 
strength is an essential factor for dissolving MN which is 
made of polymer or sugar. Mechanical strength of dis-
solving MN can be  influenced by formulation, storage 
conditions such as humidity, and structure (Wang et al. 
2018). Dissolving MNs fabricated with four other biocom-
patible polymers (hyaluronate, chitosan, gelatin, or poly-
vinyl alcohol) were evaluated in this study. The findings 
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Table 3   Features and findings of research on microneedle system for nucleic acid drug delivery

Type of MN Combined deliv-
ery system

Applications Target nucleic 
acid

Features and findings References

Solid Non (naked) Gene expression,
Cancer vaccine

HBsAg pDNA
Luciferase pDNA

Adjuvant (Flt3L, Fms-like 
tyrosine kinase 3 ligand) was 
added

Immune response: MN + adju-
vant + pDNA > IM + adjuvant 
pDNA ~ MN + pDNA

Protective efficacy against 
tumor cell challenge was 
observed in mice

Zhou et al. (2010)

Solid Non (naked) Gene knockdown GAPDH siRNA 5' cholesterol modification was 
introduced into siRNA to 
enhance cellular uptake

Evaluation of in vivo biodis-
tribution of Cy5-labelled 
siRNA was included

(Major distribution in MN-
applied tissues compared to 
major organs)

Deng et al. (2016)

Solid hollow Non (Naked),
Electroporation,
Cationic poly-

mer/lipid

Immunization 
study

Ovalbumin pDNA Permeability of DNA have 
been compared between EP, 
SC, solid MN, EP + solid 
MN, and hollow MN (33-
gauge hypodermic nee-
dle). Characterization and 
optimization of complexes 
using commercial transfec-
tion reagents (Lipofectamine, 
Superfect) and cationic 
polymer (PEI). Hollow 
MN showed a much higher 
immune response than SC 
injection. The complex 
elicited a stronger immune 
response than the naked, 
with the strongest response 
in PEI complex

Pamornpathomkul et al. (2017)

Solid Non (naked),
Cationic poly-

mer/lipid

Gene expression Luciferase pDNA
EGFP pDNA

Longer MN and longer dura-
tion time showed stronger 
expression than shorter one. 
And naked DNA showed 
better expression than com-
plexed one

DNA → MN showed 87-times 
higher expression than 
MN → DNA

Yan et al. (2014)

Solid Cationic polymer
(PEI)

Gene expression,
Immunization 

study

Luciferase pDNA
Hepatitis B 

HBsAg pDNA

IM (naked) vs. MN (naked) 
vs. IM (complex) vs. MN 
(complex)

PEI-pDNA loaded MN showed 
a 4.7-fold higher immune 
response than IM injec-
tion and a 2.6-fold higher 
immune response than naked 
DNA loaded MN

Yin et al. (2013)
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Table 3   (continued)

Type of MN Combined deliv-
ery system

Applications Target nucleic 
acid

Features and findings References

Solid Cationic poly-
mer-

cell penetrating
peptide

Gene expression Luciferase pDNA
EGFP pDNA

Mannosylated PEI-CPP-pDNA 
complexes targeting mannose 
receptor positive dendritic 
cells. The complex exhibited 
150-fold higher expression 
than naked pDNA in vitro 
expression study

Hu et al. (2014)

Solid Cationic lipo-
some

(DOTAP)

Gene knockdown GAPDH siRNA Utilization of sponge Hali-
clona sp. Spicules as solid 
MN. Liposome-siRNA 
complex

%Knockdown: MN + com-
plex > SC + com-
plex > MN + siRNA

Liang et al. (2020)

Solid Lipid nanopar-
ticle

(DOTAP)

Gene expression EGFP pDNA
β-galactosidase 

pDNA

In vitro transfection efficiency 
and in vitro permeation study 
were involved

DOTAP based lipid nanoparti-
cle were tested with different 
charge condition (positive, 
neutral, negative). Positive 
charged nanoparticle only 
showed expression

Chabri et al. (2004) and Coul-
man et al. (2005)

Solid Electroporation Gene expression,
Fluorescently 

labelled RNA 
transfection

RFP pDNA,
Cy5 labelled 

siRNA

Gold coated solid MN used for 
electroporation. Transfection 
efficiency and tissue damage 
were evaluated at various 
voltages (range 0—50 V) 
for the combination of MN 
and electroporation. MN 
alleviated the EP condi-
tions, allowing it to decrease 
to 35 V with maximum 
transfection efficiency. MN 
combined with electropora-
tion enhanced transfection 
of nucleic acids. Roller type 
MN was utilized to enhance 
transfection efficiency. 
Longer MN showed better 
expression

Wei et al. (2014) and Huang 
et al. (2018)

Coated Non (naked) Gene expression,
Immunization 

study

Luciferase pDNA,
Gag encoding 

pDNA
(HIV model anti-

gen SIV-gag)

Multilayer coated MN enabling rapid release 
of pDNA in pH-responsive manner. PolyI:C 
was used for adjuvant. 140-fold higher level of 
expression with MN compared to ID injec-
tion (reporter gene). The dried formulation 
maintained the bioactivity of pDNA for 28 days 
at room temperature. tenfold higher antibody 
titers with MN compared to other treatments 
(ID, IM, IM + EP)

Demuth et al. 
(2013)

Coated Non (naked) Cancer vaccine Hepatitis C virus
3/4A pDNA

MN had an immune response similar to that of 
the gene gun at similar doses. MN (3.2 μg) 
showed protective efficacy in tumor cell chal-
lenge and equivalent immune response to a 
30-fold higher dose of IM (100 μg)

Gill et al. 
(2010)
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Table 3   (continued)

Type of MN Combined deliv-
ery system

Applications Target nucleic 
acid

Features and findings References

Coated Non (naked) Gene expression,
Immunization 

study

Luciferase pDNA
Influenza HA 

pDNA

Coated MN showed protective efficacy on viral 
challenge and improved immune response com-
pared to the same dose of IM. Immunization 
study using clodronate-liposomes suggest that 
dendritic and macrophages may not provide a 
major contribution to protective efficacy of MN

Song et al. 
(2012) and 
Kim et al. 
(2013)

Coated Non (naked) Immunization 
study

Nucleosomal 
histones of

Leishmania spp
pDNA

Comparison of immune responses by adminis-
tration route of pDNA cocktails of plasmids 
encoding four different antigens. Immune 
response: SC < ID < MN

Moreno et al. 
(2017)

Coated Non (naked) Gene expression,
Immunization 

study

EGFP pDNA
Ovalbumin pDNA

MN showed a tenfold higher immune response 
compared to IM injection. Gene expression and 
immune response: IM < MN

Zhang et al. 
(2018)

Coated Cationic polymer
(PEI)

Cancer vaccine p53 pDNA PEI-pDNA complex coated on polycaprolactone 
MN by layer-by-layer assembly. pH-responsive 
pDNA release promoted in the acidic environ-
ment (pH 5.5). pH responsive MNs showed 
better tumor suppression than non-multilayered 
MNs or IV injections

Li et al. 
(2019b)

Coated Cationic lipo-
some

(DOTAP)

Gene knockdown CXCL1 gene 
siRNA

The nano-patch was coated with DOTAP-PEG-
cholesterol-siRNA complex and methylcellu-
lose for viscosity improving agent. Fluvax (one 
of the vaccines) was added to induce CXCL1 
expression. The integrity of nucleic acid was 
maintained in the dry state

Haigh et al. 
(2014)

Coated Nanoparticle
(PEI-deoxycho-

late)

Gene expression,
Immunization 

study

Alzheimer beta-
amyloid pDNA

Multilayer MN enhanced rapid release at physi-
ological pH. Mannosylated PEI-deoxycholic 
acid-pDNA complexes were treated with SC 
or MN. MN showed a higher immune response 
compared to the SC group. Trehalose was used 
as a stabilizing agent

Kim et al. 
(2014) and 
Duong et al. 
(2018a)

Coated Nanoparticle 
(PEI-deoxy-
cholic acid)

Cancer vaccine
(melanoma)

Ovalbumin pDNA Rapid release at physiological pH was induced 
with a multilayer MN (pH-responsive layer). 
Poly I:C was co-administered as an adjuvant

Duong et al. 
(2018b)

Dissolving Non (naked) Gene expression,
Cancer vaccine

Luciferase mRNA
Ovalbumin 

mRNA

Naked mRNA was loaded into PVP-based dis-
solving MN. The concentrated PVP solution 
lowered the in vivo transfection efficiency of 
mRNA in PVP solution

Longer MNs showed higher mRNA expression 
in vivo

Koh et al. 
(2018)

Dissolving Nanoparticle 
(PLGA-based)

Gene expression,
Immunization 

study

GFP pDNA
Ebolavirus pro-

tein pDNA

The PLGA-Poly(L-lysine)-poly(γ-glutamate)-
DNA complex was loaded onto PVA-based dis-
solving MN. Sucrose stabilized pDNA structure 
of MN at room temperature

Immune response: MN + NP + pDNA > IM + NP 
+ pDNA > IM + pDNA > MN + pDNA

Yang et al. 
(2017)

Dissolving Cationic polymer
(PEI)

Cancer vaccine
(melanoma)

STAT3 siRNA PEI-siRNA complex loaded into dissolving 
MN (matrix composition: dextran40: PVP17: 
HA = 4:1:1). Naked siRNA showed lower 
transfection than complex siRNA (in vitro). 
Dose dependence was confirmed with four dose 
levels (33, 66, 132, and 264 μg)

Pan et al. 
(2018)
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suggest that mechanical strength and in vivo mouse skin 
insertion ability may differ significantly depending on the 
MN material under high humidity conditions, emphasizing 
the importance of formulation and optimal storage condi-
tions for reproducible administration of dissolving MNs. 
In addition, morphological characteristics have substantial 
impacts on MN penetration regardless of the needle type 
(Gittard et al. 2013). It has been shown that morphological 

characteristics such as needle length are critical as they 
may impact transfection efficiency in nucleic acid delivery 
(Yan et al. 2014; Koh et al. 2018; Wang et al. 2020). Trans-
fection efficiency and kinetics of naked mRNA depending 
on needle height have been demonstrated. The longer MNs 
encapsulating the naked mRNA encoding luciferase (one 
of the reporter genes) demonstrated better transfection effi-
ciency with a longer duration than the shorter MNs in the 

Table 3   (continued)

Type of MN Combined deliv-
ery system

Applications Target nucleic 
acid

Features and findings References

Dissolving Peptide nanopar-
ticle

Gene expression,
Cancer vaccine

Luciferase pDNA
HPV-16 E6 and 

E7 pDNA

RALA (one of cell penetrating peptide)-pDNA 
complex loaded into PVA-based dissolving 
MN. Lyophilization was used to increase the 
loading capacity, and trehalose was used as a 
stabilizer for the process. 57 µg of pDNA was 
loaded into the array. pDNA loaded in MN 
was stable for 28 days at room temperature. 
Complex-MN group showed higher immune 
response than complex-IM

Cole et al. 
(2018)

Dissolving Electroporation Gene expression,
Cancer vaccine 

(melanoma)

Luciferase pDNA
2CMVmIL-12 

pDNA (IL-12 
subunits)

Maltose-based dissolved MNs mounted on metal 
electrodes array. EP enhanced the expression 
of IL-12. pDNA delivery via dissolving MN 
combined with electroporation inhibited tumor 
growth and extended survival

Lee et al. 
(2011)

Dissolving Photothermal 
therapy

Cancer vaccine 
(melanoma)

p53 pDNA Photothermal dye (named IR 820) and pDNA 
were loaded into hyaluronic acid-based dissolv-
ing MN. Near-infrared rays increase the tem-
perature of the tissues where IR820 is distrib-
uted and have anticancer effects. Combination 
with photothermal therapy (PTT) effectively 
inhibited the growth of subcutaneous tumors

Xu et al. 
(2020)

Hollow Cationic 
lipid (Lipo-
fectamine)

Gene knockdown β-galactosidase 
pDNA EGFP 
pDNA

A commercial hollow MN device (MicronJet) 
was used, enabling reproducible amounts of 
siRNA. Transfection studies using ex vivo 
human skin

Dul et al. 
(2017)

Hollow Cationic 
lipid (Lipo-
fectamine)

Gene expression Luciferase mRNA A commercial hollow MN device (MicronJet) 
was used. Transfection studies using ex vivo 
porcine skin. There were no significant differ-
ences in luciferase expression between naked 
mRNA and liposome complexed mRNA

Golombek 
et al. (2018)

Hollow Cationic nio-
some

Gene expression, 
Immunization 
study

EGFP pDNA
Ovalbumin pDNA

Cationic niosome-pDNA complex (composition: 
span20/cholesterol/cationic lipids = 2.5/2.5/0.5 
in molar ratio) was delivered in vivo by hollow 
MNs. MN injection of niosome complexes 
showed a higher immune response than SC 
injection

In vivo immune response: Niosome com-
plex > Lipofectamine complex > Naked pDNA

Pamornpath-
omkul et al. 
(2018)

MN microneedle, HBsAg hepatitis B surface antigen, GAPDH glyceraldehyde-3-phosphate dehydrogenase, EP electroporation, SC subcutane-
ous, PEI polyethyleneimine, EGFP enhanced green fluorescent protein, IM intramuscular, CPP cell penetrating peptide, DOTAP 2, 3-dioleoy-
loxy-propyl-trimethylammoniumchlorid, RFP red fluorescent protein
MN microneedle, HIV human immunodeficiency virus, SIV simian immunodeficiency virus, ID intradermal, IM intramuscular, EP electropora-
tion, HA hemagglutinin, SC subcutaneous, EGFP enhanced green fluorescent protein, PEI polyethyleneimine, IV intravenous, DOTAP 2, 3-dio-
leoyloxy-propyl-trimethylammoniumchlorid, CXCL1, C-X-C motif chemokine ligand 1, PEG polyethylene glycol
MN microneedle, PVP polyvinylpyrrolidone, PLGA poly(lactide-co-glycolide), PVA polyvinyl alcohol, GFP green fluorescent protein, NP nano-
particle, IM intramuscular, PEI polyethyleneimine, STAT3 signal transducer and activity of transcription 3, HA hyaluronic acid, HPV human 
papillomavirus, EP, CMV, cytomegalovirus, IL interleukin, EP electroporation, EGFP enhanced green fluorescent protein, SC subcutaneous
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study using three different heights of dissolving MNs (400, 
800, and 1000 μm) (Koh et al. 2018). Similarly, Yan et al. 
(2014) have examined in vivo expression of reporter genes 
encoding pDNA by varying the height of solid MN to 0.25, 
0.5, and 0.75 mm. They also found that longer needles and 
longer application durations could lead to a more efficient 
transfection. Wang et al. (2020) have evaluated siRNA-
loaded dissolving MN by varying the length of the drug-
loaded tip according to hyaluronic acid concentration and 
suggested that increasing the length of the tip itself to 
which the drug is exposed might lead to a more efficient 
nucleic acid exposure to antigen presenting cells. This sug-
gests that more cell contact induced by longer needles can 
lead to a more effective expression, although this remains 
further investigation (Yan et al. 2014; Wang et al. 2020).

Although formulation is a crucial part in any pharma-
ceutical approach, studies on the formulation of MN associ-
ated with nucleic acid therapeutics are very rare, with many 
unclear parts despite decades of research (Cole et al. 2017). 
The transfection efficiency of nucleic acid drug in dissolving 

MN formulations can be greatly affected by the type of poly-
mer and the additive content (Kim et al. 2012; Cole et al. 
2017; Koh et al. 2018). The most crucial factor to consider 
is the selection of a polymer that is compatible with nucleic 
acid. In the case of selecting a biodegradable polymer to fab-
ricate dissolving MN, available options are quite restricted, 
with the risk of DNase and RNase contamination. Because 
further contamination is possible during the fabrication pro-
cess of microneedle, the integrity of the nucleic acid must be 
validated when blending with polymer and after fabrication 
of microneedle. It should be noted, however, that the trans-
fection efficiency of a nucleic acid might be significantly 
diminished by several polymers, even when the nucleic acid 
integrity in the formulation is adequate. In a nucleic acid MN 
formulation research, the recovery and integrity of pDNA 
encapsulated in MNs was evaluated by screening four poly-
mers utilized in the manufacturing process of soluble MNs 
that can form complex with reporter gene-encoding pDNA 
through RALA peptide (Cole et al. 2017). In addition, the 
efficiency of in vitro transfection was evaluated. According 

Fig. 2   Schematic configurations of several types of microneedle (MN) systems and physical delivery systems combined with MN for nucleic 
acid drug delivery [immediately after application (upper) and after drug distribution (lower)]
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to molecular weight, two varieties of polyvinylpyrrolidone 
(PVP) and two types of polyvinyl alcohol (PVA) were exam-
ined in that study. A conformational change of the nucleic 
acid was observed in the pDNA of the PVP-based formula-
tion after 7 days of fabrication. The pDNA encapsulated 
in the PVP-based formulation had a lower transfection effi-
ciency than the PVA-based formulation in this regard. In 
another example, naked mRNA was administered with a dis-
solving needle using polyvinylpyrrolidone (Koh et al. 2018). 
Although the mRNA in the PVP-based formulation main-
tained its integrity for 15 days, the in vivo transfection effi-
ciency decreased as the PVP concentration was increased. In 
the case of coated MN, carboxymethyl cellulose (CMC) is 
frequently used to enhance the loading quantity by increas-
ing the viscosity in coated MN. However, according to one 
research, CMC exhibited a significant decrease in pDNA 
expression (Kim et al. 2012). Based on the increased par-
ticle size of DNA in sodium CMC solution, the authors of 
this study suggested that DNA aggregation in sodium CMC 
solution might be the cause of the decrease in transfection 
efficiency. Because the mechanism of how a polymer influ-
ences nucleic acid remains largely unknown, more research 
is required. Alternatively, in the case of restricted polymer 
alternatives, screening is necessary to determine the opti-
mum choice that can maximize efficiency.

In the case of coated MN formulation, improvements have 
been made not only in the coating process, but also in the 
coating technique and MN structure to enhance the limited 
dose and transfection efficiency. To increase the dose of a 
nucleic acid drug, which was previously considered to be a 
limitation of coated MN, the number of dipping (Pearton 
et al. 2012), nanopatterning (Jung et al. 2017), multilayered 
coating system (Demuth et al. 2013; Kim et al. 2014; Seok 
et al. 2017), and other parameters have been examined. The 
multiple dipping method, as described in the coated MN sec-
tion, significantly increased the nucleic acid loading dosage 
to about 100 μg. However, as the number of dips increased, 
the nucleic acid dose uniformity appeared to deteriorate, and 
the performance of MN may be affected by changes in MN 
shape caused by coating, such as sharpness (Pearton et al. 
2012; Vora et al. 2018).

A salinized layer with multiple amine groups that show 
a partially positive charge was introduced to the surface of 
coated MN to constitute a multilayer with nucleic acid to 
improve coating efficiency by utilizing the negative charge 
of nucleic acid in research on multilayered (layer-by-layer) 
coated MN (Seok et al. 2017). Kim et al. (2014) also fabri-
cated coated MNs by assembling positively charged albumin 
and negatively charged heparin on the MN surface at pH 
4.0. The authors demonstrated pH-dependent rapid release 
of plasmid DNA by inducing charge inversion of albumin 
(isoelectric point of 4.9) to a negative charge at physiologi-
cal pH. In the Alzheimer's disease vaccination study, the 

multilayered MN group had a better immune response than 
the subcutaneously administered group, indicating that the 
multilayered MN system was an effective delivery system. 
However, the impact of the release property, in which the 
drug is dissolved from the MN itself, on transfection effi-
ciency is still insufficient in detailed theory. In one study, 
the MN system with sustained release properties of nucleic 
acid produced a better immune response than intramuscular 
vaccination (Kumar et al. 2012). Thus, further research on 
release properties is needed.

Several studies on effects of MN components on the sta-
bility of encapsulated nucleic acid on the surface or inside 
of MN have revealed that several disaccharides (trehalose, 
sucrose, maltose) (Pearton et al. 2012; Seok et al. 2017; 
Yang et al. 2017; Cole et al. 2018), carbohydrate-enriched 
formulations (Chong et al. 2013), and some polymers (Cole 
et al. 2017) can increase stability. Simultaneously, as the 
use of non-viral carriers, particularly lipid nanoparticles, 
increases, new strategies for improving stability are required 
(Schoenmaker et al. 2021). The approach might involve the 
use of antioxidants or chelators to control catalysis by reac-
tive oxygen species (ROS) and metal ions, or it could involve 
formulation of helper lipids required for LNP stability (Pardi 
et al. 2018). The issue of mRNA stability has recently grown 
severe enough to impact the availability of nucleic acid med-
ications beyond conventional storage and shipping issues, 
highlighting the importance of ensuring stability which 
demands constant attention (Schoenmaker et al. 2021).

Combined system with other nucleic acid delivery 
systems

With a few exceptions, many MN-based nucleic acid deliv-
ery systems coupled with other non-viral vectors or physi-
cal delivery systems such as electroporation and gene guns 
show improved performance compared to MN-based naked 
nucleic acids.

Nucleic acid complexed with non-viral vectors, notably 
cationic lipoplex such as DOTAP (Haigh et al. 2014; Belle-
froid et al. 2019; Liang et al. 2020), lipofectamine (Saurer 
et al. 2010; Kim et al. 2012; Pearton et al. 2012; Chong et al. 
2013; Yan et al. 2014; Dul et al. 2017; Pamornpathomkul 
et al. 2017, 2018; Yang et al. 2017), cationic polymer such 
as polyethylenimine (PEI) (Yin et al. 2013; Hu et al. 2014; 
Yan et al. 2014; Jung et al. 2017; Liao et al. 2017; Seok 
et al. 2017; Duong et al. 2018b; Pan et al. 2018; Li et al. 
2019b, 2021), and RALA peptide (McCaffrey et al. 2016; 
Ali et al. 2017; Cole et al. 2017, 2018, 2019) have been 
reported. The LNP system was designed after several char-
acterizations based on the vector to nucleic acid ratio (such 
as gel retardation assay, particle size, zeta-potential). Well-
designed nanocarriers for nucleic acids have demonstrated 
better transfection efficiency in most cases than naked ones 
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in vitro and in vivo. In recent years, many nucleic acid deliv-
ery systems have employed ionizable LNP including choles-
terol and PEG-lipids due to their low toxicity and great effi-
ciency compared to conventional cationic LNPs. However, 
they have not yet been combined with MN system. Non-
viral vector systems are developed constantly. Significant 
safety concern about an LNP system has just been resolved 
through worldwide inoculation. More advanced vectors with 
MN may show promising future, considering the synergistic 
impact of several current non-viral vector combined sys-
tems. Nevertheless, in a study of Yan et al. (2014), a nucleic 
acid drug solution was casted and then motorized solid MN 
was administered with naked, lipoplexed (lipofectamine), or 
polyplexed (PEI) with reporter-gene expressing pDNA on 
rat skin tissue in vivo. Results revealed that naked pDNA 
via solid MN was expressed the most efficiently. However, 
given the considerable amount of evidence showing that a 
combined system has better results, this case may suggest 
the importance of a well-designed nanocarrier system even 
when variables might have influences. In addition, in the 
case of lipoplex, it is possible to impair transfection effi-
ciency by forming aggregates in the process of drying or 
storage (Chong et al. 2013). Thus, it is also important to 
examine the effect of drying or carriers that occurs during 
the manufacturing process of MN on the stability of the sys-
tem (Crommelin et al. 2021).

Studies utilizing a combination of MN systems with other 
physical methods such as gene guns (Gill et al. 2010; Zhang 
et al. 2013, 2014, 2015) or electroporation (Hooper et al. 
2007; Choi et al. 2010, 2012; Daugimont et al. 2010; Lee 
et al. 2011; Wei et al. 2014; Pamornpathomkul et al. 2017; 
Huang et al. 2018) have been reported, leading to a substan-
tial improvement in permeation (Pamornpathomkul et al. 
2017) or transfection efficiency compared to a single method 
(Lee et al. 2011; Choi et al. 2012; Huang et al. 2018). To 
increase the delivery efficiency of nucleic acid drugs, the 
convergence of an MN system with various physical delivery 
technologies should be continuously studied and developed.

Limitations and considerations

Despite their great potential, there are several considerations 
and challenges that must be overcome before microneedles 
for nucleic acid delivery can be commercialized and used in 
clinical. First, nucleic acid drug stability in the microneedle 
should be considered. Biopharmaceuticals that are dispersed 
in liquid formulations frequently promote degradation, and 
there is also a risk of microbial growth. The dissolving 
MN or coated MN could minimize these stability issues by 
removing the solvent, making it a viable strategy for extend-
ing nucleic acid shelf life (Pearton et al. 2012; Demuth et al. 
2013; Cole et al. 2017; Tucak et al. 2020). However, even 
if the nucleic acid integrity in the formulation is adequate, 

several polymers can significantly reduce the transfection 
efficiency of a nucleic acid (Kim et al. 2012; Cole et al. 
2017; Koh et al. 2018). More research is needed because 
the mechanism by which polymers influence nucleic acids 
is largely unknown. Furthermore, optimal MN formulations 
that can stabilize nucleic acids at room temperature, as well 
as appropriate sterilization processes that do not damage the 
nucleic acids in MN, must be developed. Second, the MN 
delivery system should be reproducible to deliver defined 
amounts of nucleic acid drugs consistently. Patient-related 
parameters such as age, gender, and patient condition influ-
ence the amount of drug delivered because the skin penetra-
tion rate of the microneedle varies depending on pressing 
force and training experience. To minimize the impact on the 
relevant patient-related parameters, optimizing the geometry 
and arrangement of the MN (Makvandi et al. 2021), as well 
as the development of the applicator (Lahiji et al. 2015), 
should be considered. Moreover, biomimetic microneedles 
can improve drug delivery reproducibility by increasing 
needle adhesion (Han et al. 2020), and drug localization at 
the needle tip (Jun et al. 2018; Li et al. 2019a) can reduce 
patient-related variables.

Conclusion

In recent years, nucleic acid drugs have shown great prom-
ise beyond the limitation of conventional small molecules 
or protein therapeutics. In particular, recent vaccination 
research and current COVID-19 pandemic highlight the 
importance of nucleic acid therapies as a novel vaccina-
tion platform, unlike the conventional vaccine develop-
ment system with huge limitation in rapidly responding to 
emerging infectious diseases with constraints of regulation, 
development, and production. As a result, there is a grow-
ing demand for more advanced nucleic acid drugs that can 
quickly respond to various diseases including infection, can-
cer, and intractable diseases.

Nucleic acid drugs shown so far are promising. However, 
they have shown limited stability related to recent cold-chain 
storage issues (Schoenmaker et al. 2021). They also need to 
improve their efficacies. Furthermore, the growing severity 
of epidemics highlights the need for more effective, self-
applicable, and safe delivery methods. MN-mediated nucleic 
acid drug delivery is a promising platform for painless and 
less invasive nucleic acid drug delivery. Compared to the 
traditional injection approach, it shows enhanced efficacy 
and improved patient convenience through self-administra-
tion with less pain. It also shows increased stability derived 
from a dried encapsulation, offering a potential alternative to 
deliver nucleic acid drugs. However, MN systems also face 
a number of challenges. As with recent mRNA vaccination, 
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relevant regulations must be revised. If clinical relevance is 
established with efficient manufacturing technology and 
standardization of repeatable systems, this promise will be 
realized in the future.
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