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Abstract: Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities
indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal
developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also
considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental
brain misconnection syndromes characterized by altered connectivity in local circuits and between
brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the
regulation of basic neurodevelopmental processes, such as neuronal polarization and migration,
neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated
in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities
in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use
of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.

Keywords: neurodevelopmental disorders; microtubule; brain malformation; microtubule
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1. Introduction

Neurodevelopmental disorders (NDDs) are a group of heterogeneous conditions linked to impaired
brain development leading to emotional, relational and cognitive deficits. They include different
pathologies, such as autism spectrum disorders, schizophrenia and epilepsy. Owing to the lack
of knowledge of the pathogenic mechanisms, no current therapy exists for rescue or prevention of
NDDs. Drugs currently used for NDDs are mainly symptomatic (antipsychotic medications combined
with psychosocial treatment), lack specificity and are often ineffective. NDDs are characterized
by neuroanatomical abnormalities that can include variation in total minicolumnar number in
the cortex [1–3], altered cortical folding [4], various cortical and subcortical heterotopias and
dysplasias; these abnormalities are indicative of corticogenesis disturbances, finally causing
disruption of cortical laminar architecture [5,6]. Several developmental processes are involved in
NDDs-linked altered cortical development, such as cellular proliferation, migration and differentiation.
Accumulating evidence sustains the concept of NDDs as “synaptic disorder” due to the alteration in
both local and global brain connectivity.

Data from post-mortem brains suggest altered neuron production and migration, disrupted
synaptogenesis of both excitatory and inhibitory synapses, leading to faulty assembly of microcircuitry
in multiple brain regions [7]. Microtubules (MTs) hold a fundamental role in regulating all the steps of
neurons and therefore brain development. In the present review we will discuss the importance of
MTs in neuron lifecycle regulation, how MTs genetic or functional alterations are linked to different
NDDs and the potential use of MTs stabilizing agents as new therapeutic approach in NDDs.
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1.1. MTs Role in Neuron Lifecycle

MTs are basic elements of the cytoskeleton composed of α- and β-tubulin heterodimers.
Together with actin microfilaments and intermediate filaments (called neurofilaments in neurons),
they constitute the cytoskeleton, the dynamic structure that gives the cell its shape and mechanical
resistance to deformation. α- and β-tubulin form linear protofilaments, the basis of MTs polar structure,
where β-tubulin monomer is pointing towards the fast growing “plus-end”, and α-tubulin is located at
the slower growing “minus-end” [8]. The MTs plus-end grows out from the centrosome and undergoes
rapid switches from growth to shrinkage (called “catastrophe”) and from shrinkage to growth (called
“rescue”) [9]. On the other hand, MTs minus-end is firmly attached to the centrosome. MTs are
distributed in the whole cell body and form a dynamic network that incessantly growth, retracts, warps
and breaks. Hence rather than providing cell rigidity, they have an important role in running dynamic
processes, including intracellular cargo transport along the axons and mitotic spindle formation;
these cellular events are completely dependent on MTs ability to be polymerized, depolymerized
and severed [10,11]. Indeed, they provide platforms for intracellular transport of secretory vesicles
and organelles. A schematic representation of MTs dynamics and trafficking is reported in Figure 1.
MTs are nucleated and organized by the centrosome, the main cytoskeleton-organizing center in
the cell. The centrosome has a crucial role for coordinating several steps of neuron formation and
maturation, such as proliferation, migration, and differentiation [12]. The centrosome is the main MTs
nucleation site in most animal cell, however MTs nucleation can occur also via centrosome-independent
processes [13]. In the phase of neuronal polarization, in particular during axon specification, MTs are
nucleated at the centrosome and regularly localized in all the cell neurites. Successively, at later stages
of neuronal development, MTs maintain their uniform orientation in the axon whereas they lose it
in the dendrites, where they acquire a mixed orientation. In this phase, acentrosomal MTs assembly
takes place. In particular, γ-tubulin has been demonstrated to play the role of MTs local nucleator in
developing neurons; it is present both in axon and dendrites and organizes the cytoskeleton during
neuronal differentiation and plasticity [14].
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formed centrosomes that coordinate the assembly and organization of the mitotic spindle [15]. Just after
division, neurons are often characterized by a multipolar morphology that only subsequently switches
to a bipolar morphology. This transition is caused by the asymmetric transfer of the centrosome
to the site in which a membrane protrusion (the leading process) is extended [16]. Following cell
proliferation, postmitotic neurons start to migrate to form the complex but highly specified cortical
structure, organized in six horizontal layers and vertically oriented minicolumns [17]. The two main
classes of cortical neurons are produced in different brain regions and migrate differently: projection
neurons originate in the cortical neuroepithelium (pallium) and migrate mostly along the radial axis to
cortical plate, whereas interneurons are produced in the basal telencephalon (ganglionic eminences)
and subsequently migrate mostly tangentially to their final cortical destination [18]. The overall
process of neuronal migration needs a high degree of cell motility and morphological flexibility; it
consists of four interrelated but independent biological events: polarization, protrusion, adhesion
and retraction [19]. The migration process is coordinated by both intracellular and extracellular
signaling mechanisms, the latter coming from the extracellular matrix (ECM). Centrosome, MTs and
actin play a critical role in regulating this cell event. As a first step the neuron needs to polarize in
a certain direction, forming a leading process, a cytoplasmic swelling and a trailing process. Then,
both the nucleus and the soma move following the leading process, that extends and retracts along
radial glial cells, the tracking guide of radially migrating neurons, by means of motor proteins.
The centrosome is localized between the nucleus and the leading process; nucleus and centrosome
are linked together by perinuclear MTs in a cage-like structure [20] that elongate also in the leading
process. Centrosome moves towards the leading process and carry the nucleus along the MTs network
(nucleokinesis). In particular, MT tip binding proteins adenomatous polyposis coli (APC) and MT actin
crosslinking factor 1 (MACF1) are crucial for centrosome forward movement and neuronal migration
in the developing neocortex. APC is a MT anchoring protein that, following glycogen synthase kinase 3
(GSK3) inactivation by liver kinase B1 (LKB1), localizes at the distal ends of MTs in the leading process
tip, and this consequently leads to MT stabilization [21]. MACF1 also interacts with GSK3 and mediates
MT stability [22]. Several proteins, called cytoskeletal motor proteins, regulate neuronal migration and
cellular cargos axonal transport by binding and moving along MTs. They include the dynein family,
proteins that move towards the minus-end of MTs (retrograde transport), and kinesin family, proteins
that move towards the MTs plus-end (anterograde transport). Lis1, together with NudE and NudEL,
is a dynein regulatory factor that stimulates dynein motor activity and pulls captured MTs and the
centrosome into the swellings that appear transiently within the leading process [12].

The ECM signals define the timing and the final destination positioning of migrating neurons.
Cytoskeleton and ECM work together to coordinate all the migration process steps. Failure to reach the
correct final positioning cause neuron ectopic localization leading to abnormal laminar cytoarchitecture
and cortical disorganization. This migration failure is at the basis of anatomical and functional defects
of several NDDs, including lissencephaly, schizophrenia, autism and intellectual disability [23].

During migration, most immature neurons polarize and develop an axon and several dendrites
from the leading and the trailing processes [24]. Differentiated neurons establish synaptic contacts by
means of axon and dendrites in order to create a complex and highly efficient functional connectivity
network. In the axon usually MTs are long and homogeneously oriented, with the plus-end towards
facing outward. On the contrary, in the dendrites MTs are oriented in both directions, have different
post-translational modifications and cytoskeletal density, other than MTs associated proteins [25].
Specific post-translational modifications, including acetylation, detyrosination and polyglutamilation,
occur after MTs polymerization and accumulate in a subgroup of more stable MTs in an age-dependent
manner [26]. Instead, tyrosination is a marker of more instable MTs [27,28]. The opposite action of
stabilizing proteins and MTs severing proteins maintain the dynamics of MTs [29,30]. Tau, a protein
of the MTs associated proteins (MAPs) family, belongs to the first group, whereas katanin and
spastin, proteins that promote MTs remodeling required for neurites outgrowth and branching, to
the second [25,31].
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MTs severing proteins cause local MTs disruption in axons and dendrites and play a role in MTs
rearrangements, necessary for neuronal differentiation and plasticity.

Synaptic activity also has emerged as one of the factors able to regulate MTs modifications [32].
In particular, dopamine has been shown to influence interneurons tangential migration by
redistributing cytoskeletal elements [33], and gamma-aminobutyric acid (GABA) has been
demonstrated to act as a chemoattractant for migrating neurons [34]. In this way, MTs modifications
are closely related to extracellular signals and intracellular cargo trafficking.

Proper regulation of MTs dynamics is essential for neuron functionality. Indeed, to function
properly neurons require a well stabilized MTs network and an efficient axonal transport system. If
these conditions are not satisfied, neurons degenerate [35]. Altered regulation of MTs dynamics
could have deleterious effects on cell viability; MTs can be considered as “biosensors” of
cellular wellbeing [36].

1.2. Pathways Involved in MTs Dynamics Regulation

MTs dynamics is spatially and temporally regulated by several pathways and MTs-interacting
proteins [11,23]. Here we will describe some of the pathways known to have a role in orchestrating
MTs dynamic remodeling.

Rho-associated coiled-coil kinase (ROCK) pathway is composed by two kinases: Rho-associated
coiled-coil kinase 1 and 2. ROCK phosphorylates several substrates, including the actin regulatory
proteins myosin light chain [37], the LIM kinases [38], and the intermediate filament proteins desmin [39]
and vimentin [40]; it plays essential roles in promoting actomyosin cytoskeleton contractility downstream
of RhoA and RhoC activation [41]. Furthermore, it regulates MTs acetilation by phosphorylating
the tubulin polymerization promoting protein 1 (TPPP1/p25) [42]. TPPP1 phosphorylation by
ROCK promote cell motility and migration. ROCK pathway plays vital roles during development
regulating several embryonic morphogenetic events, such as cell migration, differentiation, and
axis formation [43].

(aPKC)-Aurora A-NDEL1 pathway regulates MTs dynamics during neurite elongation [44].
The phosphorylation of Aurora A, an integral mitotic kinase, by an atypical protein kinase C
(aPKC), followed by phosphorylation and recruitment of NDEL1, is essential for neurite extension in
most-mitotic neurons [45].

Wnt-dishevelled pathway increases MTs stability in the axon and induces the formation of looped
MTs at enlarged growth cones by concomitant inhibiting Gsk3β and activating c-Jun N-terminal
kinase [46]. Gsk3, a major downstream component of the Wnt, is a critical kinase for MTs regulation
during neural development. Indeed it is present along the length of spindle MTs and regulates both
centrosome orientation and MTs spindle formation during cell division [47,48]. Gsk3 phosphorylation
on serine 9 by protein kinase B (PKB) causes its inactivation and consequent suppression of mitotic
chromosome movement; this leads to a prometaphase-like arrest [49]. Wnt signaling regulates many
developmental processes, including cell proliferation, specification, differentiation and migration.
It also regulates neuronal differentiation of cortical intermediate progenitors [49]. Li and colleagues
demonstrated that Wnt5, a morphogen of the Wnt protein family, is able to increase axon outgrowth
by creating and reorganizing dynamic MTs that form bundled array oriented in the direction of axon
extension [50]. Wnt5 gradients induce asymmetric redistribution of dynamic MTs toward the far side
of the growth cone and evoke calcium transfer. The Wnt/calcium signaling is mediated by tau, the MTs
associated and stabilizing protein, and has emerged to have an important role for MTs reorganization
during growth cone remodeling. Wnt, together with the Notch pathway, determines the cellular fate
during brain development; the alteration of these two pathways during neurodevelopment might
participate to the onset of focal cortical dysplasia (FCD). FCD is a disorder characterized by cortical
laminar disorganization, heterotopic white matter neurons, abnormal large neurons and balloon cells,
due to abnormalities of neuronal migration and differentiation [51].
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Reelin pathway has a key role in assembly of cortical cytoarchitecture. Reelin is an extracellular
molecule secreted by Cajal-Retzius cells that when binding to its receptors causes a series of
phosphorylated signaling cascade leading to MTs dynamics regulation. Reelin has a main role in
proper positioning of migrating neurons, indeed it promotes neuronal detachment from radial glial
cells [52]. Disruption in the Reelin signaling pathway causes disorganized cortical lamination in mice
and severe NDDs in human, such as lissencephaly and cerebellar hypoplasia [53], schizophrenia,
bipolar disorder and autism [54].

Notch pathway, a key regulator of neural stem cells and neural development, affects neuronal
migration by altering the morphology of migrating neurons. Notch signaling activation leads to
a bipolar morphology that favors migration. A cross-talk between Notch and Reelin pathways does
exist and is required for coordinating cortical neurons migration [55,56]. Notch pathway is a key
regulator of neuronal structural plasticity by remodeling cytoskeleton. Indeed, activation of Notch
pathway in primary cortical neurons results in reduced neurite branches and loss of varicosities, and in
increased α-tubulin acetylation and poly-glutamilation that reflect MTs stability [57]. Notch pathway
MTs remodeling effect is also mediated by spastin, indeed activation of Notch pathway reduces spastin
mRNA and protein levels, further increasing MTs stability [58]. These are dynamic events that can be
reversed by inhibition of Notch pathway.

NF-κB pathway, in addition to its role in regulation of immune and inflammatory response, acts
on neurons remodeling. NF-κB is composed by five intracellular subunits (p50, p52, c-Rel, p65 and
Rel-B) that, once activated, can form homo- or heterodimers and promote gene transcription [59].
Recently it is emerged a role for NF-κB pathway in neuronal structural plasticity regulation [60].
During development NF-κB signaling has a role in the control of axon initiation, elongation, guidance
and branching, and in the regulation of dendrite arbor size and complexity. In adult neurons it regulates
dendritic spine density. It has been demonstrated that dephosphorylation of NF-κB p65 subunit is
required for the BDNF-promoted neurite outgrowth [61]. Furthermore, lack of p50 subunit results in
reduced neurite branching and varicosities loss, and these events are Notch pathway-mediated [62].
In mice p50 knock-out cortical structure alterations have been found, with an increase in specific
layers’ thickness and impaired columnar organization [63]. The mechanisms through which NF-κB
exerts its role in cytoskeleton remodeling are still largely unknown, but it has been demonstrated
that MTs associated proteins MAP2 and MAP1B, essential proteins for neurites elongation, are NF-κB
transcriptional targets [64]. Moreover, a direct cross-talk between NF-κB and Notch pathways in
cortical neurons has been found [62].

2. MTs-Linked NDDs

The complex and plastic morphology of neurons, both during migration and during establishment
of their dendritic and axonal arbors to form synaptic contacts, implies a strictly regulated process of
cytoskeletal structuring. Therefore, it is consistent the causal link between deficiencies in cytoskeletal
protein-encoding genes and several NDDs. Mutations in genes encoding centrosomal proteins cause
severe NDDs that lead to several neuropsychiatric disorders, such as lissencephaly, microcephaly
and schizophrenia [12]. Also mutations in the various α- and β-tubulin genes, which encode for the
globular proteins that polymerize into MTs structures, have been associated to NDDs [65]. Here below
we will describe some of the neurological disorders that have been linked to alterations in MTs
regulatory genes.

2.1. Autism

Autism, more properly defined as autism spectrum disorders (ASD), comprises a heterogeneous
group of neurodevelopmental disorders characterized by deficits in social interaction, verbal and
non-verbal communication, restrictive interests and repetitive behaviors. ASD are characterized by
neuroanatomical abnormalities with alterations in minicolumnar and laminar cortical organization,
synaptic disorders and misconnection in neuronal brain circuitries. At the basis of several ASD-linked
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structural brain abnormalities, different MTs-associated gene mutations and alterations exist. A summary
of MTs regulatory protein and gene alterations associated with ASD has been reported in Table 1.

One of these is the ADNP mutation [66]; activity-dependent neuroprotective protein (ADNP)
is fundamental for brain formation and function, indeed it is involved in cell differentiation and
maturation. It is a member of the chromatin remodeling complex SWI/SNF also associated with tau
alternative splicing [66]. Illana Gozes and colleagues recently found an ADNP cytoplasmic interaction
with the MTs end-binding (EB) proteins [67]. The ADNP-belonging NAP neuroprotective peptide
binds directly MTs and is implicated in synaptic plasticity regulation, acting as neurotrophic factor.
Indeed, NAP is able both to bind EB1 to enhance neurite outgrowth and to bind EB3 to enhance
post-synaptic density 95 protein (PSD-95), thus modulating dendritic plasticity. It has also been shown
to recruit tau to MTs [68] hence promoting axonal transport [69].

Slit/Robo cell signaling pathway has been found altered in ASD patients [70]. It is composed by
three glycoproteins (Slit 1–3) that interact with the repulsive guidance transmembrane receptors Robo
(Robo 1–4). Slit/Robo pathway regulates cytoskeletal remodeling acting on dendritic branching and
axon pathfinding. In ASD patients increased expression of Slit 1 and decreased expression of the ABL1
and Cdc42 genes have been found. ABL1 is a kinase required for the activation of Cdc42, a component
of the Rho family of GTPases essential for neurite outgrowth [71].

Few years ago, Berg and colleagues found altered expression of Janus kinase and
microtubule-interacting protein 1 (JAKMIP1) in patients with distinct syndromic forms of ASD [72].
JAKMIP1 is expressed in both neuronal and lymphoid tissues and comprises two distinct functional
domains: a C-terminal regulatory region, and an N-terminal region that targets the protein to MTs
polymers; its overexpression in human cell lines profoundly perturbs MTs network inducing the
formation of tight and stable boundles [73]. It probably is involved in several cell dynamic processes,
such as polarization, segregation of signaling complexes and vesicle traffic. JAKMIP1 is a component of
polyribosomes and a ribonucleoprotein translational regulatory complex. JAKMIP1 loss dysregulates
neuronal translation during synaptogenesis altering glutamatergic NMDAR signaling and causes
social behavior impairments, stereotyped activity, abnormal pups vocalizations in mice.

The MTs-associated stable tubule only polypeptide (STOP) protein, also known as MTs-associated
protein 6 (MAP6), is a MTs stabilizing protein that plays regulatory roles in neurons, such as regulation
of both actin and MTs dynamic in axons, dendrites as well as in dendritic spines and synaptic protein
complexes [74]. STOP/MAP6 protein has emerged to be significantly reduced in the cortices of BTBR mouse
brain, a validated animal model of ASD [75]. The authors also demonstrated significant reduced protein
levels in the plasma of autistic subject compared to healthy controls [76]. STOP/MAP6 knock-out mice
display several synaptic abnormalities and behavioral deficits, including impairments in maternal care
and social interaction [77], and alterations in mood and cognitive performances [78].

Liu and colleagues [79] demonstrated that KIRREL3, a synaptic molecule of the immunoglobuline
superfamily, implicated in several NDDs including ASD [80], interacts with the brain expressed
protein MAP1B, the MTs-associated protein 1B. MAP1B plays important roles in the regulation of
neuronal morphogenesis. Its deficiency causes abnormal actin microfilament polymerization and
altered activity of GTPases that regulate actin cytoskeleton [81]. MAP1B−/− mice showed impaired
long term potentiation and altered locomotor activity [82].

Autism susceptibility candidate 2 (AUTS2), a gene linked to several psychiatric diseases including
ASD [83], regulates neuronal migration interacting with several MTs related proteins [84]. Indeed, the
protein AUTS2 interacts with guanine nucleotide exchange factors (GEFs), P-Rex-1 and Elmo2/Dock180
complex to activate Rac1, a Rho family small GTPase, that coordinates actin polymerization and MTs
dynamics [85]. Furthermore, AUTS2 interacts with other GEFs, intersectin 1 and 2, to suppress the
activities of Cdc42, another Rho family GTPase, thus repressing filopodia formation in neuronal
neuritis and cell body. AUTS2 mut neurons display abnormal morphology during migration and
reduced activity of JNK, a protein that under the control of Rac1 is involved in leading the process
formation of migrating neurons through the regulation of MTs dynamics [86]. So alteration of the
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AUTS2/Rac1 pathway cause impairment in neuronal migration by deregulating actin and MTs
dynamics in the cytoskeleton [84].

Duplication of the 14-3-3epsilon (YWHAE) gene has been recently associated to ASD onset
in human patients [87]. Cornell and colleagues [88] demonstrated that YWHAE binds to the MTs
binding protein doublecortin (Dcx) preventing its degradation. Increased levels of Dcx disrupt
neurite formation by preventing the invasion of MTs into lamellipodia. On the contrary, mice lacking
14-3-3epsilon result in increased neurite formation.

The partitioning-defective 1 (Par1) family of kinases, or MTs affinity-regulating kinases
(MARKs), has an important role in establishing cell polarity, regulate vesicular transport and cell
migration [89]. Dysregulation of these kinases has been linked to ASD [90]. In particular, several
single-nucleotide polymorphisms (SNPs) in MARK1 gene have been found associated to autism [91].
MARKs phosphorylate tau protein and related MTs-associated proteins (MAPs) thus regulating MTs
dynamics in neurons.

Recent studies on de novo mutation associated to ASD by sequencing the human exomes identified
KATNAL2 gene mutation as a risk factor for the disease [92]. Katnal2 is a MTs severing ATPase
and KATNAL2 gene deletion in mouse resulted in both reduced number of branches and length in
developing neurons [93].

Table 1. MTs and MTs regulatory protein and gene alterations associated with Autism (ASD).

Genes/Protein Effects Ref.

ADNP

ADNP mut cause intellectual disability, facial dysmorphisms

[66–69]

ADNP−/− mice are not viable due to failure of neural tube closure
ADNP−/+ mice present tauopathy and neuronal cell death, deficit
in social behavior and object recognition
ADNP knock down in cells provokes decreased number of neurites
and decreased number and size of embryoid bodies

Slit/Robo
Increased expression of Slit 1, decreased expression of ABL1 and
Cdc42 are associated to alteration in neurite branching and
axon pathfinding

[70,71]

JAKMIP1
JAKMIP1 overexpression causes the formation of tight and stable
MTs boundles in human cell lines [72,73]
JAKMIP1−/− mice present ASD-like behaviors

STOP/MAP6

STOP/MAP6−/− mice present synaptic abnormalities and ASD-like
behavioral deficits (impairments in maternal care, social behavior
and reduced cognitive performance)

[74–78]

Reduced plasma levels of STOP/MAP6 protein in ASD patients

KIRREL3/MAP1B KIRREL3/MAP1B interaction involved in ASD pathogenesis [79–82]

AUTS2/Rac1 AUTS2 mut neurons display abnormal morphology during
migration and reduced activity of JNK [83–86]

YWHAE
YWHAE duplication associated to ASD

[87,88]YWHAE regulator of neurite formation acting on Dcx

MARKs
Dysregulation of MARKs has been linked to ASD

[89–91]MARKs regulate MTs dynamics during cell polarity, migration and
vesicular transport

KATNAL2
KATNAL2 de novo mut associated to ASD in human

[92,93]
KATNAL2−/− mice present reduced neurite branching and length

2.2. Schizophrenia

Schizophrenia is a psychiatric disorder with high disability and distress that can occur in
adolescence or early adulthood [94]. Schizophrenia pathological features include auditory and
visual hallucinations, decreased sensory gating, reduced social interactions, and working memory
deficits [95]. All antipsychotic drugs counteract positive symptoms by antagonizing dopaminergic D2
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receptor, nonetheless these compounds show poor efficacy for cognitive and negative symptoms [94,96].
Currently, schizophrenia can be considered a NDD, due to defects during neurodevelopment leading to
abnormal brain cytoarchitecture [97]. Indeed, schizophrenia is associated with brain structural changes
such as synaptic pruning defects, spine and dendrite atrophy [98]. Also, susceptibility and onset of
schizophrenia is strongly related to brain plasticity alteration characterized by reduced pruning and
spinogenesis defects in the cortex [99]. Cytoskeleton dysfunctions has been inferred in the pathology
of schizophrenia. In particular, tubulin isotypes expression is significantly altered in clinical and in
experimental models of schizophrenia, indicating that perturbed MTs homeostasis is a hallmark in
this pathology [100].

Tubulin displays heterogeneous structures and differential post-translational modifications within
the C-terminal domain, temporally regulated during brain development [101]. Several authors have
associated some tubulin post-translational alterations to schizophrenia [102]. Tubulin acetylations
and deacetylations are post-translational modifications that occur within the MTs lumen catalyzed
by acetyl transferases (αTAT) and histone deacetylase 6 (HDAC6) respectively [102]. Interestingly,
Ulk4 gene (Unc-51 like kinase-4) is disrupted in schizophrenic patients. Knockdown of Ulk4 gene
showed a diminished levels of acetylated α-tubulin suggesting destabilized MTs [103]. Moreover,
knockdown of Ulk4 leads to decrease of c-Jun N-terminal kinases (JNK) activity, a major regulator of
MTs homeostasis, and reduced dendrite length, branching, and agenesis of the corpus callosum [103].

Another post-translational modification is α- and β-tubulin glutamylation by enzymes belonging
to the tubulin tyrosine ligase-like (TTLL) family [104,105]. Molecular interactions between tubulin,
MAPs and motor proteins are influenced by polyglutamylation-dependent changes in the surface
charge [104]. Several authors proposed that alterations in tubulin polyglutamylation could contribute to
the onset and development of schizophrenia [106]. Healthy neuronal function and network formation
are crucial events that are based on the normal cytoskeletal organization and dendritic arborization
regulated by MAPs. In fact, MAP2 immunoreactivity is reduced in the hippocampus and prefrontal
and auditory cortex of post mortem tissues of schizophrenia patients [107,108]. Another MTs regulatory
protein involved in schizophrenia is MAP6. MAP6 stabilizes adjacent MTs through the formation
of bridges between them and this mechanism is regulated by calmodulin binding [109]. Moreover,
several features of murine models associated with schizophrenia such as anxiety, cognitive deficits,
hyperactivity, social impairments and glutamatergic transmission are originated by genetic deletion
of MAP6 [78].

DISC-1 is another gene involved in cytoskeletal remodeling and its alteration is associated
to schizophrenia [110]. Interaction of the nuclear distribution element-like protein (NDEL1) and
pericentriolar material-1 protein with DISC-1 regulates axonal transport and MTs organization [110].
Moreover, the dynein motor complex anchoring at the centrosome is regulated by interaction
between DISC-1 with NDE1 and NDEL1 and this molecular mechanism may be connected to
LIS1. Genetic association studies have identified a single nucleotide polymorphism (SNP) in DISC-1
gene, which increases the risk of developing schizophrenia. Interestingly, this DISC-1-SNP variant
fails to interact with NDEL1, indicating that the MTs cytoskeleton disruption contributes to the
pathology development [111].

The activity-dependent neuroprotective protein (ADNP) has been found deregulated in
postmortem hippocampi of schizophrenia patients [112]. ADNP directly interacts with the MTs
associated protein 1 light chain 3 (LC3) that regulates autophagy [113].

Lastly, collapsin response mediator protein-2 (CRMP-2) is a tubulin binding protein that is
enriched in the hippocampus and dentate gyrus of adult brain [114]. CRMP-2 gene is within
a schizophrenia susceptibility region on chromosome 8p21 [115]. Post-mortem brain analysis from
individuals with schizophrenia showed an increased expression of CRMP2 by genetic linkage data and
proteome-wide analysis [116]. Several MTs and MTs regulatory protein and gene alterations associated
with schizophrenia are listed in Table 2 (table modified from [102]).
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Table 2. MTs and MTs regulatory protein and gene alterations associated with schizophrenia.

Genes/Protein Effects Ref.

α-tubulin and β-tubulin Altered cytoskeletal organization [100–102]

DISC-1 Mutation S704C confers susceptibility to schizophrenia in humans [110,111]

ULK4
Ulk4−/− mice showed low levels of acetylated α-tubulin [103]
ULK4 gene deletions have been found in schizophrenic patients

TTLL 11
Balanced chromosomal translocation combined with chromosomal
micro-duplication is associated with increased schizophrenia
susceptibility

[104,105]

MAP1B
Low immunoreactivity in hippocampal subiculum associated with
altered cyto-architecture and neurotransmission deficits in
individuals with schizophrenia

[81,82]

MAP2 Low immunoreactivity in brains of individuals with schizophrenia [107,108]

MAP6
Neuronal transport defects

[78,109]Deletion of gene causes altered mood and cognitive performance in
mice models of schizophrenia

ADNP
ADNP protein deregulated in postmortem hippocampi of
schizophrenia patients [112,113]
ADNP involved in autophagy regulation

2.3. Down Syndrome

Trisomy 21 (Down syndrome, DS) is a pathological condition associated with mental retardation
and represents the most common genetic cause of developmental disability [117]. Fetal DS brain
show a delay in cortical development and a disorganized lamination [118]. Moreover, DS brain
present dendrite alterations with decreased number of spines and altered morphology and defective
cortical layering [119]. Cortical cytoarchitecture alterations in DS are characterized by cytoskeletal
abnormalities in prenatal life. In particular, β-tubulin expression is reduced in DS and this condition,
correlated with the changes in synaptogenesis, can affect MTs-based functions, ranging from neuronal
migration to intracellular transport [120]. Also components of the dynactin complex are significantly
reduced in fetal DS brain [121]. Disruption of dynein/dynactin proteins structure and functionality
cause synaptic instability and onset of neuronal degeneration associated with DS [121,122].

Interestingly, another cytoskeletal abnormality associated to neuropathological features of DS is
linked to dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) [123]. This gene is
located on critical region of the chromosome 21 containing a subset of genes implicated in trisomy
development [124]. Moreover, DYRK1A expression in the brain tissue of DS subjects is increased
and its up-regulation has been linked to brain anomalies and deficiencies in complex neuronal
networks [125]. The pathogenesis of mental retardation in DS is associated to the formation of defective
neuronal circuits and generated by an increased expression of DYRK1A [124]. Indeed, DYRK1A
overexpression causes a reduction in dendritic spine formation of cultured hippocampal neurons [126].
Moreover, cortical neurons from DYRK1A transgenic mice displayed a reduction in spine density,
synapse formation, and dendritic filopodia length as well as alteration in spine morphology [127].
These anatomical anomalies DYRK1A-mediated in the brain of DS subjects involves the dysregulation
of cytoskeletal proteins such as tubulin, actin, and MTs-associated protein [128]. Indeed, DYRK1A
regulates MTs growth through phosphorylation of β-tubulin, and this action has a profound influence
not only on dendritic arborization, but also on neuron functionality [127]. DYRK1A overexpression
together with post-translational MTs alterations, could provide insight into the nature of the neuronal
pathologies in DS.

2.4. Epilepsy

Epilepsy is a common and chronic neurological disorder characterized by recurring, uncontrolled
seizures and often requires long term anti-epileptic drugs therapy [129]. Approximately 30% of epilepsy
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cases are refractory to current pharmacological treatments. Malformations of cortical structure linked
to genetic conditions are at the basis of several forms of epilepsy [130].

One of the gene found to be linked to epilepsy is DCX, the gene coding for the doublecortin protein.
Kim and colleagues reported a novel missense mutation of DCX resulting in late-childhood-onset
familiar focal epilepsy and anterior dominant pachygyria without subcortical band heterotopia in
both genders [131]. DCX is a MTs-associated protein expressed by neuronal precursor cells and
immature neurons in embryonic and adult cortex. It has an important role for MTs stabilization during
neuronal migration [132].

Increased expression levels of EMAP-like protein 5 (EML5), a new echinoderm MTs-associated
protein expressed in the central nervous system, have been found in both neurons and glial cells of
the anterior temporal cortex of intractable epilepsy patients [133]. Repetitive brain seizures induce
overexpression of cytoarchitectural-related proteins at the seizure lesion and contribute to cell death,
which finally lead to drug resistance. EMAP proteins play a role in MTs formation, depolymerization,
extension inhibition and MTs dynamics regulation [134]. They act as MTs disassembly proteins.
Overexpression of EML5 found in the anterior temporal cortex of intractable epilepsy patients could
be responsible for the increased extension of neuronal dendrites and axons and enhanced branching.

Mesial temporal lobe epilepsy (MTLE) is another common form of intractable epilepsy
characterized by cytoarchitectural abnormalities, neuronal loss and reactive gliosis [135].
Several cytoskeletal proteins, such as β-tubulin, tubulin α-1 chain and neuronal tropomodulin profiling
II, have been found markedly reduced in MTLE. On the contrary, the growth cone associated protein
GAP43, MAP2 and MAP1A have been found significantly increased [136–138]. Also the laminin-β1
and integrin α-2 proteins expression levels have been reported to be differentially regulated in chronic
epilepsy [139]. Laminin-β1 is an extracellular matrix component that promotes neuronal polarization
via regulating directional MTs assembly through β1-integrin [140]. Integrins are transmembrane
receptors connecting the extracellular matrix environment to the cytoskeleton; they control cell motility,
proliferation, survival and polarization [141]. Finally, the role of MTs dynamics in epilepsy has been
analyzed and it emerged that expression of tyrosinated tubulin, a reflection of MTs dynamic properties,
is increased in epileptic foci [142].

These data reinforce the concept of abnormalities in cytoskeletal proteins leading to structural
alterations in the brain of patients with epilepsy.

2.5. Lissencephaly

Lissencephaly, also called agyria/pachygyria, is a neurological disorder in which the mature brain
is deficient in gyration [130]. Indeed, it is characterized by reduced or absent gyration combined with
thickening of the cerebral cortex. Based on brain histology, lissenchepaly can be classified as type I,
or classical lissencephaly, in which the cortex presents only four layers, and type II, or cobblestone
lissencephaly, in which no discrete cortical layers are formed. Patients suffering from lissenchepaly
(smooth brain) harbor cortical malformations caused by impaired radial neuronal migration and failure
of cortical fold formation. These cortical structural alterations cause severe deficits, such as mental
retardation, seizures and also death in early childhood. Approximately in the 80% of the lissencephaly
cases a genetic cause can be found. Several genes associated to lissencephaly code for proteins that
play important roles in brain development, acting on formation and regulation of MTs. Here we will
describe the main genes involved in the pathology. A summary of MTs regulatory protein and gene
alterations associated with lissencephaly has been reported in Table 3.

The loss of lissencephaly-1 (LIS1) is a major cause of lissencephaly, leading to abnormal
nuclear translocation during neuronal migration and hence impairing brain gyrus formation.
Cortical malformations are localized more in the dorsal portion of the brain. LIS1 protein is involved
in MTs regulation and MTs-based motor proteins [143]. Following phosphorylation, it interacts with
tubulin and modulates MTs dynamics, hence is important for preserving MTs network organization [144].
Furthermore, LIS1 interacts with several MTs-associated proteins (MAPs), such as DCX, CLIP-170
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and MAP1b, other than with cytoskeletal motor proteins, such as dynein/dynactin, suggesting also
a role in regulating intracellular transport, organization of intracellular organelles and mitosis and MTs
polarity. LIS1 was found to be essential for radial glial progenitor cells mitotic spindle orientation [145].

Another common gene mutation associated to lissenchepaly is linked to the DCX gene. DCX gene
mutations cause cortical structural alterations mainly localized in the rostral part of the brain [146].
Often in female with DCX gene mutations the subcortical band heterotopia (SBH) occurs [147]. SBH is
a lissencephaly related disorder characterized by bilateral bands of gray matter interposed in the white
matter between the cortex and the lateral ventricles. DCX is a MTs-associated protein that promotes
nucleation, assembly and stability of 13-protofilament MTs [148]. DCX-MTs interaction is mainly
regulated by DCX phosphorylation by different kinases that can have different effects on interaction
affinity. DCX also regulates actin cytoskeleton thus affecting also neurite branching [149,150].

Mutations in the TUBA1A gene, coding for the tubulin α1A protein, have been associated to
type I lissencephaly [151,152]. TUBA1A protein is a major component of MTs. Patients with TUBA1A
mutations present not only cortical dysgenesis, but also cerebellar, hippocampal, corpus callosum, and
brainstem abnormalities.

Mutations in TUBB2B gene, coding for tubulin β-2B chain, cause asymmetrical bilateral
polygyria [153]. Polymicrogyria present disorganized cortical lamination and the presence of multiple
small, partially fused gyri separated by shallow sulci that result in an irregular cortical surface.

An autosomal recessive form of lissencephaly has been associated with the human RELN gene
mutations. It is characterized by severe abnormalities of the cerebellum, hippocampus and brainstem.
The mutations disrupt RELN cDNA splicing, resulting in low or undetectable amounts of reelin
protein [53]. Reelin is a large secreted glycoprotein synthesized by Cajal-Retzius cells in the marginal
zone of the cortex that plays a fundamental role in neuronal migration and positioning in the
developing brain by controlling cell-cell interactions. It also regulates MTs dynamics during neuronal
migration. Indeed, reelin induces stabilization of the leading processes by binding to migrating neuron
ApoER2 receptors. This event involves adaptor protein disabled 1 (Dab1) phosphorylation, adhesion
molecule expression, cofilin hosphorylation and inhibition of tau phosphorylation [154].

Table 3. MTs and MTs regulatory protein and gene alterations associated with lissencephaly.

Genes/Protein Effects Ref.

LIS1
Loss of lissencephaly-1 (LIS1) protein is a major cause of lissencephaly

[143–145]Mutations on LIS1 gene cause alterations in neuronal migration, in MTs
network organization and intracellular transport

DCX

DCX gene mutations cause neuronal migration abnormalities by altering
MTs dynamics

[146–150]DCX gene has been associated with lissencephaly and subcortical
band heterotopia

TUBA1A Mutations in the TUBA1A gene have been associates with type I lissencephaly [151,152]

TUBB2B Mutations in TUBB2B gene cause asymmetrical bilateral polygyria [153]

RELN RELN gene mutations cause loss of reelin protein, leading to alterations in
neuronal migration and positioning in the developing brain [53]

2.6. Microcephaly

Microcephaly is a neurological disorder characterized by reduced prenatal brain growth
without structure alterations. Affected patients generally present striking neurological defects
and seizures, other than severely impaired intellectual development and disturbances in motor
functions. Altered neurogenesis during neurodevelopment is the main cause of microcephaly. Most of
microcephaly cases are linked to genetic alterations.

So far, five genes associated with autosomal recessive primary microcephaly (MCPH) have been
identified in patients: MCPH1, CDK5RAP2, ASPM, CENPJ, and STIL/SIL [155,156]. All these genes
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code for proteins localized in the centrosome that play important roles in centrosome formation and
stabilization, or regulation of MTs dynamics. Disruption of one of these functions cause dramatic
effects in prenatal neurogenesis finally leading to microcephaly.

Recent genetic studies identified biallelic mutations of PRUNE1 gene in microcephaly affected
patients [157]. PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of
molecules important for cell motility. Mutations in PRUNE1 gene caused impaired MTs polymerization,
as well as cell migration and proliferation defects. PRUNE may have a role in MTs polymerization
regulation, essential process for the cytoskeletal remodeling that occur during cellular division
and proliferation.

A partial duplication of LIS1 has been also associated to microcephaly characterized by
neurodevelopmental delays, profound white matter atrophy and in the absence of overt lissencephaly [158].

McNeely and colleagues demonstrated in a mouse model lacking the Kif20b protein, that Kif20b
is required for proper morphogenesis of neurons during corticogenesis [159]. Loss of Kif20b causes
altered neurite polarization, outgrowth, branching and caliber, other than thalamocortical axon
guidance defect and microcephaly. Kif20b, also called MPP1 or Mphosph1, is a member of the
Kinesin-6 family of “mitotic” kinesins. Authors suggest that Kif20b protein act by bundling MTs into
tight arrays and by localizing effectors.

2.7. Intellectual Disability

Intellectual disability (ID), or mental retardation, is a condition included in NDDs that affects
1.5–2% of general population [160]. ID can be classified into syndromic, when intellectual deficits are
associated to other medical and behavioural symptoms, or non-syndromic, when only intellectual
deficits appear. It is characterized by severe impairment in both intellectual and adaptive functioning.

A next generation sequencing analysis identified in an Iranian consanguineous family affected by
ID a nonsense mutation in CLIP1, a gene that encodes a member of MTs plus-end tracking proteins,
with a fundamental role in MTs dynamics regulation and MTs-mediated transport along axons
and dendrites [161].

Kevenaar and colleagues found a causal link between homozygous nonsense mutations
in kinesin-binding protein (KBP)/KIAA1279 and the neurological disorder Goldberg-Shprintzen
syndrome (GOSHS), which is a form of intellectual disability combined also with microcephaly and
axonal neuropathy [162]. KBP is a specific kinesin inhibitor that modulates MTs-based motility and
depolymerizing activity of several kinesins. Indeed, kinesin motor proteins control both intracellular
cargos transport and MTs cytoskeleton organization and the disruption of kinesin regulation by KBP
causes severe cellular alterations during neurodevelopment leading to GOSHS neurological disorder.

Others kinesin family (KIF) members have been found to be related to ID; in fact, by next
generation sequencing, mutations in KIF4A and KIF5C have been identified in ID patients [163].
To further confirm the link between KIF genes mutations and ID, in vivo functional studies on knockout
mice have been performed. It emerged that, in addition to alterations in MTs dynamics and intracellular
transport along MTs, KIF4A and KIF5C mutations lead to an imbalance between excitatory and
inhibitory synaptic excitability. By means of whole exome sequencing of ID patients, de novo missense
mutations also in KIF1A gene were discovered [164]. In vitro studies by MTs gliding assay confirmed
the serious effects of KIF1A gene loss of function on axonal transport.

Mutations in CHAMP1 gene also cause a form of ID associated to severe speech impairments [165–167].
CHAMP1 is a zinc finger protein involved in kinetochore-MTs attachment and in the regulation of
chromosome segregation; ID-related CHAMP1 mutations cause altered localization of CHAMP1
protein to chromosomes and to the mitotic spindle, impairing fundamental developmental processes.

Microdeletions incorporating the KATNAL1 gene locus result in intellectual disability in
humans [168]. This gene codes for the MTs severing protein KATNAL1. Mice carrying a loss of
function allele in KATNAL1 present specific behavioral deficits in circadian rhythms, sleep, anxiety,
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learning and memory. Furthermore, they present numerous brain structural abnormalities and defects
in motile cilia [169].

Mutation of MID2, a gene coding for an ubiquitin ligase that regulates MTs dynamics, leads to
misregulation of MTs organization and to the downstream disease pathology associated with X-linked
intellectual disabilities [170]. Mid2 depletion led to stabilization of Astrin, a MTs organizing protein,
during cytokinesis causing cytokinetic defects, multinucleated cells and cell death.

3. MTs Stabilizing Agents in NDDs

MTs interacting drugs have been proposed for the therapy of several NDDs, ranging from autism
and schizophrenia, mainly due to their stabilizing properties, aiming to restore neuronal axonal
transport and reduce tau phosphorylation. It should be noted that the concept of “MTs stabilization”
has a proper meaning only when referring to in vitro condition. Concerning in vivo condition, the
term “MTs stabilizing agents” has to be intended as something that acts on MTs dynamics slowing
down the MTs turnover and depolymerization. Indeed, MTs maintain their dynamic regulation of
growth/shrinkage but a delay in the time needed for their turnover renders them more stable, so
sustaining intracellular cargo trafficking along MTs and maintaining synaptic contacts.

3.1. Brain-Penetrant Microtubule-Stabilizing Compounds: Epothilone D

Epothilone D (EpoD) is a taxol-related compound that interacts directly with tubulin to stabilize
MTs [171,172]. EpoD can accumulate in brain tissues after crossing blood–brain barrier. Moreover,
Epo D is currently used in clinical trials for the treatment of various tumors, indeed it blocks MTs
dynamics and cell division at high dosages as reported by Wang and colleagues [173]. At nanomolar
concentrations, however, this compound improves MTs density and axonal transport, reduces axonal
dystrophy and enhances cognitive performance, without notable effects on viability and development
in mouse [174]. In the STOP null mice, EpoD was found to have a beneficial effect on both synaptic
transmission and behavior, reducing frequency of shifts between different spontaneous activities,
such as feeding, walking and grooming [175].

3.2. Non-Taxane MTs Stabilizers: NAP and D-SAL

Activity-dependent neuroprotective protein (ADNP) and activity-dependent neurotrophic factor
(ADNF) generate non-taxane MTs stabilizers such as NAPVSIPQ (NAP, davunetide) and all D-amino
acid SALLRSIPA (D-SAL). ADNP has been associated with neuronal cell differentiation, maturation
and neuronal plasticity [176]. ADNP down regulation in cell models resulted in MTs reorganization
leading to altered cell morphology and reduced neurite formation [176]. In human, ADNP is mutated
in autistic children with cognitive deficits [59,156,177] and is deregulated in schizophrenia [112,113].
MTs end binding (EB) proteins interact with NAP which showed a neuroprotective activity [67]. The EB
proteins family, which consists of three members (EB1–3), is the core component of the MTs plus end
tracking proteins (+TIPs) machinery which coordinates a network of dynamic proteins on the growing
MTs plus-ends [178]. Furthermore, NAP enhances Tau-MTs binding under stress conditions and
stimulated axonal transport [68,179,180]. In a DISC1 mutated mouse model of schizophrenia, NAP
treatment was shown to ameliorate behavior improving cognition and reducing anxiety [181]. Indeed,
NAP treatment induces an improvement in daily activities in patients with schizophrenia in a phase II
clinical trial [182]. Moreover, NAP protects from autophagy in a mouse model of schizophrenia
enhancing the interaction between ADNP and the MTs-associated protein 1 light chain 3 β (LC3B) and
restoring Becn1 mRNA levels in the hippocampus [183].

In a model of epileptic seizures, injection of NAP into the dentate gyrus of kainic acid-treated rats
partially protected against CA3 neuronal death [184].

D-SAL competes with NAP binding to tubulin and prenatal treatment with NAP+D-SAL prevents
developmental delay, glial deficit and learning impairment in Ts65Dn mice that are a well-characterized
mouse model for Down syndrome [185].
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3.3. Risperidone

Risperidone is a second-generation antipsychotic drug, acting by blocking dopamine D2 and
serotonin 5-HT2A receptors, with consequent reduction of dopaminergic neurotransmission in the
mesolimbic pathway. As NAP, risperidone was found to interact with EB1-EB3 protein family and to
compete with NAP binding on EB3. Risperidone improves the neurocognitive functions in patients
with schizophrenia [186] and is used in autistic patients for the treatment of associated symptoms as
disruptive behavior and hyperactivity [187]. Similar to NAP, risperidone ameliorated object recognition
deficits in the mutated DISC1 mouse model, although without the anxiolytic effect. NAP and/or
risperidone treatment generated a down-regulation of Forkhead-BOX P2 (Foxp2) in the hippocampus
of the DISC1 mutated mice. This gene regulates DISC1 and is associated with human ability to acquire
a spoken language. Thus, language disturbances and cognitive impairments in schizophrenia may
be contrasted with the combination of NAP and risperidone [181]. Long-term administration of
Risperidone was effective in alleviating behavioural alterations that mimic schizophrenia negative
symptoms and partially ameliorate some cognitive defects in STOP null mice [188]. These mice present
a disruption of MTs-associated protein 6 (MAP6) gene and are used as NDDs model.

3.4. New Experimental MTs-Acting Compounds

Currently several compounds are under research trial to study their potential use as MTs
modulating agents in the context of neurodevelopmental disorders.

One of these compounds is melatonin, a hormone involved in the regulation of circadian
rhythms, blood pressure, seasonal reproduction [189]. Melatonin can also act as neuronal antioxidant
agent able to prevent MTs oxidative damage. Indeed, oxidative stress, by modifying β-tubulin and
MTs-MAP2 binding, causes MTs depolymerization, consequent loss of polarization and apoptotic
cell death [190]. Melatonin is able to increase MAP2 levels thus increasing MTs polymerization and
dendrite stabilization [191,192]. Several data support the potential use of melatonin as MTs stabilizing
agents in the treatment of depression and anxiety associated to schizophrenia [102,193].

Another interesting compound is a synthetic neurosteroid called MAPREG, a MTs-associated
protein/neurosteroidal pregnenolone. It has been studied in the context of schizophrenia-associated
depression to prevent branching reduction and synaptic contact loss [194]. In rodents MAPREG was
able to protect them from developing a depressed state. Furthermore, it prevented the loss of α-tubulin
acetylation and sleep disturbances following psychosocial stress [195]. By binding MAP2, MAPREG
stimulates MTs assembly and promotes neurite growth [196].

Also lithium can act on MTs and have a beneficial role in cytoskeleton regulation in mood
disorders. Indeed, it has been shown to act as a Gsk3 inhibitor, thus decreasing phosphorylation of tau
and MAP1B finally leading to MTs remodeling [197].

Several studies report encouraging data regarding the possible use of calpain inhibitors to
prevent LIS1 degradation in lissencephaly [198,199]. Calpain is a protease promoting LIS1 protein
degradation. Calpain inhibitors protect LIS1 from proteolysis thus increasing LIS1 protein levels. LIS1
regulates cytoplasmic dynein function and localization. LIS1 gene mutations, leading to absence,
low levels or low activity of LIS1 protein, cause impaired MTs trafficking and neuronal migration
during neurodevelopment. Toba and colleagues demonstrated that perinatal treatment with SNJ1945,
a calpain inhibitor able to cross the blood brain barrier, can rescue LIS1+/− mice defects. It stimulated
network formation, receptor distribution, recovered retrograde transport and improved behavioral
performance [199]. Yamada and colleagues demonstrated that treatment of pregnant Lis1+/− dams
with calpain inhibitor ALLN rescued apoptotic neurons death and neuronal migration defects in
Lis1+/− offspring [198].

Finally, in recent years several blood brain barrier penetrant-molecules have been identified that
exhibit MTs-stabilizing activity [200]. These compounds, including triazolopyrimidines, phenylpyrimidines
and other related heterocyclic molecules, are non-natural small molecules and have simple structure and
favorable pharmacokinetic properties, such as oral bioavailability [201–203]. The mechanism of action of
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these compounds has not yet been completely defined at the molecular level; Zhang and colleagues
demonstrated that they are able to block the binding of the tubulin polymerization inhibitor vinblastine.
They have a taxol-like effect but act also on taxol-resistant cells and have been extensively studied as
anticancer drugs. Now these small molecules are studied as drug candidates also for neurodegenerative
diseases, such as Alzheimer’s disease and tauophaties [203], but it is conceivable to imagine their
future application also in the context of NDDs.

4. Conclusions

Centrosome, MTs and MTs-related proteins are essential players in all the steps of brain
development, from proliferation and migration to differentiation and synaptic network formation.
Increasing data demonstrate that MTs-dependent mitotic and post-mitotic processes are major
contributors of cortical malformations at the basis of NDDs. Brain formation during neurodevelopment
requires the correct coordination of several developmental steps, regulated by both a precise timing
and positioning. The disruption of one of these specific steps is sufficient to impair to whole process.
Depending on the neurodevelopmental step involved, different NDDs can arise. The study of molecular
mechanisms at the basis of several NDDs that still today have an unknown etiology or linked to genes
with unknown functions is fundamental in order to find new pharmacological target for future
therapies. MTs targeting therapies could be able to improve or even prevent some structural and
functional alterations linked to NDDs. Currently only few MTs targeting compounds have been tested
on humans in clinical trials but increasing number of new compounds are being tested in experimental
studies in both in vitro and in vivo models and promising results are emerging. The possibility to act
on MTs for pharmacological intervention in NDDs is progressively becoming a solid opportunity.
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