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Abstract: The fruit processing industry generates large amounts of wastes (pomace, seeds, peels)
that causes negative environmental impact with considerable treatment expenses. Nevertheless,
various studies demonstrated that these by-products are still rich in bioactive compounds, especially
dietary fibres and phenolic compounds, thus leading to significant chemical, physical and biological
properties. These characteristics make fruits by-products a good source for new supplements in food
products having important effect on intestinal function. Thus, the aim of this review is to evaluate
the different bioactive compounds isolated from fruit by-products and to analyse their application
in various formulations for the food and nutraceutical industries. In consideration of the biological
properties of these compounds, their role in the functioning and action on intestine and gut flora
was discussed.
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1. Introduction

The significant progress made in the field of chemistry, biology and agriculture has enabled better
exploitation of agro-resources. Food is not seen as a simple nourishment, but its beneficial or harmful
effects for the organism, and its role in the prevention of cardiovascular and metabolic pathologies
are taken into consideration. No less important for the consumer is the impact on the environment
of food production, both in terms of energy and human resources used, and of residues generated
by agronomic practices, transformation and conservation. In this context the recovery of waste from
agro-resource processing industries is considered of notable importance not only for economic matters
but also for environmental sustainability, and offers new opportunities for economic development
in many sectors. Thus, the economic burden of recycling waste becomes the production of high
value-added co-products intended for resale to the biomedical, food, cosmetics, chemistry and design
packaging materials industries [1,2]. The use of agro-resources and their co-products is motivated
by their abundance, their renewable nature, their biodegradability and the added value which must
justify any industrial development. Indeed, agro-resources could offer a new source of raw materials
in many fields.

Even if the current globalization of the market ensures the availability of fresh fruit throughout
the year, a large part is subjected to different transformation processes in order to obtain new products
satisfying the different current demands of consumers. Thus, it has been reported that about a third of
the edible portion of food intended for human consumption is lost or wasted along the food chain,
from initial production to final consumption [3,4]. The large quantity of residues produced by the
food industry, in addition to being a great loss of valuable materials, also raises serious management
problems from an economic and ecological point of view. To address these economic and ecological
problems, the recovery of residues represents a promising solution to absorb millions of tons of waste
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material. The valorization of by-products from the food industry gives a second life to co-products
and limits the use of conventional energy sources [5].

Depending on the nature of the co-products to be recovered, several techniques have been
developed. The transformation of co-products into biofuels and biosolvents represents a very
promising economic and ecological recovery [6,7]. The integration of co-products into the animal feed
market also means a promising recovery technique [4]. Fruit and vegetable co-products have been
valued in the field of functional foods because of their health interests [8,9].

2. Bioactive Compounds from Fruit by-Products

Several researches have proven the presence of a wide range of bioactive compounds in various
fruit industrial by-products which are essentially pomace, peels and seed fractions. These compounds
consist mainly of carbohydrates (pectin, cellulose, hemicellulose . . . ), secondary metabolites (phenolics,
glycosides, alkaloids, gums, mucilage and volatile oils), lipids and proteins. Generally, seeds are rich in
polyphenols and bioactive lipids whereas peels are considered as a rich source of dietary fibres [10,11].
Bioactive compounds are present in fruit by-products with various concentrations and combinations.
These differences could be mainly related to the fruit variety, geographic location, maturation stage,
as well as extraction parameters (solvent, extraction ratio, time and temperature) [9].

Several extraction techniques were carried out for the isolation of bioactive compounds from fruit
by-products. For example, solid state fermentation (SSF) was applied for the extraction of polyphenolic
antioxidants from grape skin [12] and bagasse [13] and for the isolation of ellagic acid from pomegranate
Husks [14]. Citric acid was isolated from banana peel by SSF using Aspergillus niger [15], while pectin
and limonene were extracted from orange peel through enzymatic and chemical hydrolysis [16].
Mango peels were subjected to autoclave treatment for the extraction of pectin and polyphenols [17].
The other processes that we can cite are ultrasound treatment (fatty acids and tocopherols from
watermelon seeds) [18], microwave-assisted extraction (phenolic compounds from pitaya fruit
peels) [19], steam explosion (limonene from orange peel) [20] and classic extraction with ethanol
(phenolic antioxidants from avocado peel) [21] or n-hexane (antioxidant oils from melon seeds and
carotenoids and anthocyanins from papaya peel) [22,23]. Another modern method for the isolation of
bioactive compounds from fruit by-products is sub- and supercritical fluid extractions. This method
was applied for the extraction of phenolic compounds, flavonoids, carotenoids, pectin, reducing sugars,
lipids and proteins from several by-products such as citrus peels and pomace, pomegranate peels,
apple pomace and seeds, grape pomace and seeds [24].

Plant bioactive metabolites exert pleiotropic effects by the modulation of multiple metabolic
pathways through a variety of molecular targets. Previous studies revealed that dietary phenolic
compounds displayed a pleiotropic behavior on key proteins, thus presenting beneficial effects in
several chronic disorders which are related to oxidative stress, inflammation and aging. This is strongly
related to the wide range of biological activities like antioxidant, antimicrobial, anti-inflammatory,
anti-allergenic, anticancer and cardioprotective activities. Thus, it has been reported that natural
phenolic compounds and their metabolites exerted significant effects on the main metabolic pathways
involved in energy metabolism (the AMP-protein kinase AMPK and the mammalian target of rapamycin
mTOR are the main regulators), as well as inflammatory response and aging (main regulators
are the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and sirtuins) [25,26]. For example,
Marín-Aguila et al. (2013) described some nutraceutical compounds targeting AMPK pathways in
cancer, cardiovascular disease, type 2 diabetes mellitus and neurodegenerative disease including
phenolic acids, anthocyanins, stilbene, flavone, flavonol, alkaloids, lignan [26]. Thus, bioactive
compounds isolated from fruit by-products showed a significant effect as bioingredients in functional
foods as well as nutraceuticals in pharmaceutical and medicinal recipes. This was mainly due to
their antioxidant, anti-inflammatory, antimicrobial, anti-allergenic, antithrombotic, anti-atherogenic,
cardioprotective and vasodilatory capacities [11].
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2.1. Phenolic Compounds

Various phenolic compounds were isolated such as hydroxybenzoic and hydroxycinnamic acids,
flavonoids (flavonols, flavanones, flavones, flavanonols, isoflavones, flavanols, and anthocyanidins),
lignans and stilbenes (Table 1). Many fruit wastes showed highest phenolic content, especially grape,
pomegranate, apple and citrus varieties (orange, lemon).

Indeed, the interest accorded to these compounds was mainly related to their capacity to scavenge
free radicals and to regulate the generation of free radicals in vivo, thus ensuring the prevention of
oxidation reactions in food and cell damage. These characteristics allows them to replace synthetic
preservatives [10].

For example, an important oxidative stability was found in the oil extracted from date seeds due
to the higher phenolic content (about 19 mg GAE/g dry weight). This ensures the use of date seed oil
as natural additive to other vegetable oils in order to improve its heat stability [27,28]. In addition,
big amounts of seeds and peels residues are generated by the citrus industry. These residues constitute
about 50% of the total fruit and are an important source of phenolic compounds. Also, it has been
reported that the peels of many fruits, such as apples, peaches, pears, banana and pomegranate,
have been found to contain highest content in phenolics than the edible portions [29].

Table 1. Content of phenolic compounds in some fruit by-products.

Fruit by-Product TPC Phenolic Compounds References

Pomegranate peel 139.4 * Punicalagin A, punicalagin B, catechin, gallic acid, ellagic acid [30–32]
420.6 ***

Pomegranate pomace 134.8 ** Gallic acid, catechin, ellagic acid, rosmarinic acid, hesperidin,
p-coumaric acid, chlorogenic acid [33,34]

Rowanberry pomace 167.4 **** Cyanidin, Chlorogenic acid, quercetin, kaempferol [35,36]

Apple pomace 13.8 * Hydroxycinnamic acids, Hydroxycinnamates, phloretin
glycosides, quercetin glycosides, catechins, procyanidins [37,38]

Apple peel 34.3 * Gallic acid, caffeic acid, vanillic acid, catechin, epicatechin
gallate, chlorogenic acids, phloridzin, rutin [38,39]

Banana peel 29.2 * Epicatechin, rutin, hydroxybenzoic acid, myricetin, ferulic
acid, chlorogenic acid, gallic acid [40]

Date by-products 4.4 * Quercetin, luteolin, apigenin, chrysoeriol, kaempferol,
isorhamnetin, malonyl derivatives [41,42]

Elderberry pomace 4.7 * Cyanidin, rutin, oleanolic acid, ursolic acid, linoleic acid [43,44]

Grape juice by-product 23.4 * Benzoic and hydroxycinnamic derivatives, catechins,
flavanols, anthocyanins, tannins, proanthocyanidins [45,46]

Grape pomace 142.1 *

Phenolic acids (ferulic, p-coumaric, caffeic, gallic, vanillic,
p-hydroxybenzoic), flavanols (proanthocyanidins), flavonols

(kaempferol, quercetin, myricetin), stilbenes (resveratrol,
piceid, astringin), anthocyanins

[47,48]

Grape seed 74.0 * Gallic acid, caftaric acid, catechin, epicatechin,
epicatechin gallate, procyanidins, resveratrol [48–50]

Mango kernel 72.1 * Gallates, gallotannins, gallic acid, ellagic acid and
its derivatives [48,51]

Orange by-product 4.21 * Caffeic acid, Ferulic acid, p-Coumaric acid, Eriocitrin,
Narirutin, Hesperidin, Neohesperidin [52,53]

Orange peel 65.7 * Caffeic acid, p-coumaric acid, naringin, kaempferol,
neohesperidin, rutin [54]

Orange pulp 22.3 *
Flavonone (Eriocitrin, Narirutin, Hesperidin, Didymin . . . ),

Flavone (Quercitrin, Nobiletin . . . ), Kaemperol, Benzoic acids,
Cinnamic acids, Chlorogenic acid,

[55]

Lemon peel 49.8 * Caffeic acid, Coumaric acid, Ferulic acid, Sinapic acid [56,57]
Passion fruit by-products 3.84 * p-coumaric acid, Epicatechin [52,58]

Guava by-product 19.9 * Resveratrol, coumarin [23]

Cherry by-product 91.3 * Flavonoids, anthocyanidins, stilbenes, resveratrol, quercetin,
gallic acid [59]

* mg gallic acid eq./g extract DW; ** mg gallic acid eq./g liquid extract; *** mg tannic acid eq./g extract DW; **** mg
catechin eq./g extract DW.



Foods 2020, 9, 1716 4 of 22

2.2. Dietary Fibres (DFs)

Over the last decades, there has been an increasing trend to recover dietary fibre (DF)
compounds from industrial by-products. These compounds refer essentially to the sum of non-starch
polysaccharides and lignin. Thus, it has been reported that fruit by-products are mainly composed of
cellulose, hemicellulose, pectin, gums and lignin [10].

Table 2 illustrates some DF compounds isolated from various fruit by-products.
DF compounds can be obtained from the by-products of various food processing industry, such as

the beverage, canning and juice industries. This latter probably produces the most important amounts
of by-products, composed mainly by pomace and peels [60].

From a general aspect, the interest given to DF is strongly associated to their significant role
in decreasing many health disorders. Cellulose, hemicellulose and lignin are well-known for water
absorption and intestinal regulation, whereas pectin and gums showed important effects in cholesterol
reducing and glucose regulation [61].

Table 2. Dietary fibre content in some fruit by-products.

Fruit by-Product TDF (g/100 DW) References

Apple Pomace 45.0 [62]
Apple Peel 43.9 [63]

Apple by product 75.8 [64]
Banana Peel 49.6 [40]

Orange Pomace 63.8 [65]
Orange Peel 48.7 [66]

Orange by-product 58.2 [52]
Passion fruit by-product 64.2 [52]

Guava by-product 89.8 [52]
Date seeds 73.5 [67]

Grape fruit by-product 67.2 [64]
Apricot by-product 72.3 [64]
Pomegranate Peel 56.2 [68]

Pomegranate pomace 43.5 [34]

The data reported refer to the dry weight, but the high amount of water in these by-products must be
considered. The freeze-drying or spray-dry operations to remove water have to be considered because
of their cost rather than preparing a concentrate with less energy consumption for the preparation.

Moreover, DFs showed widespread use in the food industry when they are incorporated into
bakery products by enhancing the digestion, prolonging the freshness and retaining more water.
They also improve the texture and provide a desirable resistance to melting of ice cream [61].

2.3. Proteins and Peptides

Proteins are important biomolecules for a good function of the human body, particularly to
form muscles [29]. Thus, it has been reported that many health diseases are strongly related to
protein deficiency such as Kwashiorkor, Marasmus (energy deficiency), mental disorders, organ failure,
oedema and weakness immune system [69].

In more recent diets, especially aimed at athletes or for diseases related to diabetes and the
cardiovascular system, increased protein intake plays an important role. It is also to be considered that
a greater ecological awareness leads people more and more often to limit the consumption of meat,
if not actually not to use it as is the case for vegan people.

The use of plants, fungi and their extracts as meat substitutes have become increasingly important
in nutrition and satisfies the request for proteins and amino acids, essential for the regular human
metabolism. Indeed, fruit by-products have been reported to be an important source of proteins and
peptides (Table 3). These latter are generally obtained by the hydrolysis of proteins [10].
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Table 3. Protein content in some fruit by-products.

Fruit by-Product Protein (%) References

Orange by-product 5.2 [52]
Passion fruit by-product 12.6 [52]

Guava by-product 2.1 [52]
Date seeds 6.0 [67]

Pomegranate peels 12.9 [70]
Pomegranate pomace 11.1 [34]

Apple Pomace 4.8 [71]
Apple Peel 3.2 [63]
Mango peel 4.3 [72]
Banana Peel 7.0 [73]

Orange juice by-product 18.9 [70]
Orange Pomace 9.8 [74]

Orange Peel 6.8 [75]
Citrus peel 4.5 [76]

Grape fruit by-product 5.8 [13]

In comparison with vegetables, it has been reported that the oil isolated from hempseeds is
mainly composed of polyunsaturated fatty acids, particularly linoleic (ω-6) and α-linolenic (ω-3) acids,
whereas globulin (edestin) and albumin were found to be the major proteins [77]. The by-product
resulted from canola oil extraction (Canola meal) is very rich in proteins (up to 50%), whereas canola
seeds contain about 26% of protein. The protein content of canola meal, which consists mainly of napin
and cruciferin, permits its use for human food and animal feed [78].

Marcet et al. reported that raw rice bran and raw soybean contained high amounts of peptides,
75% and 50% of the total protein content, respectively, whereas the amount of recovered amino acids
from these two by-products was 5% of the total protein content. Peptides were also isolated from soy
pulp with a percentage of 35% from the total dry matter [79].

Leuk leaves showed high crude protein content (19.4% on dry matter basis) with a total amino
acid content of 14.1% (mainly Leu and Lys, 11.6 and 8.2 mg/g dry matter, respectively), while protein
content in parsley was 17.0% from dry matter in which the percentage of essential amino acid was 40%.
The most abundant ones were Leu and Lys, 12.4 and 8.3 mg/g dry matter, respectively [80].

2.4. Lipids

Lipids, water-insoluble molecules, are in essential components for the human organism. They play
an important physiological and biochemical rolein the function of the human body, such as energy
storage (fats and oils), structural components of biological membranes (phospholipids and sterols),
electron carriers, enzyme cofactors, light-absorbing pigments, hydrophobic anchors for proteins and
emulsifying agents in the digestive tract [81,82]. Besides their important nutritional role in the human
diet, lipids are also exploited as food ingredients, thus improving texture, mouthfeel and flavour of
new formulations [83]. Indeed, due the increasing demand for vegetable oils, the interest was oriented
to the possibility of exploiting new oil sources with higher amount of polyunsaturated fatty acids.
In this context, fruit by-products, particularly seeds, have been reported to be a potential alternative
for lipids production. Several fatty acids were isolated from various fruit by-products such as linoleic
acid, linolenic acid, palmitic acid, palmitoleic acid, oleic acid, lauric acid, myristic acid, stearic acid,
lignoceric acid, arachidic acid, erucic acid [83].

Table 4 present the lipid content in various fruit by-products.
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Table 4. Lipid content in some fruit by-products.

Fruit by-Product Lipid (%) References

Orange juice by-product 8.4 [70]
Pomegranate peel 3.2 [70]

Pomegranate by-product 4.0 [84]
Passion fruit by-product 8.0 [52]

Guava by-product 1.2 [52]
Apple Pomace 4.2 [85]

Apple Peel 10.1 [63]
Berry pomace 20.2 [36]

Grape fruit pomace 8.5 [86]
Banana Peel 2.0 [87]
Date seeds 8.8 [88]

Apple seeds were reported to contain significant amount of lipids (277 g oil/kg apple seeds),
in which unsaturated fatty acids were the predominant (89 g/100 g oil). These lipids are mainly
linoleic acid (51.2 g/100 g oil), whereas others are palmitic (10.5 g/100 g oil), linolenic (5.6 g/100 g oil),
stearic (4.3 g/100 g oil) and oleic acids (4.1 g/100 g oil) [89]. Wild and cultivated berries seeds are also
an important source of lipids (14% to 18% of dry matter). Their rich composition in α-linoleic acid
and their high content of α- and γ-tocopherols allows them to be beneficial for balancing diet fatty
acid composition and skin regeneration [90,91]. Plum seeds are rich in sterol esters and n-3 PUFA
(omega-3) [90], whereas the main lipids in passion fruit seeds are stearic acid, palmitic acid, oleic acid
and linoleic acid [92].

3. Fruit by-Products and Intestinal Function

In the light of all above, we can assert that fruit by-products are a good source of bioactive
compounds. In fact, from economic and environmental point of view, it is very important to proceed
to the valorization of these wastes in many fields.

The most popular process for fruit by-products management is their incorporation into livestock
feeds. In this context, numerous fruit by-products demonstrated the ability to be incorporated into
animal feed because of their rich composition in proteins, digestible fiber, soluble sugars, vitamins
and minerals. In addition, the majority of these by-products don’t present any adverse impacts on
the productive and reproductive performance of animals. However, some by-products need some
precautions when applying them in animal feed due to various factors such as limited shelf life
(high moisture content), presence of pathogens agents or antinutrient metabolites [93]. Among the
widely used fruit by-products for animal feed we can cite citrus pulp, [94] grape pomace [94],
mango seeds [95], banana peels and leaves [96], apple waste [8,96], grape waste [96], pomegranate
waste [96], banana peels [97], passion fruits peels [97] and bilberry pomace [8].

Beside their use as animal feed or to reduce methane production, the interest was oriented over
the last decades to the application of fruit by-products in the food, cosmetic and pharmaceutical
industries [48]. Thus, it has been reported that the incorporation of some fruit by-products into food
products improves the quality of these products. This improvement was affirmed by the significant
impact on the sensory evaluation (texture, taste, odor, color, overall acceptability . . . ) of the new
formulations (Table 5) [82].

Bioactive compounds from fruit by-products find several applications in the different fields of
food processing industry. They could be considered as additives in food products, thus promoting
the preservation and the enhancement of the quality, as well as the prevention of food oxidation and
pathogenic microorganisms growth. In this context, pomegranate and grape seed extracts were reported
to be good natural additives in foods and food packaging industry, due to their significant antioxidant
and antimicrobial properties [98]. Another application of fruit by-products in the food processing
industry is their use as packaging materials which is strongly related to the oxygen-impermeable
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properties. Various studies found promising results when incorporating fruit by-products into edible
films that could be used as food packaging materials [99]. Other researches revealed also that fruit
by-products can be also used as a reserve of wheat flour (example of berry pomace) [100], as a
supplement in cakes and cookies (example of sour cherry pomace) [101] or in fermented beverages
production (example of blueberry bagasse) [102]. Fruit by-products are now considered as value-added
supplements for foods, due to their high content in bioactive compounds, especially dietary fiber.
Indeed, their incorporation into foods leads to several beneficial effects such as the improvement
of water and oil retention and the enhancement of oxidation stability and emulsification properties,
as well as their consideration as non-caloric bulking agents [103].

According to the European Food Safety Agency (EFSA) and the European Commission (EC),
some rules should be respected when talking about foods. For example, food additives are compounds
which are added to a food product to achieve a specific technological aim, but they are not ingested
as a food product. Indeed, according to EFSA, while accomplishing a specific technological goal
(satisfaction of specific dietary requirement, Improvement of sensory quality, facility of production,
packaging, transport and storage), a food additive should not present any safety trouble for consumers
health and must attend specific purity criteria [104–106]. Thus, it has been reported that some additives,
which are currently allowed by EC, are present in fruit by-products including anthocyanins (E163)
(example of grape by-products) [107] and chlorophylls (E140) (principally in green leaves and mango
peels) [108]. The different types of food additives and their functions as cited by European Food Safety
Agency (EFSA) and European Commission (EC) were mentioned by Faustino et al. (2019) [109].

Table 5. Application of some fruit by-products into food products.

Fruit by-Product Food Products Effects References

Apple pomace
Bakery products, cakes,
cookies, meat products,

yoghurt, jams, juice

- Source of dietary fibre and polyphenols
- Enhance nutritional value
- Natural stabilizer and texturizer

[85]

Grape pomace and
seeds

Bakery products,
yoghurt, Meat product

- Dietary fiber supplement
- Modify the formulation and extend shelf life

of meat
- Reduction of meat lipid oxidation

[110]

Banana peel Bakery products, Pasta,
Confectionaries

- High gluten bread
- High ash, dietary fibre and total phenolic content
- Increase of viscosity, volume, gumminess and

odour acceptance
- Increase in foaming stability and
- overall acceptability

[111,112]

Mango by-product Bakery products, biscuits

- High content of dietary fiber and polyphenols
- Increase of breaking strength, weight and density
- Good sensory acceptability

[60,111]

Orange by-product
Biscuits, sausage,

Fermented milk, Ice
cream, Pasta products

- Wheat flour or starch substitute
- Improve nutritional value
- Reduce the caloric value
- Good sensory acceptability

[60]

Peach by-product Muffins

- Fat substitute
- Enhance Nutritional value (dietary fiber)
- Reduce the caloric value
- Increase the hardness
- Acceptable sensory evaluation

[60]

Raspberry and
Cranberry by

products
Muffins

- Healthy nutritional profiles.
- Improvement of viscoelastic properties and

texture profile
[113]
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The gut microbiota plays an important role in the function of human gastrointestinal tract thought
its interaction with food components and host cells. Thus, it has been reported that a balanced gut
microbiota was strongly related to the adjustment of the immune system and antioxidant defense,
while microbiota disorders leads to several health diseases such as rheumatoid arthritis, colorectal
cancer, obesity, diabetes, irritable bowel disease, inflammatory bowel disease and cardiovascular
disease [114,115].

Recently, gut microbiota has been investigated as a possible environmental factor influencing
obesity through its role in fat storage. The intestinal microbiota contributes to the absorption by the
host of carbohydrates and lipids and regulates the storage of fat [116]. In addition, it was observed
that it occurs a change in the composition of the gut microbiota (dysbiosis) for people suffering from
colorectal cancer or chronic inflammatory bowel disease [117,118]. Recent researches revealed that
there is an accordance between autistic disorder and gastrointestinal disorders. Preliminary studies also
showed that there is a form of dysbiosis in autistic children with a decrease in Akkermansia muciniphila
and Bifidobacterium spp. in the stools of these patients [119,120].

Besides that, the microbiota plays an essential role in the maturation of the immune system and
the development of its functions. This role is suggested by the many abnormalities observed in axenic
mice: hypoplasia of Peyer’s patches, decreased number of intraepithelial lymphocytes, low production
of serum immunoglobulins and cytokines. In addition, the spleen and lymph nodes of axenic mice
show areas of atrophied lymphocytes. All of these abnormalities disappeared within a few weeks after
inoculation of the microbiota of conventional mice into axenic mice [121].

Diet is a subject of very important interest in research programs because of its potential to modulate
the intestinal microbiota of the host, whether beneficial or harmful. Eating habits have a significant
impact on the composition of the intestinal microbiota, especially in the first years of life [122].

Dietary fiber intake can benefit people having a wide variety of metabolic syndromes and
gastrointestinal disorders [123,124]. High fiber intake has been reported to be beneficial for patients
with diabetes, high cholesterol, hypertriglyceridemia, obesity or hypertension [124,125]. It has also
been reported that individuals with high fiber intake are less susceptible to the development of
cardiovascular disease or colon cancer [126]. Likewise, diets with a high intake of fats and proteins, but
with a low fiber content, are associated with a higher risk of developing colon cancer, unlike vegetarian
or oriental diets with higher fiber intakes [127,128]. In addition, Japanese people who adopt a western
diet are more likely to develop colon cancer [129].

DFs are the main source of carbon and energy for colonic microbes. The major components of
DFs are non-starch polysaccharides (20–45% of the dry matter supplied to the colon), simple sugars
(10%), oligosaccharides (10%) and starch and starch hydrolysis products (about 8% of dry matter) [122].
Furthermore, the proximal colon received daily about 5–10 g of lipid and 5–15 g of protein, mainly of
dietary origin, in addition to some other minor components like polyphenols, lignin, tannins, catechins
and micronutrients [122]. In the other hand, it has been also reported that the major part (about 90%)
of 1 g/day of dietary polyphenols escapes absorption and digestion in the small intestine and persists
in the colon. Then, by contact with the gut microbiota, they become like compounds for microbial
production of small phenolic acids and SCFA or, thus having effect on species composition and their
metabolic activity [130].

DFs were reported to have both preventative and therapeutic impact for various bowel
intestine-related diseases such as obesity, type II diabetes and cardiovascular diseases [131]. They are
fermented by the colonic microbiota to produce other metabolites like organic acids that supply
energy for other bacteria, bowel epithelium and peripheral tissues [132]. DFs preserve bowel health
by increasing digesta mass, which leads to the reduction of intracolonic pressure, dilution of toxins,
and decrease of transit time, as well as an augmentation of defecation frequency. This increase was
mainly due to the physical properties and the ability to adsorb water, especially of incompletely
fermented fiber (insoluble non-starch polysaccharides, like cellulose) [132]. An increase in the fecal
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mass could be also made by DFs thought the enhancement of fermentation, thus conducting to bacterial
proliferation and biomass increase [133].

Dietary polyphenols were also reported to be beneficial for the prevention of health from
several diseases like cardiovascular disease and cancer due to their significant antioxidant or
anti-inflammatory effects [122]. Generally, polyphenols are found in plant foods as a bound form
(mostly as glycosides). The major part of them undergoes a metabolization process by gut microbiota,
thus forming aglycones [134]. Flavonoid quercetin, flavonols, caffeic acid, (+)-catechin, (−)-epicatechin,
resveratrol, ellagitannin and anthocyanins were reported to have significant impact on the modulation
of the gut microecology [134].

Nowadays, it is well-known that obesity could be treated using diet with moderate amounts of
protein, thus reducing health disorders associated with obesity. Moreover, dietary proteins also showed
significant effects on gut health, particularly when combined with carbohydrates [122]. They are also
the main source of nitrogen for colonic microbial growth [122]. Furthermore, fatty acid rich-diets
showed positive effect on immune function, cholesterol and triglycerides levels, blood pressure and
cardiovascular function [135,136].

Although cereal grains and their by-products are the most known source of DFs, it has been
reported that fruit by-products could be an alternative source of DF because of their high content
in DFs. Indeed, DFs are considered as important elements for the good function of human body,
particularly for the improvement of the growth of beneficial of hind gut microbiota, the satiety and
attenuation of constipation and the regulation of glucose and lipid levels, thus reducing the risk of
coronary heart and cancer diseases [137].

The gastroprotective effect of several fruit by-products was studied, such as orange bagasse [138],
passion fruit peels [138], grape pomace [139], grape peels [140], grape seed [141], pomegranate
by-products [142–144], orange peels [145], apple peels [146], apple pomace [147,148] (Table 6).

In this context, Abboud et al. (2019) studied the gastroprotective effect of yellow passion fruit
peel, which is an unexploited by-product from the juice industry in Brazil. Soluble dietary fibres (SDF)
isolated from this by-product showed significant gastroprotective effects on animals following oral and
intraperitoneal digestion. This effect was manifested by the decrease of gastric ulcer lesions induced
by ethanol and the prevention of the exhaustion of gastric wall mucus and reduced glutathione (GSH)
levels. Thus, oral pre-treatment with SDF reduced significantly the ethanol-induced gastric lesions
in 72.25%, 79.23% and 87.17% by injection of 0.1, 1 and 10 mg/kg, respectively. The same doses were
able to avoid the depletion of GSH levels in 52.20%, 41.91% and 50.33% and the gastric wall mucus
in 26.32%, 25.03% and 31.00%. Moreover, the treatment by intraperitoneal route with SDF (1 mg/kg)
reduced the gastric lesion area in 72.56% and prevented the depletion gastric wall mucus in 21.24%
and the GSH levels in 40.81% [149].

Another research conducted by Athaydes et al. (2019) focused on the treatment of gastric disorder
by avocado seeds, which is a by-product generally discarded as waste. The total indomethacin-induced
gastric lesion area was significantly reduced after the treatment with avocado seeds (92% of protection).
Results showed also that an injection of 75 mg/kg of ethyl acetate extract from avocado seeds
increased mucus production by the stomach mucosal cells of about 2.38 ± 0.55 times compared to the
control, which forms a mucoid layer, thus promoting tissue repair and accelerating epithelial recovery.
The authors suggested that phenolic compounds present in this by-product are the main responsible
on this significant effect [150].
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Table 6. Effects of some fruit by-products on intestinal function.

by-Product Extract Extraction Technique Dose Effect References

Yellow passion
fruit (Passiflora

edulis) peel

Soluble dietary
fibres

Enzymatic-gravimetric
method

0.1, 1 and 10 mg/kg
(oral pre-treatment)

- Reduction of ethanol-induced gastric lesions in
72.25%, 79.23% and 87.17%

- Avoiding depletion of GSH levels in 52.20%, 41.91%
and 50.33%

- Preventing gastric wall mucus in 26.32%, 25.03%
and 31.00%

[149]

1 mg/kg
(intraperitoneal

route)

- Reduction of gastric lesion area in 72.56%
- Preventing depletion of gastric wall mucus in

21.24% and the GSH levels in 40.81%

Avocado (Persea
americana Mill.)

seeds

Ethyl acetate
extract (SEAP)

Hydroalcoholic extraction
with 70% ethylic alcohol

10, 35 and 75 mg/kg
(oral gavage)

- Significant ulcer index (UI) (2.89 ± 1.75, 2.4 ± 1.24
and 1.51 ± 0.72 for 10, 35 and 75 (UI) mg/kg,
respectively) compared to lansoprazole which is a
classic proton pump inhibitor (3.53 ± 1.50 UI)

- Treatment with SEAP showed 92% of protection,
while lansoprazole treatment showed 81%
of protection

- Increase of mucus production by the stomach
mucosal cells of about 2.38 ± 0.55 times compared to
the control

[150]

Avocado (Persea
Americana) leaves

Aqueous and
methanolic

extracts

- Water extraction
(72 h)

- Soxhlet
(24 h/MeOH)

200 mg/kg
(intraperitoneal

injection)

Significant inhibition of histamine-stimulated acid
secretion through the action on H2-receptors [151]

Pomegranate
(Punica granatum)

peels
Ethanol extract Ultrasonic extraction with

99% ethanol 500 mg/kg (Oral)

- Significant protection of stomach mucosal layer
from gastric ulcer induced by ethanol.

- Stomach mucosal layer protection was improved by
the increase in the dose.

[152]
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Table 6. Cont.

by-Product Extract Extraction Technique Dose Effect References

Orange (Citrus
sinensis L.) peels Flavonoids Extraction with 80%

aqueous methanol
100, 200

and 400 mg/kg

- Correction of the enhanced gastric
lipid peroxidation

- Reduction of TNF-α (tumor necrosis factor
alpha) production

- Reduction of gastric DNA fragmentation and gastric
COX-2 (cyclooxygenase-2) expression

[153]

Apple (Malus
domestica cv.) peels

Polyphenol-rich
extract

Retention on absorber
resin Sepabeads SP-850

150 and
300 mg/kg/day (Oral

ingestion)

Avert the initial attachment of Helicobacter pylori to the
antral mucosa and suppress inflammation [154]

Apple (Malus
domestica) pomace Pectin Hot water-acid extraction 25 mg/kg (oral)

- Prevention of the formation of gastric
mucosa lesions.

- Lining the surface of the stomach
- Improving the resistance of the

gastroduoden mucosa

[147]

Grape seeds Proanthocyanidins Commercial product 100 mg/kg

- Significant decrease in ulcer index and TBARS level
(dose dependent)

- decrease in ulcer index and gastric acidity in
pylorus ligation models

- Reduction in MDA (malondialdehyde) levels
- Decrease in the elevated levels of nitrite/nitrate,

which are involved in the formation of
intestinal inflammation

[141]

Orange bagasse
and passion fruit

peels

Alcohol insoluble
solids

Enzymatic
extraction/Extraction with

80% aqueous EtOH
(4◦/1 h)

−

- Energy source for bacteria located in the distal colon
- Could be considered as an agent for selective

modulation of the gut microbiota
[138]
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Table 6. Cont.

by-Product Extract Extraction Technique Dose Effect References

Acerola (Malpighia
emarginata)
by-product

(dried skin, seeds
and pulp residues)

Polyphenol-rich
extract

Extraction with 70%
aqueous methanol −

- Decrease in NH4
+ amount in the ascending colon.

- Increase in short-chain fatty acids (SCFAs) in the
colon three regions

- Positive effect on the gut microbiota metabolism for
the probiotic strain Bifidobacterium longum BB-46
when combined with acerola by-product

[155]

By-products of
acerola (Malpighia
emarginata D.C.),

cashew
(Anacardium

occidentale L.) and
guava (Psidium

guajava L.) fruits

Phenolic
compounds and

dietary fibres

Freezing in liquid N2 and
freeze-drying

400 mg/kg body
weight (orogastric

administration)

- Reduction of body weight (3.42%, 3.08% and 5.20%)
in dyslipidaemic female rats

- Decrease in faecal pH, liver fat, visceral fat and
serum lipid levels

- Increase in faecal moisture, faecal fat excretion,
amounts of organic acids in faeces and faecal
Bifidobacterium spp. and Lactobacillus spp. counts.

- Protection of colon and liver from tissue damage
(e.g., destruction of liver and colon cells and
increased fat deposition in hepatocytes) induced by
dyslipidaemic diet.

[156]
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Pomegranate peels extract has been reported to possess significant effects on stomach gastric
mucosa (at a dose of 500 mg/kg), mainly manifested by the protective role against ethanol induced
gastric ulcer in rats. This anti-ulcer impact was asserted by the high levels of TGFβ1 in serum and the
decrease of ulcer lesion areas in the stomach layer. This significant antiulcer effect might be associated
to existence of several bioactive compounds such as anthocyanins, anthocyanidins, punicic acid,
ellagic acid, flavonoids and ellagitannins [152].

A significant anti-ulcer effect was also mentioned for the aqueous extract from orange
(Citrus sinensis) peels. This effect was shown through the correction of the enhanced gastric lipid
peroxidation and the reduction of TNF-α (tumor necrosis factor alpha) production, as well as the
reduction of gastric DNA fragmentation and gastric COX-2 (cyclooxygenase-2) expression. Authors
suggested that this beneficial effect was related to the capacity in chelating free iron and scavenging
H2O2, thus leading to calcium homeostasis. In addition, the pre-treatment with Citrus sinensis extract
ensure protection against the overload of cells of the gastric and duodenal mucosa caused by the
sub-acute exposure of ethanol [153].

Polyphenol-rich extract from apple peels exhibited also an important inhibitory effect against
Helicobacter pylori attachment, by avoiding of initial steps in the Helicobacter pylori colonization process
and suppressing inflammation. Oral ingestion with doses of 150 and 300 mg/kg/day was reported
to be good enough to avert the initial attachment of Helicobacter pylori to the antral mucosa which
causes an inflammatory damage. The decrease in this damage by apple peel phenolic extract was
essentially associated to its important antioxidant and anti-VacA (vacuolating bacterial toxin) properties.
Thus, it has been reported that gastric Helicobacter pylori infection, which affects about half of the
world’s population, is the main cause of various gastrointestinal disorders like gastric carcinoma and
duodenal ulcer [154]. On the other hand, Mousa et al. (2012) asserted that apple pomace pectin could
be a potential gastroprotective and hypolipidemic drug due to its significant content on citric and
galacturonic acids. The gastroprotective effect against indomethacin induced ulcer was reported by
preventing the formation of gastric mucosa lesions, lining the surface of the stomach and improving
the resistance of the gastroduoden mucosa [147].

Grape by-products have been also studied for their effects on intestinal function. For example,
Bhardwaj et al. (2018) investigated the impact of proanthocyanidins from grape seeds on different
experimental models of gastric ulcers in rats. A 100 mg/kg dose of grape seed proanthocyanidin showed
better treatment of gastric ulcers with fewer side effects. This effect was observed by the significant
decrease in ulcer index and gastric acidity in pylorus ligation models, as well as the reduction in MDA
(malondialdehyde) levels [141].

Sen et al. (2014) reported that pectin isolated by hot water-acid extraction from various fruit
by-products (apple Malus domestica, lemon Citrus limon and orange Citrus sinensis) showed an important
role in supporting the survival and the development of the probiotics in the gastrointestinal tract [157].

Fibers isolated from orange bagasse and passion fruit peels were reported to have significant
impact on the modulation of the gut microbiota. They could be considered as an energy source for
bacteria located in the distal colon. Thus, the negligible production of lactate and succinate permit the
slow fermentation, which allows protection against colon cancer [138].

The effect of acerola by-product on the gut microbiota metabolism was also studied. The treatment
with acerola by-product was found to have positive effect since a decrease of the NH4

+ amount in
the ascending colon was observed, as well as an increase in short-chain fatty acids (SCFAs) in the
three regions of colon. This important effect was mainly due to high content in fibre and phenolic
compounds in acerola by-product, which are responsible for the high antioxidant activity [155].

Another research conducted by Batista et al. revealed that by-products from acerola
(Malpighia emarginata D.C.), cashew (Anacardium occidentale L.) and guava (Psidium guajava L.) fruits
could be considered as protective compounds for intestinal health against the harmful effects induced
by dyslipidaemic diet. Their role is the protection of colon and liver from tissue damage. This important
role was experimentally assured manifested by several parameters such the decrease of faecal pH,
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serum lipid levels, liver fat and visceral fat, as well as the increase of faecal moisture and faecal fat
excretion in dyslipidaemic female rats [156].

The consumption of insoluble dietary fiber from citrus by-products was strongly linked to intestinal
motility by delaying the gastric emptying and extending the effective unstirred layer, which makes
the absorption process in the small intestine slower thus giving an extended feeling of fullness.
Several factors have been reported to assert the protective effect of fibers against gastrointestinal
diseases including the decrease in intracolonic pressure and the transit time and the increase in stool
weight. In the other hand, soluble dietary fibers from citrus by-products were considered as important
compounds in reducing risks of coronary heart diseases by lowering triacylglycerol concentrations
and enhancing insulin sensitivity. This was asserted through the delaying of the absorption process of
macronutrients, especially carbohydrates and fat [158].

4. Conclusions

In conclusion, we can state that the large amounts of wastes generated by fruit processing
industry represent a great origin of bioactive compounds having significant potential benefits for
various applications in several industries. These by-products contain high contents of dietary fibres,
polyphenols, lipids and proteins as described in this review, which makes them a considerable source
of food additives. The latter could be integrated in several food industry sections like bakery products,
dairy products, biscuits, cakes.

Nevertheless, several fruits by-products have been reported to exhibit potential good effect on
the intestinal function. Treatment with dietary fibres, polyphenols or anthocyanins from several
fruit by-products showed a significant effect on the improvement of gut health and the treatment of
gastric disorders.
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