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ABSTRACT
Immunotherapy by chimeric antigen receptor (CAR)-modified T-cells has shown unprecedented clinical 
efficacy for hematological malignancies. Recently two CAR T-cell based therapeutics, Kymriah 
(Tisagenlecleucel) and Yescarta (Axicabtagene ciloleucel) were approved by the US Food and Drug 
Administration and by the European Medicines Agency. Despite the progress in treating hematological 
malignancies, challenges remain for the use of CAR T-cell therapy in patients with solid tumors. Barriers yet 
to overcome for achieving effective CAR T-cell therapy include antigenic heterogeneity of solid tumors, an 
immune-suppressive microenvironment, and organ-specific properties that limit T-cell entry. This review 
will summarize available clinical data for CAR T-cell therapy in solid tumors, including present obstacles 
and promising strategies to advancement.
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Introduction

The genetic engineering of T lymphocytes with chimeric anti
gen receptors (CARs) has rapidly advanced from preclinical 
tumor models to Food and Drug Administration (FDA) and 
European Medicines Agency approval (EMA) for hematologic 
malignancies, and clinical-grade production. To date, however, 
solid tumors are less susceptible to CAR therapies and instead 
have been treated more successfully with immune checkpoint 
inhibitors (ICIs)1 or tumor-infiltrating lymphocyte (TIL) 
therapy.2 The interactions between antigen-presenting cells 
and T-cells allow high precision host protection against patho
gens and cancer cells. T-cells have unparalleled ability to not 
only recognize these antigens (Ag) but also to establish long- 
term memory, allowing rapid and robust response upon 
rechallenge against a given Ag. Tumors express Ags that are 
recognized by T-cells, whereby mutations of self-Ags or germ
line cancer Ags differ sufficiently from normal Ags, or those 
that are less easily detected, such as overexpressed self-Ags or 
differentiation Ags, expressed by the tumor-originating tissue.3 

Hence, tumors that are more similar to normal cells, and 
particularly those with highly immune-suppressive features, 
escape surveillance (i.e.via immune editing), which results in 
their uncontrolled growth. Technological advances have cre
ated opportunities to enhance the effector functions of T-cells 
against cancer through reeducation and intelligent design to 
overcome the immune evasion mechanisms established by 
solid tumors. Adoptive cell therapy (ACT) consists in ex vivo 
enrichment of autologous tumor-specific cells and expansion 
to large numbers, and subsequent reinfusion into the patient to 
specifically target and kill cancer cells. ACT is conducted via 
two methods: (1) naturally arising TILs can be directly 

expanded ex vivo from a tumor lesion2 or (2) non-therapeutic 
host lymphocytes obtained from the peripheral blood can be 
artificially rendered tumor specific via genetic engineering with 
a T-cell receptor (TCR)4 or a chimeric Ag receptor (CAR).5 

The CAR is a hybrid antigen receptor, part antibody and part 
TCR, and is composed of an extracellular Ag-binding domain 
and intracellular signaling domain(s).5 Genetic modification of 
a T-cell with a CAR provides a new Ag-specificity through the 
single-chain variable fragment (scFv), which is derived from 
a tumor-specific antibody.5 The scFv allows the T cell to bind 
a tumor Ag and the T-cell activation cascade is initiated 
through the intracellular domains, derived from CD3ζ ITAM 
domains.6 To complete the genetic construct for the CAR, 
a hinge and a transmembrane domain (TM), commonly from 
CD8α or immunoglobulin, bridges the extracellular scFv and 
intracellular CD3ζ ITAM domains. Its first use by Kuwana 
et al. and Gross et al. in the late 1980s revealed that redirection 
of a T-cell with this receptor could induce Ag recognition 
through the scFv, as for a native Ig, without classical major 
histocompatibility complex (MHC) restriction required by 
a TCR recognizing Ag-derived peptide.7,8 These first- 
generation CAR T-cells had very limited persistence and anti
tumor efficacy in vivo.9,10 The modular nature of the CAR 
technology allows constant optimization, which is how first- 
generation CARs, containing only the CD3ζ portion of the 
TCR were replaced with second-generation CARs containing 
an added costimulatory element such as CD28 or 4–1BB. The 
specificity of a TCR is for only a short peptide (8–12 amino 
acids), so there is potential for cross-reactivity to similar 
sequences of amino acids.11 TCR ligation of self Ag can lead 
to T-cell activation, autoimmunity, and even death. To 
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minimize this risk, T-cells require at least two signals to fully 
activate.12 Second-generation CARs contain the two-signal 
model of T-cell activation including a CD28 costimulatory 
domain in tandem with CD3ζ ITAM domain. This supports 
in vitro T-cell activation and killing, but more importantly 
efficient tumor killing and long-term T-cell persistencein vivo.13 

In addition, costimulatory domains other than CD28, such as 
CD27, 4–1BB, and OX40, provide similar improvement to CAR 
T-cell function and persistence in vivo.14,15

CAR-redirected T-cell therapies have been successful in 
hematologic malignancies but are less effective in treating the 
majority of patients with solid tumors to date. This review will 
summarize available data from completed clinical trials of CAR 
T-cells in solid tumors and discuss present obstacles and pro
mising strategies to advancement.

Overcoming tumor heterogeneity: which target? At what 
price?

CAR T-cell-based therapy is an innovative anticancer approach 
based on the specific recognition of a tumor Ag by the patient’s 
own engineered T-cells. However, attempts to recapitulate the 
success achieved with CAR T-cells in B-cell malignancies for 
solid tumors have been disappointing. Table 1 summarizes the 
clinical trials of CAR T-cells that have been completed to date 
in patients with solid tumors and reports the clinical outcome 
and the toxicity profile.16–33 The three main hurdles encoun
tered for the application of CAR T-cell therapies to solid 
tumors are (1) the presence of tumor-associated Ags, which 
are generally cell-surface molecules not present on normal 
tissue, (2) the limited trafficking of adoptively transferred 
cells to tumor sites and (3) the immunosuppressive effect of 
tumor microenvironment (Figure 1).

Tumor-specific Ags, like the epidermal growth factor receptor 
variant III29 (EGFRvIII), are among the ideal targets in the sense 
that they are uniquely present on cancer cells. Therefore the CAR 
T-cell with engineered specificity toward EGFRvIII will attack 
only tumor cells, and normal tissue cells should theoretically be 
ignored. Additional attractive targets of tumor cells are repre
sented by proteins resulting from unique post-transcriptional 
modifications such as alterations of the glycosylation patterns 
of MUC1, MUC16, TAG72 or B7-H3.34–36 Targeting tumor- 
selective Ag is an additional strategy: the Ag has to be expressed 
by tumor cells but at a much higher level than healthy cells, such 
as Human Epidermal growth factor Receptor 2 (HER2).16 

Consequently the effect on healthy cells should be negligible 
compared to that of tumor cells. A third class of Ag, represented 
by the Prostate Stem Cell Ag (PSCA),37 is a tissue-specific Ag 
with very low expression in other tissues like pancreas or bladder. 
In this case, it is hoped that the side effects on healthy tissues will 
be minimal, as the elimination of PSCA-positive cells would not 
cause vital organ failure. Theoretically, even if the perfect Ag for 
a solid tumor could be identified and targeted, CAR T-cell 
therapies for solid tumors face further obstacles including poor 
trafficking to the tumor site,38 as well as limited proliferation and 
persistence within the host.39 Moreover, CAR T-cells can be 
functionally suppressed within the hostile tumor 

microenvironment.40 These collective hurdles set solid tumor 
CAR-based therapies apart from liquid tumors.

Tumor heterogeneity is often major and makes it a crucial 
problem for CAR- T-cells.41,42 A difficulty with the principle of 
CAR T-cells lies in the fact that cytotoxicity is based on a single 
Ag, even an improved one. Indeed, the tumor tissue, whatever 
the primitive, is known to evolve over time but also in its 
different metastatic locations. One solution is to attack several 
tumor Ags concomitantly, as this should allow maintenance of 
cytotoxic activity despite loss of one of the target Ags. Several 
strategies43 are possible for targeting two Ags: the co- 
administration of two CAR T-cells each targeting a different 
Ag, the use of a bicistronic vector that leads to the expression of 
two distinct CARs on the same T-cell, the co-transduction of 
two vectors each encoding for one CAR, or the expression of 
a bispecific Tandem CAR.44 Tandem CARs are constructed 
with two Ag specificities built in series in order to recognize 
two different tumor targets or to stimulate cytotoxicity with 
the second CAR recognizing a ubiquitous viral Ag such as 
CMV. Efficacy for bispecific CD19/CD22 CAR T-cells is 
under clinical evaluation for relapsed/refractory B-cell acute 
lymphoblastic leukemia.45 In addition to increasing the speci
ficity of the CAR to the tumor, this technique potentially 
minimize the “on-target/off-tumor” toxicity toward healthy 
cells with low-level single Ag expression.46

Tumor heterogeneity over time also includes loss or down- 
regulation of expression of the Ag of interest, leading to “Ag- 
negative” relapse, while tumor heterogeneity in space leads to 
the risk of dissociated response between different metastases. 
Targeting Ag expressed by the cells of the tumor microenvir
onment, such as the fibroblast activation protein (FAP), parti
cularly expressed on cancer associated fibroblasts (CAFs), 
seems an attractive option.47,48 Tran and colleagues49 showed 
in a mouse model that, despite anti-FAP CARs displayed 
specific degranulation and production of effector cytokines in 
response to Ag stimulation in vitro, they did not mediate an 
efficient antitumor response in vivo, and unexpectedly, anti- 
FAP CARs caused severe cachexia and lethal bone toxicities. 
The FAP protein is also expressed by multipotent bone marrow 
stromal cells (BMSCs), hence the observed toxicity is linked to 
their expression. Interestingly, Kakarla and colleagues,48 using 
an anti-FAP CAR with a different scFv, demonstrated antitu
mor efficacy without toxicities in a mouse model of lung 
cancer. The safety concerns generated by the work of 
Rosenberg et al.49 are likely related to the specificity and affinity 
of the scFv, given that the last two studies with CAR T-cells 
with different scFvs recognizing highly positive FAP cells have 
a good toxicity profile. Given the potential for multi-modal 
antitumor effects of FAP targeting, rational combinations for 
future immunotherapeutic approaches should include 
stroma-targeting CAR T-cells with either antitumor CAR 
T-cells or ICIs.

As a living therapy, CAR T-cells bear the potential for rapid 
and massive activation , which contributes to their therapeutic 
efficacy but simultaneously underlies their side effects. The most 
well- 
documented toxicity is called cytokine release syndrome (CRS), 
a systemic inflammatory response characterized by fever, 
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hypotension and hypoxia. CRS is triggered by the activation of 
CAR T-cells and their subsequent production of pro- 
inflammatory cytokines including IFNγ, IL-6, and IL-2.50 This 
is thought to result in additional activation of bystander immune 
and nonimmune cells (i.e. macrophages, endothelial and stromal 
cells) which further produce cytokines, including IL-10, IL-6, 
and IL-1beta and inflammatory mediators (i.e. ferritin).51 The 
severity of CRS ranges from a mild fever to life-threatening, 
multi-organ failure.52 Neurologic toxicity is another serious 
adverse event, which can occur alongside CRS.53 Tocilizumab, 
a monoclonal IgG1 directed against the IL-6 receptor, is the 
current standard treatment for CRS.54

It is important to highlight that lack of tumor Ag specificity 
increases the potential risk of significant on-target/off-tumor toxi
city. This was the case for a patient with metastatic colon cancer, 
who received an infusion of HER2 (ERBB2)-targeting CAR T-cells 
and died 5 days later.55 The cause of death was attributed to CAR 
T cytotoxicity against the pneumocytes, which express low levels of 
HER2. Another example of on-target, off-tumor toxicity has been 
described in a preclinical model with a high affinity anti-GD2 CAR 
for neuroblastoma, in which low levels of GD2 in the brain resulted 
in fatal encephalitis.56 Thistlethwaite et al. also described a patient 
who developed acute respiratory distress due to the on-target/off- 
tumor effect of CEACAM5-specific CAR T-cells exerting cytotoxi
city against pneumocytes and lung-associated macrophages, and the 
trial was closed due to this severe and unexpected toxicity.31 These 
fatal events underscore the importance of choosing a safe tumor- 
associated Ag, as even low level expression of the target Ag on 

normal tissues can result in severe toxicity. These acute responses 
also highlight that the binding affinity of a CAR is tightly linked to 
both safety and efficacy, and that higher affinity is not necessarily 
better. As an example, an in vivo study found that CAR T-cells 
targeting ICAM-1, a marker associated with many solid tumors 
including thyroid cancer (but also expressed on normal tissues as 
an adhesion molecule), was safer and more effective, when the CAR 
specificity for the Ag had only micromolar affinity.57,58

In order to specifically control CAR T-cell activity toward the 
Ag, several models of adapter-mediated CARs, also known as 
universal CARs (UniCAR), have been developed.59–61 A shared 
feature is their method of tumor recognition, which is achieved by 
linking an adaptor, a molecule recognized by the CAR, to an 
antibody or ligand that specifically recognizes the tumor Ag. 
While current clinically approved CARs are designed to be con
stitutively active, adapter-mediated CAR T-cells have the distinct 
advantage to only recognize and kill the Ag-expressing target cell 
when the adapter is administered, allowing for titratable and 
reversible control of the CAR T-cells. As an example, the 
UniCAR02-T associated with the CD123 Target Module is cur
rently in phase I in patients with hematologic malignancies expres
sing CD123 (NCT04230265).62

Improving expansion and homing

Trafficking to the tumor does not seem to be a major issue for 
hematologic tumors but is likely to be a challenge for CAR T-cells 
targeting solid tumors. The majority of solid tumors present with 

Tumor antigen specificity 
and heterogeneity

Immunosuppressive 
microenvironment 

Proliferation and homing

- Hijacking anti-CD19 CAR T-cells
- Expression of a chemokine receptor
- Intratumoral injection 

- Identification of:
• tumor-specific antigens
• tumor-selective antigens
• tissue-specific antigens
- Limiting on-target/off-tumor effects 
- Multi-antigen targeting

- Choice of the costimulatory domain 
- Constitutive expression of potent cytokines
- Combination with ICB
- Constitutive secretion of ICB
- Unresponsiveness to suppressive signals
- NK-cell engineering 

CAR 
T-CELL

Figure 1. Challenges and solutions of CAR T-cell therapy in solid tumors.
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a fibrotic stroma63 and may be more difficult for engineered 
T-cells to infiltrate (Figure 1). Contrary to B-cell malignancies, 
CAR T-cells targeting solid tumors do not rapidly encounter 
their target once infused. This necessary time to migrate into 
the tumor certainly hinders the efficacy of CAR T-cells for solid 
tumors by limiting their proliferation and persistence. The high 
objective response rate observed with anti-CD19 CAR T-cells in 
refractory large B-cell lymphoma was found to be associated with 
CAR T-cell expansion following infusion.64 Thus normal 
CD19 + B-cells act as an immediate and self-renewing source 
of Ag. A new immuno-oncology company proposed to tweak 
anti-CD19 CAR T-cells, thus making them able to recognize 
multiple different targets via the expression of fusion proteins 
while retaining their proliferation and persistence properties.65 

The fusion protein contains a CD19 extracellular domain and an 
anti-tumor antigen binding domain, thus it creates a bridge, 
which helps redirecting anti-CD19 CAR T-cells cytotoxicity 
against multiple tumor-associated Ags. This strategy seems 
attractive for the treatment of solid tumors by CAR-engineered 
T-cells.

Some studies have shown that modifying CAR T-cells to 
express a chemokine receptor (CCR2,66 CCR4,67 CXCR268,69) 
matching to the chemokine secretion by the target tumor cells 
leads to improved T-cell homing into the tumor and enhanced 
antitumor efficacy in vivo. The enforced expression of 
a chemokine receptor such as CXCR1 or CXCR2 also augments 
intratumoral CAR T-cells persistence and tumor regression in 
xenograft mouse models of glioblastoma, ovarian, and pancreatic 
cancer.70

Another way to solve this migration issue could be to inject 
CAR T-cells directly into the tumor. Several preclinical studies 
showed higher CAR T-cell activation, efficacy and persistence 
when a regional delivery is performed as compared to intrave
nous injection.71–73 This is particularly relevant for tumors 
localized within difficult-to-access niches, such as the central 
nervous system (CNS). Mulazzania et al.74 used in vivo intra
cranial 2-photon microscopy to demonstrate that intracerebral 
injection of anti-CD19 CAR T-cells resulted in a deeper infil
tration and an enhanced control of the tumor growth, than 
intravenous infusion in an orthotopic murine model of pri
mary CNS lymphoma. Interestingly, 28 days after intracerebral 
injection, CAR T-cells were detected in distant non-draining 
lymph nodes. Anti-CD19 CAR T-cells persisted in the brain 
and the bloodstream for up to 159 days, even after complete 
regression of the CNS lymphoma.

Both intracranial20 and intravenous routes are currently being 
tested in brain tumor clinical trials, but intracranial injection is 
a more risky procedure compared with intravenous infusion. 
Moreover, a recent publication reported on 8 patients with sec
ondary CNS lymphoma treated with commercial tisagenlecleucel 
(anti-CD19 CAR T-cells containing a 4–1BB costimulatory 
domain) at a single institution.75 CAR T-cells were administered 
as a single intravenous injection and the overall response rate was 
50%. There was no increased rate of CRS or neurotoxicity. This 
retrospective analysis suggests that CAR T-cells can efficiently 
traffic to the CNS after intravenous injection, but larger studies 
are needed to clarify the optimal route of delivery. One remaining 
question could be whether a dose reduction of CAR T-cells is 
appropriate when injected directly into the tumor region.

Intratumoral injection of CAR T-cells has been tested in 6 
patients presenting with a metastatic (accessible cutaneous or 
lymph node metastases) breast cancer.30 The investigators used 
the previously published mRNA-transfected c-Met CAR 
T-cells,18 whose transient expression of the c-Met CAR limits 
its possible on-target/off-tumor effect. The downside of this 
transient expression system is the rather rapid loss of the 
transgene, especially in proliferating cells, as the CAR- 
encoding RNA is not replicated during cell division. Despite 
an inflammatory response noted within the tumor, no objec
tive clinical response was reported.

In conclusion, various approaches have been tested in pre
clinical models in order to enhance expansion, homing, and 
persistence of CAR T-cells in solid tumors. Some strategies 
have been evaluated in clinical studies, but more trials are 
needed to better assess their efficacy.

Overcoming the immunosuppressive microenvironment

Several solid tumors produce an immunosuppressive environ
ment impairing the efficacy of ACT.76 Multiple improvements of 
CAR T-cells have been proposed to allow their proliferation, 
persistence and cytotoxicity within an immunosuppressive 
environment. Regarding second-generation CAR T-cells, the 
choice of the costimulatory domain is certainly a key point and 
still a matter of debate. It has been shown, however, that 
UniCAR T-cells redirected to PSCA and harboring CD28 costi
mulation resist regulatory T cell (Treg) suppression, both in vitro 
and in vivo, via the secretion of Th1-related proinflammatory 
cytokines, in contrast to 4–1BB-based CARs, which are effi
ciently suppressed by Tregs.77 Of note, 4–1BB costimulation is 
associated with an increased central memory differentiation and 
a prolonged persistence of the CAR T-cells.78 Ideally, clinical 
trials should randomize CAR T-cells directed against the same 
target but bearing different costimulatory domains, and the 
optimal approach may be a defined ratio of CAR T-cells with 
different costimulatory domains.

One potential option for shaping the tumor microenviron
ment to enhance ACT efficacy is to induce the local release of 
stimulatory factors that promote antitumor immune 
responses.

The last generation of “armored” CAR T-cells, so called 
TRUCKs for T-cells redirected for universal cytokine killing, 
is particularly promising for the treatment of solid tumors 
associated with a suppressive microenvironment. These CAR 
T-cells are genetically modified to constitutively express potent 
cytokines. In this context IL-12 and IL-18 represent promising 
candidates to favorably remodel the tumor environment. In 
particular, IL-12 is a pro-inflammatory cytokine, able to 
improve T-cell activation and induce a Th1 CD4 + T-cell 
response, CD8+ clonal expansion, and effector function. It is 
also able to recruit NK-cells to the tumor site, reactivate anergic 
TILs, inhibit Tregs and the secretion of IL-10, IL-4 and trans
forming growth factor beta (TGFβ) by tumor-associated 
macrophages. IL-12 TRUCKs have shown efficacy in preclini
cal models of hematologic79,80 and solid tumors.81–83

Chmielewski and colleagues performed a cytokine screen, 
which identified IL-18 as inducing a T-Bethigh FoxO1low signa
ture in CAR T-cells.84 The authors engineered an IL-18 
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TRUCK, which improves the survival of immune-competent 
mice with advanced pancreatic cancer when compared to CAR 
T-cells without cytokine secretion. In addition, IL-18 CAR 
T-cell therapy induces a favorable remodeling of the tumor 
microenvironment. This model is of particular interest for 
pancreatic ductal adenocarcinoma, as it is one the most lethal 
human cancers, and its resistance to immune checkpoint inhi
bitors could be due to a predominance of immunosuppressive 
cells in the microenvironment.85

Combining CAR T-cells with ICIs (such as programmed 
cell death protein 1 (PD-1) or its ligand PD-L1) is another 
obvious way to modify the tumor microenvironment. 
Preclinical data demonstrated that the administration of an 
anti-PD-1 antibody enhances the antitumor activity of CAR 
T-cells against HER2+ sarcoma and breast cancer cell lines.86 

The anti-PD-1 therapy acts on TILs as well as on the CAR 
T-cells themselves, whose PD-1 expression is often upregulated 
following Ag stimulation. In order to limit the toxicity related 
to systemic delivery of ICIs and to increase tumor concentra
tion, Rafiq et al. proposed to “armor” CAR T-cells to secrete 
a PD-1 blocking scFv only in the local tumor site.87 

Interestingly, in a xenograft model of metastatic ovarian can
cer, mice treated with this innovative strategy had improved 
survival compared with mice receiving the anti-MUC16ecto 

CAR T-cells plus an anti-PD-1 antibody.87 This approach is 
promising to make CAR T-cells efficient in tumors with an 
immunosuppressive microenvironment.

Regarding PD-L1, CAR T-cells targeting carbonic anhy
drase IX (CAIX) and engineered to secrete anti-PD-L1 anti
bodies have shown better control of the tumor growth than 
anti-CAIX CAR T-cells alone in a humanized mouse model of 
clear cell renal cell carcinoma.88

To date, the clinical benefit of the combination of CAR 
T-cells with ICIs is not proven. In a phase 1 clinical trial, the 
administration of a PD-1 inhibitor together with anti-GD2 
CAR T-cells did not improve antitumor responses of patients 
with neuroblastoma, although the number of treated patients 
was small.89

Other research teams in the field have engineered CAR 
T-cells that are unresponsive to suppressive signals. For 
instance, genome editing has been used to remove the PD-1 
receptor from CAR T-cells, making them inert to the PD-1/ 
PD-L1 inhibitory pathway.90–92 One can also express 
a dominant-negative form of some receptors (like TGFβ93 or 
PD-194,95) rendering CAR T-cells unresponsive to inhibitory 
signals. Nonetheless, such strategies raise the risk of uncon
trolled CAR T-cell activation, as the suppressive pathways are 
essential to modulate T-cell effector functions. Special atten
tion should be paid to the toxicity profile of such approaches, 
which should be monitored cautiously.

Very recently, Porter et al. published the combination of an 
oncolytic virus armed with a bispecific tumor-targeted T-cell 
engager (BiTE) molecule specific for CD44v6 plus IL-12 plus 
an anti-PD-L1 antibody (so called CAdTrio) with anti-HER2 
CAR T-cells.96 They showed that the association of both the 
CAdTrio and the CAR T-cells leads to a more sustained control 
of an orthotopic head and neck squamous cell carcinoma 
model than any component alone. Albeit a bit futuristic, this 
strategy that employs both intratumoral and intravenous 

routes, may be able to counteract both Ag heterogeneous 
expression and immune suppression by the solid tumor 
microenvironment.

NK-cells belong to the innate immune system and mediate 
cytotoxic functions against cancer cells through a complex net
work of activating and inhibitory receptors.97 Interestingly, the 
density, phenotype and functions of tumor-infiltrating NK-cells 
have been associated with a favorable outcome in various solid 
tumors98-101 but the microenvironment can impair their natural 
properties.102 NK-cell based immunotherapy encompass multi
ple promising approaches, including CAR engineering,103 which 
is under preclinical104-106 and clinical102,107 development for 
treating solid tumors. NK-cells can also be engineered to over
come the suppressive effect of the tumor microenvironment on 
their function. Interestingly, Parihar et al. produced modified 
NK-cells with a chimeric NKG2D receptor comprising the 
extracellular domain of the native NKG2D fused to the intracel
lular ζ-chain of the TCR (NKG2D.ζ), instead of the physiological 
DAP10 that is commonly downregulated by suppressive factors 
secreted by the microenvironment, such as TGFβ.108 They 
showed that NKG2D.ζ NK-cells, but not unmodified NK-cells, 
killed NKG2D ligand-expressing myeloid-derived suppressor 
cells (MDSCs) in a xenograft model of MDSCs-containing neu
roblastoma and enhanced infiltration and antitumor activity of 
co-injected anti-GD2 CAR T-cells.108 Finally we are experien
cing a new and exciting era almost resembling a science fiction 
movie, where the engineering of CAR T-cells seems to have no 
limit to overcome the evasion mechanisms of solid tumors. It is 
now time to assess if all these preclinical data will translate into 
clinical benefit for patients with aggressive solid tumors.

Conclusions

In the past few years, CAR T-cells made a huge breakthrough in 
the treatment of B-cell malignancies. Second generation CAR 
T-cells encompass one costimulatory domain (commonly CD28 
or 4–1BB) and are now commercialized for the treatment of 
relapsed/refractory B-cell acute lymphoblastic leukemia and dif
fuse large B-cell lymphoma. This proof of concept generated 
great interest for the development of CAR T-cells directed 
against solid tumors. Unfortunately, clinical trials 
evaluating second generation CAR T-cells in solid tumors have 
shown disappointing results. While a few complete responses 
have been observed, the duration of response is still limited. This 
anecdotal success is due to several hurdles encountered with 
solid tumors, including the heterogeneous and nonspecific 
expression of tumor-associated Ag, the homing capacity, and 
the immunosuppressive tumor microenvironment. Figure 1 
summarizes the solutions that have been proposed to face 
these challenges. Because no single CAR T-cell modality will 
likely defeat all evasion mechanisms of solid tumors, including 
plasticity of tumor Ag expression and active immune suppres
sion by the tumor environment, “armored” CAR T-cells strategy 
(TRUCKs) is likely to increase the breadth, potency and dura
tion of antitumor activity of second generation CAR T-cells. 
This last generation of CAR T-cells has demonstrated promising 
results in preclinical studies.

In addition, as CAR-related toxicities often arise acutely, 
control mechanisms should ideally allow fast control over CAR 
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T-cell activity. Permanent elimination of CAR T-cells could 
abrogate their long-term antitumor effect, and many methods 
therefore aim at reversible, ligand-enabled control, allowing to 
swiftly turn off the CAR T-cells when toxicities occur, such as 
with the design of adapter CAR T-cells. In addition, the use of 
boolean logic gates and tumor selectivity strategies is under 
intense investigation to generate autonomous CARs with 
a higher target specificity and tissue selectivity, capable of 
better distinguishing tumor from healthy cells.109,110 In the 
future, the choice of CAR T-cell should also be tailored to the 
tumor-type targeted, as tissue-specific vascularization can hin
der adequate CAR T-cell biodistribution, concentration, and 
persistance in the involved organs. Positive results from clinical 
trials are now awaited to hold the promise of this emerging 
category of cell-based therapy.
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