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Abstract: Evodiamine, a naturally occurring indole alkaloid, is one of the main bioactive 

ingredients of Evodiae fructus. With respect to the pharmacological actions of evodiamine, 

more attention has been paid to beneficial effects in insults involving cancer, obesity, 

nociception, inflammation, cardiovascular diseases, Alzheimer's disease, infectious diseases 

and themoregulative effects. Evodiamine has evolved a superior ability to bind various 

proteins, so we also argue that it is good starting point for multi-target drugs. This review is 

primarily addressed to the description of the recent advances in the biological activity 

studies of evodiamine, with a focus on pharmacological mechanism. The present review 

also includes the pharmacokinetics and the detailed exploration of target-binding properties 

of evodiamine in an attempt to provide a direction for further multi-target drug design. 
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1. Introduction 

Many common diseases like diabetes, cardiovascular disease, and cancer are caused by a set of 

several factors, such as physiological, pathological, environmental, and lifestyle. In the past, the main 

effort was aimed at developing highly specific molecules acting on single targets [1]. Now, there is a 

general agreement that molecules interfering simultaneously with multiple targets might be more 

effective than single target agents [2]. Moreover, using such a multi-targeted approach could 

theoretically permit low-dose administration of active agents therefore reducing the potential undesired 

events by providing synergistic or additive preventive effects. Chinese herbal medicines are attracting 

intensive attention because of their history of reliable therapeutic efficacy for the prevention and 

treatment of various human diseases for thousands of years [3–6]. Phytochemicals from medicinal 

plants play a vital role in treating diseases by influencing the function of a number of diverse targets. 

Therefore, Chinese herbal medicines are becoming important resources for designing multi-target 

bioactive molecules. Accordingly, it is worth noting that genomic, proteomic, and computational 

approaches have been explored to identify the molecular targets of natural products. Over the past 

decade, more and more molecular targets of certain natural herbal product have been proposed, which 

is helpful for current multi-target drug discovery [7]. For example, the Zhang research group investigated 

the therapeutic mechanisms of astragaloside IV extracted from Astragalus membranaceus Bunge, a 

medicinal herb used for cardiovascular diseases. They identified a total of 39 putative targets of 

astragaloside IV, implicating that the therapeutic effects of astragaloside IV are based upon a 

combination of blocking calcium influx, vasodilation, anti-thrombosis, anti-oxidation, anti-inflammation 

and immune regulation [8]. 

The fruit of “Wu-Zhu-Yu” (Evodiae fructus; Evodia rutaecarpa Benth., Rutaceae) is one of the 

most popular and multi-purpose herbs traditionally used in China for the treatment of headaches, 

abdominal pain, difficult menstruation, vomiting, diarrhea, and other diseases [9]. Phytochemical 

studies have shown the presence of evodiamine (Figure 1), which is an indole alkaloid found in large 

amounts in the Chinese medicine evodia [10]. 

Figure 1. Structure of evodiamine. 

 

Growing evidence demonstrates that evodiamine represents an important compound possessing a 

wide spectrum of biological activities [11–14], suggesting that it might interact with a number of 

diverse targets to carry out its therapeutic effects. The broad spectrum of medicinal properties 

associated with this compound has encouraged medicinal chemists to design and synthesize a large 

number of novel therapeutic agents. Several analogues exhibit significant anti-tumour, anti-microbial, 

and anti-inflammatory activities. For this reason evodiamine is an object of continuously growing 

interest amongst the scientists. With the characterization of the molecular targets for evodiamine, 

evodiamine can be used as a promising scaffold for development of a novel class of multi-target-directed 
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compounds, which can be beneficial for cancer or inflammatory treatment. This review attempts to 

summarize the recent researches on evodiamine focusing on biological activity and mechanism of 

action. Moreover, target-binding properties and bioavailability of evodiamine were also highlighted. 

2. Biological Activities of Evodiamine 

2.1. Anti-Inflammatory Activity 

An appreciable amount of research has reported on the potential anti-inflammatory properties and 

the possible underlying mechanisms of action of evodiamine. Nitric oxide (NO) is a highly reactive 

molecule produced from the amino acid arginine by the enzyme NO synthase (NOS). Inappropriate, 

excessive production of NO is largely responsible for pathogenesis of various inflammatory diseases [15]. 

Chiou et al., examined the possible anti-inflammatory effects of evodiamine by assessing its effects on 

NO production in cultured murine macrophage-like cell line RAW 264.7 [16]. Their results indicated 

that evodiamine inhibited NO production by interfering with the interferon-gamma (IFN-γ)-initiated 

signaling events. Ko et al., also found that anti-inflammatory activities of evodiamine could be 

partially explained by its potentials for inhibiting inducible nitric oxide synthase (iNOS)-dependent 

NO production in activated inflammatory cells [17]. In addition, evodiamine was found to inhibit the 

action of nuclear factor kappa B (NF-κB) and the transcription of cyclo-oxygenase-2 (COX-2). Liu et al. 

recently demonstrated that evodiamine inhibited COX-2 expression and hypoxia-inducible factor 1α 

(HIF-1α) accumulation via dephosphorylation of the serine/threonine protein kinase B (PKB/Akt) and 

the 70 kDa ribosomal S6 kinase (p70S6k), providing evidence for a novel mechanism underlying its 

anti-inflammatory activity [18]. Moreover, evodiamine has strong inhibitory effects on the synthesis of 

prostaglandin E2 (PGE2), which is the principal pro-inflammatory prostanoid and contributes to  

one of the key features of inflammation [19]. These results provide a scientific rationale for the  

anti-inflammatory use of evodiamine. The central role of evodiamine in the regulation of inflammatory 

is summarized in Figure 2. 

Figure 2. Demonstration of the key role of evodiamine in the regulation of inflammatory. 

T-lines indicate inhibitory effects. 
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2.2. Anti-Cancer Activity 

Evodiamine has been shown to exhibit anti-tumor properties by inhibiting proliferation of various 

cancer cell lines, including cervical cancer cells, colon cancer cells, lung cancer cells, melanoma cells, 

leukemic T-lymphocyte cells, prostate cancer cells and breast cancer cells [20–28]. One well-known 

manner of suppressing proliferation rates by evodiamine involves cell cycle progression arrest (G2/M 

phase) via activation of Cdc2/cyclin B [29]. In addition, evodiamine induced apoptosis of a variety of 

tumor cell lines through several pathways [30–32]. Takada et al. found that evodiamine exhibited 

apoptotic activity by modulating NF-κB activation, which leads to inhibition of NF-κB-regulated gene 

products such as Cyclin D1, X chromosome-linked IAP (XIAP), Bcl-2, and Bcl-Xl [33]. Other studies 

further revealed that evodiamine increased the expression of the apoptosis inducer Bax and decreased 

that of the apoptosis suppressor Bcl-2, and then induced apoptosis through the caspase pathway [34,35]. 

Reactive oxygen species (ROS) and NO generations were also found to exhibit regulatory effects on 

functions of p53, p21, protein tyrosine kinase (PTK) and other signaling proteins involved in 

evodiamine-induced apoptosis [36–39]. PI3K/Akt and extracellular signal-regulated kinases (ERKs) 

signaling pathways were also found to exhibit essential roles in the responses of tumor cells apoptosis 

induced by evodiamine [40–43]. Besides its anti-proliferative and anti-apoptotic effects, the effective 

inhibition of tumor invasion and metastasis are additional mechanisms by which evodiamine may 

communicate to halt the cancerous process [44]. Moreover, evodiamine has recently been identified as 

a dual catalytic inhibitor of topoisomerases I and II [45–48]. Figure 3 showed the potential anti-tumor 

properties and the possible underlying mechanisms of evodiamine. 

Figure 3. Demonstration of the potential anti-tumor properties and the possible underlying 

mechanisms of evodiamine. T-lines indicate inhibitory effects. 

 

2.3. Anti-Obesity Activity 

Evodiamine has excellent potential as an agent to prevent obesity [49]. Kobayashi et al. found that 

evodiamine appeared to prevent obesity and reduce body fat [12]. The major mechanism eliciting the 

effect was postulated to be enhancement of uncoupling protein-1 (UCP1) thermogenesis through  

β3-adrenergic stimulation in brown adipose tissue (BAT). Shi et al. reported that intragastric administration 

of evodiamine suppressed the neuropeptide Y (NPY) mRNA and peptide levels in the arcuate nucleus 

(ARC) of the hypothalamus, which might be one of the mechanisms by which evodiamine exerted its 

fat loss effects [50]. In addition, Wang et al. reported that evodiamine inhibited adipogenesis by 



Molecules 2013, 18 1830 

 

 

simulating the ERK/MAPK signaling pathway, which modulated the expression of the adipocyte 

specific transcription factors and Akt signaling [51]. They also found that evodiamine improved leptin 

resistance and insulin sensitivity in the mice [52]. Moreover, evodiamine inhibited both gastric emptying 

and gastrointestinal transit, whereas increased the plasma concentration of cholecystokinin (CCK) in a 

dose-dependent manner, which plays a key role in regulation of digestion and appetite [53,54]. 

2.4. Anti-Cardiovascular Disease Activity 

Evodiamine showed a beneficial effect on cardiovascular diseases as reported previously [55–57]. 

Chiou et al., found that evodiamine had a vasodilatory effect in rat isolated mesenteric arteries and the 

effect was endothelium dependent [58]. Evodiamine also demonstrated significant diuretic effect due 

to the inhibition of aldosterone release, which can control blood volume [59,60]. In addition, several 

studies showed that evodiamine produced transient positive inotropic and chronotropic effects on the 

guinea-pig isolated atria [61]. Previous investigations also indicated that evodiamine possessed a 

protective effect of cardiac anaphylactic injury by stimulation of calcitonin gene-related peptide (CGRP) 

release [62–64]. Similarly, evodiamine exerted protection against myocardial ischemia-reperfusion 

injury in rats by activation of vanilloid receptors to stimulate the CGRP release [65,66]. Moreover, 

evodiamine inhibited LIGHT-induced production of chemokine receptor (CCR) 1, CCR2, intracellular 

adhesion molecule 1 (ICAM-1), the phosphorylation of ERKs and p38 MAPK via decreasing ROS 

production and NADPH oxidase activation, implicating that evodiamine has the potential for use as 

anti-atherosclerosis agents [67]. 

2.5. Anti-Alzheimer’s Disease Activity 

Alzheimer’s disease (AD) is a progressive, irreversible brain disease caused by degeneration of 

synapses and death of neurons, resulting in cognitive, memory and behavioral impairments [68,69]. It 

is reported that a variety of biologically active constituents isolated from traditional Chinese herbs can 

significantly reduce the risk of AD [70–75]. Recently, the effect and the possible mechanisms of action 

of evodiamine in AD mouse models were investigated [76]. Evodiamine was reported to improve the 

cognitive abilities in the transgenic models of AD. Further investigations demonstrated that evodiamine 

treatment increased glucose uptake in brain tissue. The results also indicated that evodiamine inhibited 

the expression of COX-2 and inflammatory cytokines in AD mouse models, such as IL-1β, IL-6, and 

TNF-α. However, evodiamine had no effect on amyloid beta-peptide (Aβ) deposition [76]. Therefore, 

the effect of evodiamine on improvement of behavior in AD mouse models was likely mediated 

through the inhibition of the inflammatory process. Moreover, previous investigations indicated that 

dehydroevodiamine, an evodiamine analogue also demonstrated significant effect on AD. The 

chemical structure of dehydroevodiamine has been used as a basis in the clinical development of novel 

cholinesterase inhibitors [77]. 

2.6. Anti-Microbial Activity 

Anti-microbial agents for the treatment of infections caused by bacteria, fungi and protozoa are 

different from the pharmacodynamic agents that affected the physiological, biochemical, or 
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immunological function of host. The increase in number of antibiotic-resistant pathogenic bacteria  

has stimulated research on the development and application of new antimicrobial agents. Some 

compounds isolated from Evodia rutaecarpa were found to act as new anti-infectious agents, such as 

3-dimethylallyl-4-methoxy-2-quinolone, 1-methyl-2-pentadecyl-4(1H)-quinolone, evocarpine, dihydro-

evocarpine and 1-methyl-2-[(Z)-8-tridecenyl]-4-(1H)-quinolone [78–82]. Recently, Chiou et al. found 

that the compound evodiamine was effective in suppressing H1N1-induced chemokines production 

and blocking chemokine-attracted leukocytes recruitment, implicating potential in influenza virus 

infection-related inflammatory disorders [83]. Our group also found that evodiamine was capable of 

deactivation of E. coli and can be used as a natural antimicrobial agent. These results have not been 

reported yet. 

2.7. Other Activities 

It is well known that transient receptor potential cation channel subfamily V member 1 (TRPV1) 

plays a fundamental role in modulation of pain [84]. Some studies demonstrated that evodiamine exerted 

the analgesic effects due to its vanilloid receptor agonistic activities [85–87]. Evodiamine possesses 

many other biological functions, such as thermoregulatory effect, antianoxic action, dermatological 

applications, bronchoconstrictive action, and hormones secretion [88–96]. 

3. Protein-Ligand Interaction 

Identification of molecular targets of evodiamine is an enormous opportunity for modern 

pharmacology. Up to data, three proteins are believed to be direct targets of evodiamine, including 

TRPV1, the aryl hydrocarbon receptor (AhR), and topoisomerases I and II. These proteins seem to be 

important in inflammation, cancer and other diseases. In fact, compounds which can regulate multiple 

targets may have superior utility over single-target drugs. For example, Guerrant et al. synthesized 

dual-acting histone deacetylase and topoisomerase II inhibitors, which potently inhibit the proliferation 

of representative cancer cell lines [97]. Recently, the structures of several complexes of evodiamine 

with its targets have been elucidated. Investigations of the interaction between evodiamine and various 

targets provided detailed information regarding the structural features required for binding, which can 

be exploited in future multi-target drug discovery strategies. 

3.1. TRPV1 

TRPV1, a member of the transient receptor potential superfamily, is activated by protons, heat, 

endogenous substances and natural ligands such as capsaicin, resiniferatoxin, and evodiamine. The 

receptor participated in a wide variety of pathological and physiological processes, suggesting that 

regulation of this receptor activation should have considerable therapeutic utility. TRPV1 has been 

linked to processes mediating inflammation, cancer, cardiovascular diseases, obesity, skin diseases, 

and neuropathic pain [98–106]. TRPV1 ligands have attracted much attention as promising drug 

candidates to block related pathological states associated with this receptor. Evodiamine is a vanilloid 

receptor agonist, and thus represents a new potential class of lead molecules for new analgesics 

development [86]. Recently, our group investigated the precise interaction between evodiamine and 
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TRPV1 using homology modeling, molecular docking, dynamics simulation and pharmacophore 

modeling methods [107]. Our results showed that the ring 1 of evodiamine pointed toward Tyr511, 

establishing a hydrophobic interaction. The ring 5 of evodiamine pointed toward Tyr555, forming 

aromatic π-π interactions. In addition, evodiamine made two H-bonds between carbonyl oxygen and  

amino group of Lys571 and between indol nitrogen and backbone of Ile569. Pharmacophore modeling 

provided further evidence for the validity of the docking studies. This study identified the structural 

determinants required for the interaction between TRPV1 and evodiamine, and gave new suggestions 

for the rational design of novel TRPV1 ligands. The biological activity experiment showed that 

evodiamine bound to rat TRPV1 with a Ki of 5.95 ± 0.87 microM, and yielded an EC50 value of  

856 ± 43 nM [85]. Figure 4 showed the predicted binding mode of evodiamine in the active site of 

vanilloid receptor TRPV1. 

Figure 4. Binding mode of evodiamine in the active site of vanilloid receptor TRPV1. 

 

3.2. DNA Topoisomerases 

DNA topoisomerases (I and II) are complex enzymes, which control the topological state of DNA 

throughout breaking and rejoining of DNA strands. Topoisomerases are involved in various DNA-related 

cellular processes, such as replication, transcription, recombination, chromatin condensation and 

daughter chromatides partitioning [108]. A lot of new data concerning basic features of the different 

types of topoisomerases was published. Since the structure and function were well characterized, 

topoisomerases have been shown to have a potential use for drug design. It is well known that the 

inhibitors of DNA topoisomerases showed pronounced antitumor activity [109–111]. Topoisomerases have 

been also shown to have a potential for delivering antibacterial compounds or drug candidates [112,113]. 

In addition, topoisomerases are involved in the cardiovascular and nervous system diseases [114,115]. 

Dong et al. gained a better understanding of the probable binding modes of evodiamine within the 

human topoisomerase I binding pocket. They also designed and synthesized a series of evodiamine 

analogues and investigated their structure-activity relationship [48]. Various groups were introduced to 

the indole nitrogen atom of evodiamine, and the substituted benzoyl groups were found to be favorable 
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for the antitumor activity. The result of the biological activity test showed that the 4-Cl benzoyl derivative 

was the most active one with IC50 values in the range 0.049–2.6 μM [48]. Figure 5 shows the possible 

binding mode of evodiamine and 3-(4-chlorobenzoyl) evodiamine in the active site of topoisomerase  

I-DNA complex. 

Figure 5. Binding modes of evodiamine and 3-(4-chlorobenzoyl) evodiamine in the active 

site of topoisomerase I-DNA complex. 

 

3.3. Aryl Hydrocarbon Receptor 

The AhR is a member of the family of basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) 

transcription factors [116]. Non-ligand bound AhR is retained in the cytoplasm as an inactive protein 

complex bound to several co-chaperones [117–119]. Upon ligand binding to AhR, the chaperones are 

released, AhR imported into the nucleus and dimerized with AhR nuclear translocator (ARNT), 

leading to changes in gene transcription [120–122]. AhR plays a functional role in physiology and 

toxicology, especially in cellular proliferation and differentiation, the adaptive response, the toxic 

response, secretion of hormones and immunomodulation [123–127]. Recently, scientists found that 

AhR activation seems to be also important for cancer and inflammation, supporting the possibility of 

targeting the AhR for therapy in inflammation and a number of cancers [128–130]. Recently, we 

investigated the interaction between evodiamine and AhR [131]. We observed that a series of 

hydrophobic residues of AhR are involved in complex formation: Phe285, Phe295, Gly304, Val307, 

Leu308, Ile325, Cys333, Met348, Val363, and Ser365 (Figure 6). However, there is any hydrogen bond 

between AhR and evodiamine. Competitive ligand binding assay showed that evodiamine inhibited the 

specific binding of [3H]-TCDD, the best-characterised AhR agonist, to the AhR with an IC50 value of 

44.8 ± 6.5 nM. The corresponding Ki value calculated for evodiamine was 28.4 ± 4.9 nM [131]. AhR 

binding studies in vitro provided the evidence that evodiamine was able to bind to the AhR as ligand 

and exhibit antagonistic effects. 

4. Pharmacokinetics 

Evodiamine is sparingly soluble. Some efforts have been done to improve the bioavailability of 

evodiamine. Previous studies have revealed that solid dispersions of evodiamine in hard capsules have 
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a greater absorption rate than enriched samples of evodiamine in physical mixture hard capsules [132]. 

Tan et al. designed a novel evodiamine-phospholipid complex, which has higher bioavailability than 

evodiamine [133]. The pharmacokinetics of evodiamine were investigated in rats [134,135]. Recent 

research indicated that the plasma concentration of evodiamine reached the maximum level within 1 h 

after oral administration, and 19% of orally administered evodiamine was excreted in urine after 24 h. 

The main pharmacokinetic parameters were also calculated after oral administration of Wu-Chu-Yu 

extracts with different purities to rats. Additionally, Lin et al. developed a sensitive and selective liquid 

chromatography-mass spectrometry method for the determination of evodiamine in rabbit plasma for 

pharmacokinetic study [136]. 

Figure 6. Docking orientation of evodiamine within the AhR-LBD binding pocket. 

 

5. Conclusions 

This review focuses on potent and diverse bioactivities of evodiamine reported in the recent years. 

The target-binding properties of evodiamine were also highlighted. Information provided in this 

manuscript can be useful not only to exploit their biological potential appropriately, but also to develop 

multi-target drugs of future for treatment of various diseases. 
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