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Abstract

Background

Several recent studies have identified that the TERT genetic polymorphism rs2853676 is as-

sociated with cancer risk, but presented inconsistent results. We investigated these incon-

clusive results by performing a meta-analysis to systematically evaluate the association.

Methods

We conducted a search in PubMed, Google Scholar and ISI Web of Science to select stud-

ies on the association between TERT rs2853676 and cancer risk. We conducted a stratified

analysis using cancer type, ethnicity and source of controls. We calculated the odds ratios

(OR) and 95% confidence intervals (CI). Article quality, heterogeneity, sensitivity, publica-

tion bias and statistical power were also assessed.

Results

26 articles covering 76 108 cases and 134 215 controls met our inclusion criteria. A signifi-

cant association between TERT rs2853676 allele A and cancer susceptibility was demon-

strated under a per-allele risk analysis (OR = 1.08, 95% CI = 1.04-1.13). Stratification

analysis revealed an increased cancer risk in subgroups of glioma, lung cancer and ovarian

cancer. No significant increase was found in melanoma, breast cancer, pancreatic cancer

and colorectal cancer. In a subgroup analysis of lung cancer, a statistically significant in-

crease was only observed in adenocarcinoma. Moreover, a stratified analysis performed for

ethnic groups revealed that the significant increase was only observed in Caucasians,

whereas a non-significant increase was found in Asians.

Conclusions

This meta-analysis suggests that the TERT genetic polymorphism rs2853676 is associat-

ed with increased risk of glioma, lung adenocarcinoma and ovarian cancer among
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Caucasians. Further functional studies are warranted to validate this association and

investigate further.

Introduction
Cancer is a major global public health problem. Fourteen million people were diagnosed with
cancer worldwide in 2012. By 2032, the global cancer incidence is predicted to reach to 25 mil-
lion [1]. In the United States, cancer is the second leading cause of death following heart disease
and the leading cause of death among adults aged between 40 and 79 years [2]. Although the
causes of cancer are multi-factorial, genetic and environmental factors play an important role
in cancer pathogenesis. Recent epidemiological studies have identified several genetic polymor-
phism loci on chromosome 5p15.33 that are associated with the risk of many types of cancer
[3–5]. Chromosome 5p15.33 contains two key genes, cleft lip and palate transmembrane 1-like
(CLPTM1L) and telomerase reverse transcriptase (TERT).

As the main catalytic subunit of telomerase, TERT is essential for the maintenance of telo-
mere DNA length in chromosomes [6]. Telomerase is an RNA-dependent DNA polymerase
that synthesizes repetitive DNA (TTAGGG repeats) sequences, which bind abundant special-
ized proteins onto the chromosome ends [7]. The telomeres prevent coding sequence erosion
and protect chromosomes from rearrangements, fusion and genome instability by conducting
chromosomal complete replication and regulating gene expression [8]. The expression of telo-
merase is extremely low in most normal human somatic cells, but is present in over 90% of
human malignancies. In vitro immortalized cells and the stem cell lines of actively proliferating
tissues show a high level of telomerase expression [9, 10]. The activation of telomerase is a vital
step during cellular immortalization and the malignant transformation of human cells. This ac-
tivation requires the TERT catalyst [11].

A series of important cancer-related polymorphisms have been reported within the TERT
gene using a meta-analysis approach and have been identified as contributing to the risk of sev-
eral cancers, such as the susceptibility to rs2736098 for lung and bladder cancer [12] and that
to rs2736100 for lung cancer and glioma [13]. The rs2853676 polymorphism has been mapped
to intron 2 of the TERT gene, which was implicated in an increased risk of glioma in 2009 [14].
Since then, several studies have assessed the association between the polymorphism and cancer
risk, but have presented inconclusive results. We performed a meta-analysis to summarize the
available evidence and more precisely characterize the relationship between the TERT
rs2853676 polymorphism and cancer risk.

Material and Methods

Search strategy
According to the Meta-analysis of Observational Studies in Epidemiology guidelines [15], we
conducted systematic searches in PubMed, Google Scholar and ISI Web of Science, up to Sep-
tember 20, 2014. We used the systemic literature search terms “TERT or rs2853676,” “poly-
morphism or variant” and “cancer or carcinoma or tumor or neoplasm.” All related reference
articles and review articles were searched to identify additional relevant eligible publications.
Unpublished data were also obtained from the authors by e-mail.

Inclusion and exclusion criteria
Identified studies meeting all of the following criteria were included: (1) articles about the
TERT polymorphism rs2853676 and cancer risk that were published in English; (2) a case-
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control or case-cohort design addressing race and the numbers of affected and unaffected
human control subjects; and (3) sufficient data to calculate an odds ratio (OR) with a 95% con-
fidence interval (CI). The exclusion criteria were: (1) investigations in subjects with family can-
cer risk; (2) published as an abstract, summary, case report, comment letter, review or editorial;
and (3) in overlapped case series, in which case all but the latest or largest study were excluded.

Data extraction
Data were extracted independently by two investigators, according to the inclusion and exclu-
sion criteria listed above. Discrepancies were resolved by discussion and consensus. We ex-
tracted the first author, year of publication, cancer type, patient ethnicity, source of control
group (population-based, hospital-based, multiple or nested-in-cohort controls), number of
cases and controls, genotyping method, histological subtype, minor allele frequency, genotype
and/or per-allele risk OR and 95% CI from each study. The data were extracted separately by
population or cancer type, if these were explicitly given. The quality of each study was evaluat-
ed using previously published quality assessment criteria [16]. The quality scores of the studies
ranged from 0 to 15. Scores� 9 were considered to indicate low quality, while those> 10 were
considered to indicate high quality.

Statistical analysis
Statistical analyses were performed using Stata 12.0 software (Stata Corporation, College Sta-
tion, Texas). All of the tests were two-sided with a p-value. The Hardy-Weinberg equilibrium
among the control subjects was assessed with a chi-square test, in which p< 0.05 suggested a
significant deviation from equilibrium. The OR and 95% CI were calculated to assess the
strength of the association between the rs2853676 polymorphism and cancer risk. The signifi-
cance of the combined OR was determined with a Z test, in which p< 0.05 was considered sta-
tistically significant. Stratified analyses based on cancer type, ethnicity, histological subtype
and source of controls were quantified with ORs and 95% CIs. Ethnicity data sets were catego-
rized as Caucasian, Asian, African or multiple. If a cancer type contained only one data source,
it was combined into the “other cancers” group.

The heterogeneity between the studies was calculated by Cochran’s Q-test, in which
p< 0.10 indicated significant heterogeneity. If the heterogeneity was significant, the random-
effects model (DerSimonian and Laird method) was applied [17], otherwise the fixed-effects
model was used (Mantel-Haenszel method) [18]. The I2 was calculated to quantitatively esti-
mate the heterogeneity, with I2 < 25%, I2 = 25–75% and I2 > 75% representing low, moderate
and high heterogeneity, respectively [19].

Sensitivity analyses were performed by sequential removal of each study to assess the stabili-
ty of the results. Begg’s funnel plots and Egger’s linear regression tests were used to examine
the publication bias, in which p< 0.05 indicated statistical significance [20]. Moreover, we esti-
mated the statistical power of each subgroup analysis. Power analyses of the meta-analyses
were all conducted using PS (Power and Sample Size Calculations) software version 3.0.5. To
guard against Type I errors, α was typically set at 0.05, while β was set at 0.20 to guard against
Type II errors, thus a sufficient power of the statistical test would be greater than 80% [21].

Results

Eligible studies
After a comprehensive search, 310 relevant articles were retrieved. Screening of the titles and
abstracts excluded 175 articles. Following a full text review and detailed evaluations, 26 articles
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covering 32 case-control studies with 76 108 cases and 134 215 controls met our inclusion cri-
teria (Fig 1) [4, 14, 22–45]. Among the 32 studies, nine focused on glioma [14, 31, 32, 37, 40],
three each on lung cancer [4, 26, 45], breast cancer [22, 39, 43] and melanoma [24, 33, 35], two
each on pancreatic cancer [23, 27], ovarian cancer [31, 38] and colorectal cancer [36, 42], and
one each on nasopharyngeal cancer [25], endometrial cancer [28], neuroblastoma [34], pros-
tate cancer [41], testicular germ cell cancer [29], acute lymphoblastic leukemia [44], skin squa-
mous cell carcinoma and Basal cell carcinoma [33].

Six studies focused on Asians [25, 26, 31, 37, 44, 45], twenty-four on Caucasians [14, 22–24,
27–30, 32–36, 38, 40–43] and one each on Africans [39] and multiple populations [4]. Ten
studies used population-based controls [14, 24, 32, 36, 42, 43, 45], eight used hospital-based
controls [14, 25, 31, 33, 35, 37, 40, 44], five used nested-in-cohort controls [22, 28, 33] and nine
used multiple controls [4, 23, 26, 27, 29, 30, 38, 39, 41]. The studies used genotyping methods
such as Illumina, iPLEX and TaqMan (Table 1). The minor allele frequencies of the control
subjects were 25.31% in Caucasians, 17.10% in Asians and 26.4% in Africans.

Fig 1. Flow chart of the literature search and selection procedures.

doi:10.1371/journal.pone.0128829.g001

TERT rs2853676 Polymorphism and Cancer Risk

PLOS ONE | DOI:10.1371/journal.pone.0128829 June 4, 2015 4 / 14



Table 1. Study characteristics of the association between the rs2853676 polymorphism and cancer risk in this meta-analysis.

Author(year) Ethnicity Cancer type Source Method Cases/
Controls

MAF OR (95%CI) Score

Hunter et al.(2007) Caucasian Breast Nested in
cohort

Illumina 1145/1142 23.8 0.97(0.81–
1.15)

12

Amundadottir et al.
(2009) a

Caucasian Pancreas Multiple Illumina 1896/1939 23.8 0.90(0.81–
1.00)

11

Falchi et al. (2009) Caucasian Melanoma PB Illumina 3131/3702 23.8 0.98(0.89–
1.07)

13

Shete et al. (French
2009)

Caucasian Glioma PB Illumina 1361/1490 27.0 1.29(1.15–
1.44)

14

Shete et al.
(German2009)

Caucasian Glioma PB Illumina 498/565 27.0 1.32(1.10–
1.59)

14

Shete et al. (Sweden
2009)

Caucasian Glioma PB Illumina 639/760 27.0 1.30(1.10–
1.54)

14

Shete et al. (England
2009)

Caucasian Glioma PB Illumina 631/1433 27.0 1.14(0.99–
1.32)

14

Shete et al. (America
2009)

Caucasian Glioma HB Illumina 1247/2234 27.0 1.26(1.14–
1.41)

12

Bei et al. (2010) b Asian Nasopharynx HB Illumia 1582/1894 16.3 0.97(0.85–
1.11)

12

Hsiung et al. (2010) Asian Lung Multiple Illumia 2539/2535 17.3 1.08(0.98–
1.20)

10

Petersen et al. (2010) c Caucasian Pancreas Multiple Illumia 1955/1995 23.8 0.96(0.86–
1.07)

11

Prescott et al. (2010)d Caucasian Endometrium Nested in
cohort

Taqman 651/1605 26.1 1.08(0.94–
1.25)

12

Turnbull et al. (2010) Caucasian Testicular germ cell
cancer

Multiple Illumia 979/4947 27.7 0.75(0.67–
0.84)

9

Beesley et al. (2011)e Caucasian Ovarian Multiple iPLEX 990/3687 26.0 1.05(0.93–
1.18)

10

Chen et al. (2011) Asian Glioma HB iPLEX 948/1041 16.0 1.27(1.08–
1.49)

11

Egan et al. (2011) Caucasian Glioma PB Illumia 639/649 28.7 1.22(1.03–
1.44)

13

Nan 1 et al. (2011) Caucasian Melanoma Nested in
cohort

Taqman 218/840 25.2 1.42(1.13–
1.78)

13

Nan 2 et al. (2011) Caucasian SCC(skin) Nested in
cohort

Taqman 281/840 25.2 1.10(0.88–
1.36)

13

Nan 3 et al. (2011) Caucasian BCC(skin) Nested in
cohort

Taqman 284/840 25.2 1.03(0.83–
1.29)

13

Wang et al. (2011) Caucasian Neuroblastoma HB Illumia 2251/6097 27.3 1.03(0.95–
1.11)

11

Bodelon et al. (2012)f Caucasian Melanoma HB Illumia 796/770 30.0 1.17(0.84–
1.63)

12

Hofer et al. (2012) Caucasian Colorectal PB Taqman 137/1705 25.0 1.20(0.91–
1.58)

14

Liu et al. (2012) Asian Glioma HB iPLEX 312/311 23.9 0.89(0.69–
1.15)

11

Terry et al. (2012)g Caucasian Ovarian Multiple TaqMan 2112/2456 20.0 1.13(1.02–
1.25)

10

Zheng et al. (2012) African Breast Multiple Illumia 1508/1383 22.8 1.02(0.91–
1.16)

12

Jin et al. (2013) Caucasian Glioma HB iPLEX 433/463 15.9 1.56(1.23–
1.98)

11

(Continued)
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Meta-analysis results
Eight studies were based on adjustment data [23, 25, 27, 28, 30, 35, 38, 43]. These studies had a
small effect on the synthesis and did not significantly alter the OR, which agreed with previous
results [46, 47]. Based on the data from all 32 studies, we found a significant increased cancer
risk for the TERT rs2853676 A allele under a per-allele risk analysis (OR = 1.08, 95%
CI = 1.04–1.13, p< 0.001), with a statistical power of 100%. The results from a random effect
model showed significant heterogeneity (pheterogeneity< 0.001, I2 = 75.0%) (Fig 2).

Stratification analysis identified increased cancer risk in subgroups of glioma (per-allele
OR = 1.25, 95% CI = 1.19–1.32, pheterogeneity = 0.123, I2 = 36.9%), lung cancer (per-allele
OR = 1.05, 95% CI = 1.02–1.08, pheterogeneity = 0.654, I2 = 0.0%), ovarian cancer (per-allele
OR = 1.10, 95% CI = 1.01–1.18, pheterogeneity = 0.358, I2 = 0.0%). No significant increase in risk
was found in melanoma, breast cancer, pancreatic cancer and colorectal cancer (Table 2). In a
subgroup analysis of lung cancer, a statistically significant increase was observed in adenocarci-
noma (OR = 1.14, 95% CI = 1.09–1.19, pheterogeneity = 0.616, I2 = 0.0%) (Table 3). A non-signifi-
cant difference was found in squamous cell carcinoma (OR = 0.98, 95% CI = 0.92–1.05,
pheterogeneity = 0.762, I2 = 0.0%) and small cell lung carcinoma (OR = 1.05, 95% CI = 0.97–1.15,
pheterogeneity = 0.826, I2 = 0.0%) (data not shown). Moreover, a stratified analysis performed on
the ethnicity of the groups revealed that the significant risk was only observed in Caucasians
(per-allele OR = 1.10, 95% CI = 1.04–1.16, pheterogeneity < 0.001, I2 = 79.4%), but a non-signifi-
cant risk was found in Asians (per-allele OR = 1.06, 95% CI = 0.97–1.17, pheterogeneity = 0.066,
I2 = 51.7%). (Fig 2 and Table 2).

A stratified analysis by source of controls indicated a significantly increased risk associated
with population-based, hospital-based, and nested-in-cohort controls, with ORs of 1.15 (95%
CI = 1.06–1.25), 1.14 (95% CI = 1.03–1.28), and 1.09 (95% CI = 1.00–1.18), respectively. No
significant increase was found in multiple-source controls. A stratified analysis by cancer type

Table 1. (Continued)

Author(year) Ethnicity Cancer type Source Method Cases/
Controls

MAF OR (95%CI) Score

Kote-Jarai et al. (2013) Caucasian Prostate Multiple Illumia or
iPLEX

22301/22320 25.8 1.09(1.05–
1.12)

11

Pellatt 1 et al. (2013) Caucasian Colorectal PB TaqMan 2308/2914 26.0 1.04(0.94–
1.14)

13

Pellatt 2 et al. (2013)h Caucasian Breast PB Illumia 3533/4102 19.0 1.23(1.00–
1.51)

13

Sheng et al. (2013) Asian ALL HB Taqman 567/669 16.1 1.19(0.97–
1.47)

12

Zhao et al. (2013) Asian Lung PB SNPscan 782/778 18.0 0.98(0.82–
1.18)

14

Park et al. (2014) Multiple Lung Multiple Illumia 17454/57789 26.4 1.05(1.02–
1.09)

11

ALL: Acute lymphoblastic leukemia; SCC: Squamous cell carcinoma; BCC: Basal cell carcinoma; PB: Population based; HB: Hospital based; MAF: Minor

allele frequency in control subjects;
a,c Adjusted for study, sex, ancestry and five principal components of population stratification;
b,f Adjusted for age and gender;
d,e Adjust for age and study;
g Adjusted for age (continuous), center, oral contraceptive use, parity, family history of breast or ovarian cancer, and tubal ligation;
h Adjusted for age, study, BMI, vigorous activity in referent year, parity, age at first birth, alcohol consumption, and genetic admixture.

doi:10.1371/journal.pone.0128829.t001
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Fig 2. Forest plot of the ORs for the overall cancer risk associated with the rs2853676 polymorphism.

doi:10.1371/journal.pone.0128829.g002
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Table 2. Stratified analyses of the rs2853676 polymorphism and cancer risk.

Category No. of Random effect model Fixed effect model I2 (%) Pheterogeneity Pegger Power (%)

data sets Cases/Controls OR(95%CI) P OR(95%CI) P

Total 32 76108/134215 1.08(1.04–1.13) <0.001 - - 75.0 <0.001 0.369 100.0

Cancer type

Glioma 9 6708/8946 - - 1.25(1.19–1.32) <0.001 36.9 0.123 0.687 100.0

Lung cancer 3 20075/61102 - - 1.05(1.02–1.08) 0.002 0.0 0.654 0.821 96.2

Breast cancer 3 6186/6627 - - 1.04(0.95–1.14) 0.357 38.4 0.197 0.618 24.8

Melanoma 3 4145/5312 1.16(0.89–1.50) 0.265 - - 78.5 0.010 0.399 99.4

Pancreas 2 3851/3934 - - 0.93(0.86–1.00) 0.055 0.0 0.405 - 48.0

Ovarian cancer 2 3102/6143 - - 1.10(1.01–1.18) 0.021 0.0 0.358 - 75.0

Colorectal 2 2445/4619 - - 1.06(0.96–1.16) 0.238 0.0 0.337 - 30.7

Other cancer 8 28896/38372 1.01(0.92–1.11) 0.794 - - 83.5 <0.001 0.383 12.4

Ethnicity

Caucasian 24 50416/67815 1.10(1.04–1.16) 0.001 - - 79.4 <0.001 0.410 100.0

Glioma 7 5448/7594 - - 1.27(1.20–134) <0.001 0.0 0.471 0.314 100.0

Breast cancer 2 4678/5244 1.09(0.86–1.37) 0.490 - - 66.2 0.085 - 69.1

Asian 6 6730/7228 1.06(0.97–1.17) 0.203 - - 51.7 0.066 0.841 45.6

Glioma 2 1260/1352 1.08(0.76–1.53) 0.669 - - 81.2 0.021 - 19.0

Lung cancer 2 3321/3313 - - 1.06(0.97–1.15) 0.232 0.0 0.360 - 45.2

African 1 1508/1383 1.02(0.90–1.15) 0.749 - - - - - 6.1

Multiple 1 17454/57789 1.05(1.02–1.09) 0.004 - - - - - 94.3

Source of control

Population based 10 13659/18098 1.15(1.06–1.25) 0.001 - - 66.2 0.002 0.133 100.0

Hospital based 8 8136/13479 1.14(1.03–1.28) 0.016 - - 73.9 <0.001 0.471 100.0

Nested in cohort 5 2579/3587 - - 1.09(1.00–1.18) 0.045 44.3 0.127 0.487 54.5

Multiple 9 51734/99051 1.00(0.94–1.07) 0.917 - - 84.8 <0.001 0.148 5.0

Random effects model was applied when P value for heterogeneity test<0.10, otherwise, fixed effect model was used;

Power calculations assume a = 0.05.

doi:10.1371/journal.pone.0128829.t002

Table 3. Stratified analyses of the rs2853676 polymorphism in lung adenocarcinoma.

Author(year) Ethnicity Cancer type Source Method Cases/Controls OR (95%CI)

Hsiung et al. (2010) Asian Adenocarcinoma Multiple Illumia 1930/2535 1.06(0.95–1.19)

Zhao et al. (2013) Asian Adenocarcinoma PB SNPscan 359/778 1.04(0.83–1.31)

Park et al. (MEC 2014) Multiple Adenocarcinoma Multiple Illumia 252/9587 1.19(0.96–1.47)

Park et al. (WHI 2014) Multiple Adenocarcinoma Multiple Illumia 760/5825 1.11(0.98–1.25)

Park et al. (DeCode Genetics 2014) Caucasian Adenocarcinoma PB Illumia 346/11225 1.03(0.86–1.22)

Park et al. (Harvard 2014) Caucasian Adenocarcinoma PB Illumia 488/970 1.26(1.06–1.51)

Park et al. (HGF Germany 2014) Caucasian Adenocarcinoma PB Illumia 188/479 1.18(0.84–1.67)

Park et al. (IARC GWAS 2014) Multiple Adenocarcinoma Multiple Illumia 586/3174 1.25(1.08–1.44)

Park et al. (MDACC 2014) Caucasian Adenocarcinoma Multiple Illumia 619/1133 1.09(0.93–1.28)

Park et al. (NCI GWAS 2014) Multiple Adenocarcinoma Multiple Illumia 1836/5686 1.19(1.09–1.29)

Park et al. (SLRI/ Toronto 2014) Caucasian Adenocarcinoma PB Illumia 89/488 1.07(0.76–1.51)

PB: Population based; HB: Hospital based;

The overall OR = 1.14, 95% CI: 1.09–1.19, P <0.001; Pheterogeneity = 0.616, I2 = 0.0%.

doi:10.1371/journal.pone.0128829.t003
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was also performed in Caucasians and Asians. The results for glioma and breast cancer were
the same in Caucasians as in the overall population, but a non-significant increase in risk was
found for glioma and lung cancer in Asians (Table 2).

Heterogeneity test and sensitivity analyses
Significant heterogeneity existed, mainly in all cancer and the subgroups of ethnicity, popula-
tion-based controls, hospital-based controls and multiple-source controls. However, most of
the heterogeneity disappeared, except melanoma and “other cancers,” in the analysis of cancer
type subgroups (Table 2).

A sensitivity analysis was conducted to assess the influence of each study, by sequential
omission of each eligible study. The results showed that the significance of the OR was not af-
fected by any single study (Fig 3). In addition, after the removal of a study that resulted in a de-
parture from the Hardy-Weinberg equilibrium, no significant alteration was found in the OR.

Publication bias
Publication bias was assessed with Begg’s funnel plots and Egger’s test. The shapes of the funnel
plots did not show any evidence of publication bias (Fig 4). No significant publication bias was
found by Egger’s test in the overall or subgroup analyses (Table 2).

Discussion
The TERT gene is the main catalytic subunit of telomerase, which is encoded by a single-copy
gene, mapped on chromosome 5p15.33 and contains 16 exons and 15 introns spanning about
35 kb [48]. The gene consists of three distinct structural domains: an RNA-binding domain, a
reverse transcriptase domain and a carboxy- terminal extension, which is thought to represent

Fig 3. Sensitivity analysis of the overall ORs. The results were calculated by omitting each eligible study. Meta-analysis random-effects estimates
(exponential form) were used.

doi:10.1371/journal.pone.0128829.g003
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the putative thumb domain of TERT [49]. A high level of TERT expression is involved in a vari-
ety of human malignancies. TERTmay play an important role in the pathogenesis of cancer [6,
9, 50]. The TERT gene sequence has been proposed as a general mechanism affecting individu-
al susceptibility to cancer risk [4, 5, 47]. A growing number of epidemiological studies have
been conducted in response, which have provided evidence that TERT polymorphisms contrib-
ute to cancer development [4, 5].

The polymorphism rs2853676 is located in intron 2 of the TERT gene. The association be-
tween this polymorphism and cancer risk has been assessed in several studies, which showed
inconclusive results. Only one meta-analysis demonstrated strong evidence that rs2853676 in-
creased the risk of central nervous system tumors, but the evidence for the risk of lung cancer
was weak [51]. A recent study from the Population Architecture using the Genomics and Epi-
demiology and Transdisciplinary Research in Cancer of the Lung consortia identified that
rs2853676 was associated with an increased risk of lung adenocarcinoma [4]. Our meta-analy-
sis suggested that the TERT genetic polymorphism rs2853676 allele A increased several cancer
risk, based on 76 108 cases and 134 215 controls. The association mainly existed in the Cauca-
sian population, especially for glioma, lung cancer and ovarian cancer. No significant associa-
tion was found in melanoma, breast cancer, pancreatic cancer or colorectal cancer. In a
subgroup analysis of lung cancer, a statistically significant association was only observed in
adenocarcinoma. Interestingly, the Asian population showed no significant result in any type
of cancer. Notably, one study described an increased risk for prostate cancer [41], whereas an-
other described a reduced risk for testicular germ cell cancer [29]. Further studies are required
to validate these associations in urogenital system tumors.

The heterogeneity between our studies was significantly reduced in the analysis of the can-
cer type subgroups, indicating that the effect of TERT polymorphisms may be modified by
tumor origin. The effect may be cancer-type specific and play a different role in the etiology of

Fig 4. Funnel plot analysis to detect publication bias for the rs2853676 polymorphism in the 32 data sets.

doi:10.1371/journal.pone.0128829.g004
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different tumors [47]. However, the exact functional mechanisms underlying the association
between the rs2853676 polymorphism and cancer remains unclear. Several studies have sug-
gested that telomere length alters cancer risk [5, 33, 52]. However, this alteration has not been
observed in rs2853676 [28, 38, 43], except by Melin et al., who detected potential relevance at
higher ages in a small sample [53]. The other plausible mechanisms underlying the association
between the rs2853676 polymorphism and cancer risk may be attributable to environmental
risk factors or genetic background. The modification of the TERT function is likely to also play
an important role. A high linkage disequilibrium with other nearby biologically potential func-
tional polymorphisms or disease-causing mutations may also exist. In National Cancer Insti-
tute controls, rs2853676 was in modest linkage disequilibrium (r2 = 0.25, D’ = 0.82) with
rs2736100 and showed a similar pattern of association with lung adenocarcinoma (OR = 1.16,
p = 3.44×10–4) [54]. A recent Japanese study also identified that TERT rs2853677 (European
ancestry: r2 = 0.59) was associated with lung adenocarcinoma (p = 3.1×10–40) [55]. Park and
collaborators speculated that the association between rs2853676 and adenocarcinoma may be
influenced by rs2736100 and rs2853677 [4].

Several limitations in this meta-analysis should be addressed. First, our meta-analysis only
presented limited studies that were available to adjust the estimates, and more individual data
would be required to draw a more precise conclusion. Second, gene-gene and gene-environ-
ment interactions may have influenced our results, as cancer is mainly caused by genetic and
environmental factors. However, no appropriate information was available to test this. Third,
not all of the authors of the included studies agreed to provide their data and exact genotype
data were reported in a minority of the studies. The analysis was therefore only conducted with
an additive model (per-allele risk analysis). Fourth, in this meta-analysis, the power of several
subgroup results was< 80%, indicating that additional high-level studies are still needed.

In conclusion, this meta-analysis suggests that the TERT genetic polymorphism rs2853676
is associated with an increased risk of glioma, lung adenocarcinoma and ovarian cancer among
Caucasians, suggesting that the association may be cancer-type and ethnically specific. To vali-
date this association and investigate our findings further, functional studies are warranted.
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