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Abstract: Smartphone accelerometers and low-cost Global Navigation Satellite System (GNSS)
equipment have faced rapid and important advancement, opening a new door to deformation
monitoring applications such as landslide, plate tectonics and structural health monitoring (SHM).
The precision potential and operational feasibility of the equipment play an important role in the
decision making of campaigning for affordable solutions. This paper focuses on the evaluation of
the empirical precision, including (auto)time correlation, of a common smartphone accelerometer
(Bosch BMI160) and a low-cost dual frequency GNSS reference-rover pair (u-blox ZED-F9P) set to
operate at high rates (50 and 5 Hz, respectively). Additionally, a high-rate (5 Hz) GPS-only baseline-
based multipath (MP) correction is proposed for effectively removing a large part of this error
and allowing to correctly determine the instrumental noise of the GNSS sensor. Furthermore, the
benefit of smartphone-based validation for the tracking of dynamic displacements is addressed. The
estimated East-North-Up (ENU) precision values (σ̂) of ±7.7, 8.1 and 9.6 mm

s2 are comparable with
the declared precision potential (σ) of the smartphone accelerometer of ±8.8 mm

s2 . Furthermore, the
acceleration noise shows only mild traces of (auto)correlation. The MP-corrected 3D (ENU) empirical
precision values of ±2.6, 3.6 and 6.7 mm were found to be better by 30–40% than the straight-out-of
box precision of the GNSS sensor, attesting the usefulness of the MP correction. The GNSS sensors
output position information with time correlation of typically tens of seconds. The results indicate
exceptional precision potential of these low-power-consuming, small-scale, affordable sensors set to
operate at a high-rate over small regions. The smartphone-based dynamic displacement validation
shows that GNSS data of a low-cost sensor at a 5 Hz sampling rate can be successfully used for
tracking dynamic processes.

Keywords: deformation monitoring; GNSS; smartphone accelerometer; low-cost; measurement
precision; noise characterization; GPS-based multipath correction

1. Introduction

Over the last decade, promising low-cost sensors have faced a rapid boom, making
the analysis and prediction of damaging geophysical phenomena and abnormal structural
responses possible at moderate cost for the applications of (for instance) landslide tracking
and monitoring tall and slender civil engineering structures.

Depending on the application, sensors can be centered around two displacement
types—dynamic or quasi-static displacements (see Figure 1). The major difference between
a dynamic and quasi-static displacement lies in the reaction force time of the struck body
and whether it is considerably large to produce an inertial force. Both displacement types
can be present in geophysical and structural engineering applications.
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Figure 1. Displacement types: (a) dynamic and (b) quasi-static, their preferred tracking instruments
and corresponding applications. Note the color choice for the two sensor types, blue for accelerometer
and red for the Global Navigation Satellite System (GNSS).

Over the last two decades, high-rate micro-electro-mechanical system (MEMS) ac-
celerometers and networks of high-end Global Navigation Satellite System (GNSS) receivers
have represented the most useful and robust solutions for deformation monitoring.

Generally, MEMS accelerometers are used for capturing fast, dynamic responses at
high rates (>1 Hz) . It is known ([1,2]) that they work very well over high frequency ranges
but perform poorly at sensing low-frequency, quasi-static movements. MEMS accelerom-
eters are built with “sensitive axes, both in the plane of the device and perpendicular
to that plane, enabling a three-axis accelerometer ensemble to be etched onto a single
silicon chip of small dimension, exhibiting much greater shock tolerance than conventional
mechanical designs” [3]. These sensors measure changes in capacitance corresponding to
the acceleration in one, two or three directions of a proof mass and its fingers relative to a
fixed ensemble of fingers attached to the frame of the accelerometer. Thus, the time series
of accelerations can be measured, stored and analyzed to identify fine ground seismicity
or structural vibrations, describing what GNSS sensors cannot resolve. Despite their size
and affordable cost, MEMS accelerometers have relatively poor performance of navigation,
influenced by higher frequency noise and weak response to static displacements. The stud-
ied inertial measurement unit (Bosch BMI160 [4]) is comprised of a 16-bit accelerometer
and a low-power gyroscope.

On the other hand, GNSS sensors work based on the principle of wave travel time
determination, where a minimum of four satellite-born radio carrier waves need to be
acquired by a receiver on the ground to estimate its 3D position. Excluding modern
high-rate (>1 Hz) GNSS equipment for seismology ([5,6]), such instruments are preferred
for measuring quasi-static displacements ([1,7–9]). To facilitate this, GNSS systems can
produce sub-centimeter precise relative position solutions based on the principle of Real
Time Kinematic (RTK) differential positioning [10]. On account of the received GNSS carrier
waves, carrier phase (CP), pseudorange and navigation data are used to estimate the 3D
baseline, which is the relative position of the rover receiver with respect to the reference
receiver, delivering such a solution in a kinematic way for every measurement epoch.
Carrier wave cycle ambiguity resolution [11] is thereby crucial to attain sub-centimeter
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precise 3D baseline solutions. Every external influence on the reference or rover position
will be reflected in the baseline solution as displacement from the average static state of the
initial baseline, giving the chance to study permanent displacements over time exceeding
the instrumental noise level. The studied GNSS receiver pair (u-blox ZED-F9P) is a low-cost
multi band sensor “capable of centimeter precision” [12].

With the rapid advancement of such low-cost sensors recent research studies ([13,14])
highlight the increasing interest in affordable solutions for static deformation monitoring.
There are many more interesting applications of these low-cost sensors, for instance, in
measuring and monitoring vehicle dynamics ([15,16]). However, this study strictly focuses
on the precision evaluation of static/permanent sensor set-ups targeting millimeter-precise
geodetic applications.Notable achievements in the fields of plate tectonic, landslide or
structural health monitoring have been documented, where some of the most recent and
novel studies are mentioned below.

Allen et al. [17] demonstrated the effectiveness of smartphone accelerometers for
earthquake early warning (EEW). Based on MyShake, their crowdsourcing seismic system,
acceleration information from personal smartphones is clustered to report the expected
approximate time and intensity of earthquakes in near real-time. Their results show that
densely coupled inexpensive smartphone accelerometers can effectively detect the shakings
of magnitude five and larger, produced at least 10 km away in the frequency range of 1 to
10 Hz. The authors demonstrate that such a crowdsourcing solution can compete with the
performance of a high-end real-time EEW system by identifying a powerful earthquake
within five seconds after its origin time.

To effectively explain deformation processes, instrumental precision and accuracy are
two concepts of primordial interest. Odolinski et al. ([18,19]) studied the precision and
ambiguity resolution performance of a low-cost single frequency differential GNSS system
using multi-GNSS code and carrier phase data over short baselines. Their results reveal a
sub-centimeter precision level, especially if the low-cost receiver is accompanied by a high-
end antenna. On behalf of a tight positional dilution of precision (PDOP) constraint, the
resulting ambiguity success rate of the low-cost GNSS system is comparable (almost 100%)
to that of high-end receivers. Similar performance is achievable over a longer baseline (up
to 9 km) if slant ionospheric delays are effectively modeled.

Several experimental studies have been carried out for the investigation of the preci-
sion and monitoring capability of low-cost single frequency GNSS systems of low-frequency
landslide processes at a 1 Hz rate ([20,21]). The results show again that the noise level of
such affordable systems situate within sub-centimeter level in the horizontal component
and exceed 1 cm in the vertical direction. Furthermore, on behalf of classic differential
positioning and statistical testing and the network Real Time Kinematic (NRTK) positioning
method [22], manually induced permanent displacements were accurately recovered. Since
the damaging impact of landslides exceed by far the centimeter level, both studies ([20,21])
highlight satisfactory results for landslide monitoring.

Manzini et al. [23] performed an extensive performance analysis on different GNSS an-
tennae coupled with various low-cost single frequency receivers, to examine their potential
for the SHM of civil engineering structures at a 1 Hz rate. Based on Post-Processing Kine-
matic (PPK) differential positioning, they show that a USD 350 low-cost single frequency
GNSS system is capable of retrieving sub-centimeter horizontal displacements, centimetric
vertical displacements and oscillations with frequencies up to 0.25 Hz exceeding 1 cm in
amplitude, being more than enough for the monitoring of slender structures.

More recently, Hamza et al. [24] evaluated the precision performance of a low-cost
dual frequency GNSS system by studying the variability in the 1 Hz rate CP residuals time
series of two short baseline setups equipped with a low-cost and high-end GNSS sensor at
the reference station location. The resulting residual statistics assess the horizontal noise
level (σ̂) of the differential GNSS system with about ±2 mm in case of both baseline setups
and the vertical noise level with ±3 mm over the low-cost baseline and ±4.2 mm over
the high-end baseline. It is noteworthy that the low-cost baseline setup performed better
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in the vertical plane due to the elimination of the antenna phase center offset (PCO) and
variations (PCV) produced by the uncalibrated but identical low-cost GNSS antennae. The
authors attest that by controlled horizontal displacement induction and statistical testing,
both setups can effectively detect horizontal displacements larger than 1 cm.

Since all the aforementioned studies examine the precision and deformation monitor-
ing potential of low-cost GNSS instruments at a 1 Hz rate at most, their performance at
higher rates (>1 Hz) is of much interest. Therefore, the questions to be answered in this con-
tribution read as follows: “Are high-rate smartphone accelerometers and low-cost dual frequency
GNSS receivers sufficiently precise to support deformation monitoring? Can a dynamic deformation
monitoring process run with low-cost GNSS sensors benefit from smartphone-based validation?”

Hence, this study addresses the empirical precision evaluation of a high-rate smart-
phone accelerometer and low-cost dual frequency GNSS receiver pair to support deforma-
tion monitoring applications. Furthermore, this study assesses a possible correlation in the
high-rate observation time series, as a large positive correlation means that precision-wise,
the information content of all of the observation time series as a whole is less than without
any correlation.

For this purpose, we use a methodology to assess the mathematical observation
model, for the empirical precision quantification, instrumental noise characterization
and time (auto)correlation assessment of each sensor. Secondly, a double integration
method is applied on data of an artificial SHM experiment run on a cantilever beam to
validate the capability of the high-rate GNSS sensor of measuring moderate dynamic
(beam) displacements in frequency.

The rest of this paper is structured as follows: Section 2 describes the experimental
setup, needed materials and methodology for the evaluation of the mathematical observa-
tion models of both sensors. Section 3 presents the smartphone accelerometer and GNSS
results in terms of empirical precision and time correlation performance. Furthermore, the
construction, application and effectiveness of a GPS-only baseline based multipath (MP)
correction is discussed. Finally, the GNSS based cantilever beam vibrations are validated
against those observed by the accelerometer. Section 4 gives recommendations for the de-
ployment of these sensors for precise deformation analyses. Final conclusions and answers
to the research questions are given.

2. Materials and Methods

In this section, we describe our experiments, together with the mathematical model
assessment methodology for the quality assessment of the two low-cost sensors.

2.1. Experimental Setup, Data Acquisition and Processing

To be able to measure and validate the response of a cantilever beam (CB) to wind
load, a specific experiment named as the ‘Cantilever Beam’ experiment was set up. For this,
an integrated SHM sensor network was developed consisting of a low-cost dual frequency
differential GNSS system comprising identical dual frequency GNSS equipment at both
baseline ends, a smartphone accelerometer and a weather station with an anemometer.
The ensemble of sensors was installed in a rather clean environment regarding near-field
effects and MP, in an open field near the town of Breda (ϕ = 51.6◦ north, λ = 4.7◦ east), the
Netherlands, as seen in panel (a) of Figure 2. The primary sensors of the system were the
smartphone accelerometer and the differential GNSS system. These recorded observations
at a high rate (50 Hz for the smartphone accelerometer and 5 Hz for the GNSS) over four
days from the 16 March until 20 March 2020. Each day is referred by their day-of-year
(DOY): 076, 077, 078, 079 and 080 (The used (5 Hz) GNSS baseline estimate (.pos) files of
day 077, 078 and 079, the MATLAB (.mat) data files consisting of the (50 Hz) steady MI and
(50 Hz) AID experiment acceleration records were showed in Supplementary Materials).
Based on the recorded meteorological information, day 079 is attested as a day with very
little wind when the rover antenna position was hardly influenced by any CB vibrations,
making it perfect for the precision and time correlation analysis.
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Figure 2. Instrument setup and test site of the ’Cantilever Beam’ experiment: (a) Overview of the instrument configuration
viewed towards west. (b) Rover station sensors alignment at the beam’s top: low-cost GNSS antenna on top with a small
metal disc ground plane and smartphone together with plastic cover protection below. The XYZ coordinate system in red
coincides with the cardinal East-North-Up (ENU). We will restrict ourselves to the ENU notation in the following.

A second SHM experiment, named as the ‘Artificially Induced Displacement’ (AID)
experiment, was performed on 11 June 2021 at the Delft University of Technology campus
(ϕ = 52.0◦ north, λ = 4.4◦ east). A similar instrumental setup was used as with the CB
experiment, excluding the weather station. The sensors recorded observations at a high-rate
for about an hour and 20 min starting from 16:14:09 UTC. During this period, vibrations of
the beam were initiated multiple times by pulling the beam to one side along the X (weak)
axis using a rope and releasing it free to vibrate until rest.

On 5 July 2021, we collected a seven-hour-long set of acceleration observations starting
from 00:19:37 UTC. This data set is denoted as the steady MI data set (MI is short for XiaoMI,
the brand of the used smartphone with the Bosch BMI160 accelerometer). In this case,
the smartphone was installed indoor on a horizontal leveled surface (table) at rest and
continuously recorded acceleration observations at 50 Hz, being permanently connected to
the local cellular network. The data set was influenced by a constant drift of the smartphone
clock, which we correct for in Section 3.1.2. A preliminary calibration for assessing the non-
orthogonality of the measuring axes was not conducted since our purpose is to perform
an empirical analysis of the smartphone precision at measurement level. Omitting such
a calibration does not affect our findings since systematic effects can be taken care of by
a least squares (LS) polynomial removal approach (see Figure A1), leaving us with the
measurement noise for further assessment.

The recorded steady MI acceleration observations and GNSS baseline solution data
set from the fourth day (079) of the CB experiment allow us to empirically demonstrate the
precision performance and assess the time correlation in the observations. The AID data
were collected with the purpose of validating the capability of the low-cost GNSS sensor
for capturing fast vibrations of the CB due to man-induced displacements.

Table 1 summarizes the common characteristics and modes in which the accelerometer
and GNSS sensors operated during the CB, AID and steady MI experiment.

Regarding the data processing procedures, the raw smartphone accelerometer data
are used without applying any processing algorithm. On the other hand, the GNSS mea-
surement data are processed in PPK mode to output baseline solutions every 0.2 s (5 Hz).
The processing configuration of RTKLIB’s software package [25] application program (AP),
RTKNAVI, can be found in Table 2. For more information about the experiment, sensor
installation, sensor use and data processing, please refer to [26].
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Table 1. Instrumental characteristics and modes of primary sensors in CB, Artificially Induced Displacement (AID) and
steady MI experiment.

Sensors GNSS Accelerometer

Model u-blox ZED-F9P + ANN-MB-00 Bosch BMI160 IMU, Xiaomi MI9 SE
Sensor Multi-band GNSS receiver + antenna Digital triaxial accelerometer and gyroscope

Size [mm] 17 × 22 × 2.4 + 60 × 82 × 22.5 2.5 × 3 × 0.8
Satellite constellations GPS -

Power consumption [W] 0.204 + 0.075 = 0.279 0.648
Operational mode PPK ±8 g

Operational sampling rate [Hz] 5 50
Price [EUR] 229 4.49 chip, 420 smartphone integrated

Table 2. RTKNAVI processing configurations—PPK processing.

Setting Option

Positioning Mode Kinematic
Satellite constellations GPS

Frequencies/Filter Type L1+L2/Forward
Min Ratio to Fix Ambiguities 3

Elevation Mask [◦] 15
Integer Ambiguity Resolution Continuous

Output-Solution Format E(X)/ N(Y)/ U(Z)-Baseline

2.2. Methodology

In the context of an estimation problem, the mathematical model represents a real
world idealization describing the observables of the studied physical phenomenon, in
our case, the steady state of a cantilever beam. Any displacement/deviation from this is
interpreted as deformation.

A mathematical model consists of two parts (see Figure 3): a functional (FM) and
stochastic model (SM). The FM relates the expectation of the observables (y) to the un-
known parameters of interest (x) subject of estimation, while the SM describes the qual-
ity of the observables through the observables’ variance–covariance matrix (Qyy), their
noise characteristics through the auto-correlation sequence (ρ(τ)) and possibly the observ-
ables distribution.

The two key steps for assessing a mathematical model are as follows:
• FM assessment—checking for the validity of the FM and unbiasedness of the observables;
• SM assessment—quality/precision assessment of the observables (in two steps):

– evaluation of the (empirical) precision (σ̂) of the observables: straight-out of box
(σ̂a, σ̂x̂) and their noise level (σ̂ê);

– evaluation of observables (auto)correlation period (tρ(τ)).
An illustration of the followed procedure for the assessment of the FM and SM of each

sensor is presented in the second half of Figure 3 (see green and yellow panel).
The FM assessment is checking if the recorded acceleration observations (of the steady

MI data set) and the sidereal East-North-Up (ENU) baseline estimates (of day 079) are
fluctuating around their zero-mean and (true) mean value in the absence of any systematic
bias or outlier.

On behalf of a valid FM, the SM can be then assessed to empirically describe the
quality of the accelerometer and GNSS sensor. For this, the straight-out-of-box empirical
precision of the acceleration and baseline observations is computed first. This precision
estimate can incorrectly characterize the instrumental noise level by not accounting for
erroneous effects acting as random measurement noise (such as far field background noise
for the accelerometer and MP for the GNSS sensor). Hence, such erroneous effects are
indirectly modeled and removed via an LS polynomial as to leave just random noise
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and correctly characterize the empirical precision of the two sensors. Next, a histogram
gives a first impression on the statistical distribution of the observations. Finally, the
presence of time correlation in the observation records is assessed by means of the empirical
(auto)correlation function.
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Figure 3. Methodology for mathematical model assessment: For both sensors, the procedure for
(green) functional and (yellow) stochastic model assessment is illustrated. For explanation of the
mathematical notations, please refer to the abbreviations panel at the end of this document.

3. Results and Discussion

In this section, we present our FM and SM assessment results for the smartphone
accelerometer and low-cost GNSS sensor. The results are discussed sensor-wise to draw
conclusions on each sensor’s quality and suitability for deformation monitoring. Finally,
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the effectiveness of a high-rate baseline based MP correction is demonstrated, and a
smartphone based validation approach for efficacious dynamic deformation monitoring is
discussed and demonstrated as well.

3.1. Smartphone Accelerometer Results
3.1.1. FM Assessment Results

With the smartphone accelerometer, the FM is constructed based on the assumption
that a horizontally leveled accelerometer at rest should record (unbiased) zero average
horizontal accelerations. In such a case, the recorded vertical acceleration samples are
expected to be systematically influenced by the Earth’s gravitational acceleration, which
needs to be subtracted from the records to output a zero-mean value. Taking into account
that the mean values in the horizontal and vertical components in Figure A1 are marginally
influenced by correctable far field background noise, minor linear offset errors and the
Earth’s gravitational acceleration, our assumption on the validity of the FM can be accepted.

3.1.2. SM Assessment Results

The straight-out-of-box precision of the accelerometer is characterized by the ENU
empirical standard deviation values (σ̂a) of a four-hour-long sequence of the steady MI
acceleration data set of ±13.6, 8.1 and 9.9 mm

s2 . Upon the subtraction of the black LS
polynomial fit from the steady MI data set sequence (see Figure A1), the empirical precision
of the smartphone accelerometer is characterized by the sample standard deviation values
of the resulting ENU instrumental noise time series (σ̂ê) in Figure 4 equal to ±8.0, 8.1 and
9.7 mm

s2 . The LS polynomial worked as a correction for the linear offset and instrumental
drift. Noteworthy is that after the LS polynomial subtraction, only the East empirical
standard deviation value shows a considerable improvement with respect to the initial
straight-out of box standard deviation value. Both the North and Up standard deviation
values are similar to the straight-out of box standard deviation values. This is because
the two data series were not influenced by any instrumental drift and the polynomial
removing approach did not have anything to correct for, keeping the spread in the noise
level of the accelerometer identical. Nevertheless, we decided to implement the polynomial
removing procedure in each component to illustrate the general approach in accordance
with Figure 3. Panel (a) of Figure 5 concludes a precision improvement of 41% in the East
component and 2% in the Up component.

The aforementioned empirical precision values are comparable with the specified
formal precision of 8.8 mm

s2 resulting from Equation (1). The specified formal precision
value is a measure of the variability in the noise level (e) of the accelerometer operating at a
sampling frequency ( f ) of 50 Hz based on a predefined spectral noise parameter (nA,nd) of
180µg

Hz . The spectral noise parameter value is defined based on in-lab calibration campaigns
performed at a fixed temperature of 25 ◦C [4]:

e =

√
f
2
∗ nA,nd ∗ 10−6 ∗ 9.81 (1)

Excluding the straight-out-of-box value of 13.6 mm
s2 , deviations between the formal and

empirical precision values are visible only in the Up component (see panel (a) of Figure 5),
where the empirical values are approximately 10% poorer.
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Figure 4. Smartphone accelerometer empirical noise (ê) analysis: (a) East, (b) North and (c) Up noise level of a four-hour-
long sequence (after initiation) from the steady MI acceleration time series. Resulting ENU instrumental noise time series
show a variability (σ̂) of ±8.0, 8.1 and 9.7 mm

s2 , respectively.

A preliminary inspection of the distribution of the noise sequences of the steady MI
acceleration observations is considered. This is done by visually inspecting whether the
(ENU) relative frequency histograms follow the bell shaped curve of the normal distribu-
tion’s probability density function (PDF). The visual check represents a first step in making
a statement about the distribution of the observables. Results are shown in the top panel
of Figure A3 in Appendix A. Little deviation between the histograms and the bell curves
in the North (X) component is identified. There is no strong evidence against the normal
distribution being a fair model for the steady MI acceleration observations, validating the
foregoing principles behind the FM assessment and the empirical precision analysis.

Lastly, an (auto)correlation analysis is performed on a one-hour sequence of the steady
MI data set to assess the time correlation in the observations. In the correlogram from
the top panel of Figure 6, the (auto)correlation sequence (ρ(τ)) of the East noise sequence
depicts an (auto)correlation period (tρ(τ)) of 62 s. This reads as such since the behavior of
the auto-correlation sequence converges to the 95% confidence interval of a purely white
noise (AR0) process, settling after 3078 epochs and fluctuating very close to the upper limit
of its confidence interval but without crossing it. For the North and Up components, the
auto-correlation sequences cross and settle in the 95% confidence interval of an AR0 process
after 550 and 137 epochs, respectively, corresponding to only 11 and 3 s of time correlation,
respectively. The identified trace of (auto)correlation in the East component cannot be fully
explained while the mild traces of correlation of the other two components are caused
by the LS polynomial removing approach. These results are remarkable and affirm that
a simple smartphone accelerometer is ready to output precise and nearly uncorrelated
acceleration observations straight out of the box, giving access to any smartphone user for
deliberate deformation monitoring.
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a b

Figure 5. ENU precision results: (a) Smartphone accelerometer results indicate comparable precision relative to the specified
formal precision value. The East straight-out-of-the-box precision is an exception due to accumulated drift error. Minor
traces of precision degradation are visible in the Up component. Note that the formal precision value is derived based on
a spectral noise parameter (nA,nd) of 180 derived in specific laboratory conditions at a constant temperature of 25 ◦C [4].
(b) GNSS system-results show considerable discrepancies (precision ‘improvement’) between the straight-out-of-box and
instrumental precision upon implementation of a GPS-only least squares (LS) -based MP correction.

Figure 6. East (auto)correlation analysis: (a) Smartphone accelerometer—correlogram of random noise sequence converges
close to the 95% confidence interval of an AR0 process, settling after 3078 samples and fluctuating close to its upper
limit, corresponding to a correlation period of 62 s. The North and Up components show almost no time correlation,
with correlation periods of 5 and 1 s, respectively. (b) GNSS system—red correlogram of random noise sequence enters
into the 95% confidence interval of an AR0 process after approximately 349 samples followed by still some fluctuations.
This corresponds to an (auto)correlation period of 69.8 s. The thin black correlogram is derived from the noise sequence
(uncorrected for MP) resulting from the subtraction of the mean baseline value from the East baseline time series. The
difference in time correlation between the two auto-correlation sequences attests to the reduction in MP on behalf of
the LS polynomial subtraction. For the GNSS instrument, the North and Up components show similar behavior. Both
(auto)correlation functions are plotted up to a lag at maximum equal to 1

10 of the length of the selected one hour sequences.
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3.2. Dual Frequency GNSS Results
3.2.1. FM Assessment Results

For a static differential GNSS system with identical antennae at both baseline ends
installed at similar heights, and particularly for a short baseline, the already well-known
double-difference (DD) positioning model [10] can be assumed as a valid FM.

In this section, the sidereal ENU baseline time series of day 079 are used as observa-
tions. This is supported by the fact that day 079 is the only day of the CB experiment with
very little wind and hence negligible impact on the baseline estimates. The results from
Figure 7 indicate the zero-mean values of the instrumental noise attesting the unbiased, av-
erage static state of the rover and reference stations. However, a small deviation from zero
is identified in the mean value of the estimated Up noise sequence. The estimated mean
value of −0.1 mm situates below the noise level of any GNSS instrument, being negligible.

3.2.2. SM Assessment Results

The straight-out of box precision of the GNSS system is characterized in Figure A2 of
Appendix A by the (ENU) empirical standard deviation values (σ̂x̂) of the baseline time
series equal to: ±3.7, 5.5 and 11.7 mm. Since the SM assessment is set to be deployed
on the baseline time series of day 079, the observed harmonic variations in Figure A2
are likely caused by MP effects ([2,8]), which show up as time-correlated ’noise’ in the
baseline estimates. The MP was (most likely) produced by the other instruments of the
CB experiment surrounding the differential GNSS setup, the reflective property of the
grassy field and the heights at which the GNSS antennae were installed. Hence, we likely
incorrectly estimated the instrumental precision straight out of the box. In attempt to
determine the instrumental noise level, we indirectly model the MP behavior by fitting
hourly LS polynomials ([26,27]) through the baseline time series. The resulting hourly
LS polynomial curves are glued together to define a high-rate, GPS-only, LS-based MP
correction depicted by the black lines in Figure A2. The principle behind this correction
relies on the ground track repeat cycle of the GPS constellation ([28,29]) of 23 h 56 min
and 4 s. Hence, the black LS polynomial curves model the harmonic, time-varying but
repeatable behavior of MP at the rover and reference station sites in 3D. Finally, these
curves are subtracted component wise from the original baseline time series defining
the (ENU) noise level time series from Figure 7, subject to the SM assessment. Upon
subtraction, the empirical precision of the GNSS rover system in the East, North and Up
components reaches ±2.6, 3.6 and 6.7 mm, respectively. Precision ’improvements’ relative
to the straight-out-of-the-box precision of 30, 35 and 43% are observed (see panel (b) of
Figure 5), indicating how one initially can incorrectly determine the instrumental precision
from primary baseline estimates.

Subtracting the LS polynomial correction from the baseline time series of its origin is
deemed insufficient for attesting the ground track repeatability property behind the MP
correction. Furthermore, upon subtraction a certain degree of time correlation still stays in
the noise sequence. This is elaborated in the following.

Following the outline of the precision performance analysis of the smartphone ac-
celerometer in Figure 5, the empirical precision results are set side by side with the specified
formal precision of 10 mm + 1 ppm. The formal precision was derived on behalf of multiple
RTK measurement campaigns run over a one kilometer baseline with two identical patch
antennae equipped with ground planes [12]. The observed variability in the noise level is
here derived over a 15 m long baseline and indicates better precision relative to the formal
value declared by the manufacturer. However, the empirical results should be treated as
informative, highlighting the precision potential that can be reached over short baselines
providing full sky visibility. The results show an exceptional precision potential of the
GNSS module facilitating the monitoring of local deformation processes, such as landslide
and SHM.

A preliminary inspection of the distribution of the noise sequences of the GNSS
observations is performed (see bottom panel of Figure A3 in Appendix A). Based on
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the similarity between the shape of the derived relative frequency histograms and their
corresponding normal PDF curves, one may tentatively assume that the normal distribution
is a fair model for the CB experiment data set.

Figure 7. GNSS empirical noise (ê) analysis: (a) East, (b) North and (c) Up noise level of the baseline time series after LS
polynomial subtraction. Resulting ENU instrumental noise time series show variabilities (σ̂ê) of ±2.6, 3.6 and 6.7 mm,
respectively. The gaps in data correspond to filtered out samples derived from float baseline solutions (rather than solutions
with fixed ambiguity). Note the sidereal period of the time scale on the horizontal axis. The start and end point correspond
to 18 March 2020 23:52:08 UTC and 19 March 2020 23:48:12 UTC, respectively, but for simplicity, they are plotted as 00:00:00
and 23:56:04 UTC on 19 March 2020.

In the correlogram from the bottom panel of Figure 6, the red (auto)correlation se-
quence of a one-hour-long East noise sequence shows evident traces of (auto)correlation
in the East baseline estimates, even after MP reduction. Such behavior is expected for
sampling frequencies larger than the bandwidth of the phase-locked loop (PLL) mechanism
(typically in the range of 5–15 Hz) of a GNSS receiver [10]. Knowing that the selected
sampling frequency of 5 Hz is of similar order as the bandwidth of the receiver’s PLL,
the identified time correlation cannot be explained by this certainty. The auto-correlation
sequence firstly crosses the 95% confidence interval of an AR0 process after 349 samples,
corresponding to an (auto)correlation period of 69.8 s. Surprisingly, its behavior does not
settle within the black dashed 95% confidence interval in the bottom panel of Figure 6.
Similar (auto)correlation period results of 117.4 and 45 s are obtained in the North and
Up baseline components, respectively. The observed behavior and long (auto)correlation
periods can be (likely) attributed to the LS polynomial removing approach and to the
remaining MP post subtraction.

Figure 8 highlights the considerable traces of (auto)correlation in the (ENU) base-
line estimates in contrast to the mild trace of (auto)correlation in the acceleration records.
For each sensor, part of the time correlation is induced by the LS polynomial remov-
ing approach. However, in the case of the GNSS system, a large part of the identified
(auto)correlation periods of 69.8, 117.4 and 45 s can be attributed to the incapability of
the LS polynomial approach for substantially reducing MP. Therefore, a discussion on the
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effectiveness of a baseline-based GPS-only MP correction at reducing MP is presented in
Section 3.3.
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Figure 8. Comparison of correlation times in East, North and Up direction: The GNSS sensor
shows an expected trace of correlation in all three components (due to LS polynomial removing
and remaining MP), while the smartphone accelerometer shows mild traces of correlation; the East
component is an exception to this, giving time correlation of up to 62 s for a (yet) unknown reason.

3.3. Effectiveness of MP Corrections for Precise Deformation Monitoring

In Section 3.2.2, an LS polynomial MP correction is applied on a high-rate baseline time
series. This is insufficient to demonstrate the sidereal ground track repeatability property.
In this section, we first compare the MP reduction effectiveness of the LS polynomial
correction (x̂p) with a high-rate baseline-based correction (x̂m) using the baseline time
series of day 079. Recall that both corrections rely on a static/permanent set-up of the
GNSS receivers, hence they are useful for permanent (deformation) monitoring and not for
kinematic applications such as automated driving. This is achieved by subtracting both
corrections from a six-hour-long fragment of the baseline times series of day 078 (x̂), the
second day of the CB experiment, and comparing the results. The baseline time series
fragment of day 078 spans from 00:00 to 06:00 UTC, when only a little wind was blowing
along the narrow side of the CB producing minor impact to its static state. The two MP
corrections and the data are aligned using the underlying sidereal time scale of the first day
(077) of the CB experiment and assuming the repeatability of the GPS constellation. The
resulting ENU noise time series from Figures A4 and A5 of Appendix A show a random
behavior freed from harmonic MP behavior, attesting to the proper functioning of each
MP correction at first sight. When carefully comparing the two noise time series, the
baseline-based noise band in Figure A5 shows even less sinusoidal behavior and looks
even more random. Furthermore, the (ENU) empirical precision (σ̂) of 1.9, 2.7 and 5.3 mm
from the baseline based subtraction process is better (smaller) than the empirical precision
of 2.3, 3.1 and 6.5 mm resulting from the LS polynomial subtraction process, concluding its
higher effectiveness in reducing MP.

Secondly, to quantify the effectiveness of the baseline-based MP correction, the empir-
ical standard deviations of the baseline based noise time series (σ̂ê) are compared with the
a-posterior formal values (σê) resulting from the variance propagation law in Equation (2).
With this variance propagation analysis, we take into account that the baseline-based MP
correction (x̂m) was defined from the data of another day (in this case, the next day, 079),
and hence assume that the two time series are uncorrelated. Additionally, an MP reduction
factor [27] is computed in Equation (3) by comparing the empirical standard deviations of
the baseline-based noise time series with the ones of the MP-affected baseline time series
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(σ̂x̂). This process is run over the six-hour fragment of day 078. The results are summarized
in Table 3.

Table 3. Baseline-based MP correction effectiveness on day 078.

day 078

Measure East North Up

σ̂x̂ [mm] 3.1 4.8 10.6
σ̂x̂m [mm] 3.1 4.9 10.7
σ̂ê [mm] 1.9 2.7 5.3
σê [mm] 4.4 6.9 15.1

MP reduction [%] 39 44 50

When comparing the third and the fourth row component-wise, it is evident that the
estimated empirical standard deviations of the baseline based corrected noise sequences are
smaller than the expected formal standard deviation values from the variance propagation
law. The variance propagation law ‘falsely treats’ the MP effect as random noise, which
in fact is partially behaving also as a deterministic time varying bias [10], resulting in
overestimated formal standard deviations. Thus, the reduction in the variability of the
empirical results is an indication that the baseline-based MP correction was successful. The
MP reduction values on the last row of Table 3 show that. for day 078, the MP correction
was most efficient in the Up component by mitigating 50% of the inherent MP.

σê =
√

σ̂2
x̂ + σ̂2

x̂m
(2)

MP reduction =

(
1− σ̂ê

σ̂x̂

)
∗ 100 [%] (3)

The conclusion of the aforementioned comparison and the resulting MP reduction
factors demonstrate the effectiveness of the GPS-only baseline based MP correction for
performing more precise deformation campaigns over short baselines by correctly deriving
the (empirical) precision potential of GNSS sensors. We demonstrate the use of such a
simple MP correction developed to effectively work at a high sampling frequency of 5 Hz,
making it accessible for more dynamic (GNSS-based) deformation monitoring. In the
future, such corrections can be derived for multi-GNSS constellations over longer ground
track repeat cycles.

3.4. Smartphone-Based Validation for Effective Dynamic Deformation Monitoring

After demonstrating the precision and feasibility of a smartphone accelerometer and
low-cost dual frequency GNSS system, we validated the capability of the high-rate (5 Hz)
GNSS system for measuring vibrations by using the accelerometer data.

The reverse transformation algorithm [8] was applied to derive displacements (x̃)
from the acceleration measurements and validate the dynamic response captured by the
GNSS sensor (x̂). The workflow of this double integration algorithm is illustrated in panel
(b) of Figure A6 and discussed in [8,26]. For our analysis, we choose a time period of 100 s
(18:11:49–18:13:30 UTC) from the AID experiment. In Figure A7, the accelerometer- and
GNSS-based dynamic displacement time series are plotted one on top of the other. The
dynamic displacements match well in amplitude, being slightly larger for the high-rate
(50 Hz) accelerometer. Looking at the horizontal axis, the internal quartz clock of the
smartphone seems to run ahead of the more accurate GNSS receiver clock. This was
expected knowing that the tolerance and stability of crystal oscillators is mainly depen-
dent on manufacturing imperfections and environmental conditions (pressure, voltage or
temperature changes) [30]. Hence, the smartphone clock drift was estimated to align the
two displacement time series. For this, an empirical approach was taken, computing the
drift between each pair of positive smartphone and GNSS-based vibration peaks and the
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elapsed time difference without synchronization of the smartphone based peaks. A (nearly)
linear behavior of the smartphone clock drift was found with a rather poor clock stability
of 0.01 s

s . This indicates that the smartphone clock drifts by 1 s every 100 s, making the
two instruments not sample at the same time anymore already shortly after initiation. By
accounting for the clock drift and offset, we align the responses of the two sensors and in
particular consider one ’pull’ of the beam at 18:11:48 UTC. Panel (a) of Figure 9 shows a
good match in amplitude and phase of the two filtered displacement time series, attesting
to the capability of the low-cost GNSS receiver for dynamic deformation monitoring. How-
ever, we do not take into account on any methods for reducing the transient response of
the low- and high-pass elliptical IIR filters. Hence, the filtered displacement time series
(x̃ and x̂) in Figure 9 are misleadingly warming up instead of showing a sudden jump to
the maximum displacement produced by the ’pull’. Furthermore, the 1% discrepancy in
the natural frequency from panel (b) results from the fact that the accelerometer time was
not corrected for in the spectral analysis. Neglecting this, both sensors can output correct
information about the structure’s natural frequency based on a Fast Fourier transform (FFT)
analysis of the dynamic displacement data.

The reverse transformation algorithm serves as a useful validation method in dynamic
deformation monitoring. This method can be very effective for post-processing deformation
monitoring applications if the (smartphone) accelerometers are precisely time synced.
Due to its dependency on filter designing and fine tuning, real-time monitoring is still a
challenge. Its real-time applicability remains to be investigated in the future.

Figure 9. AID experiment results: (a) Zoom-in into Figure A7. Overlap of dynamic displacements. Smartphone accelerome-
ter time series was shifted by 47.93 s to the right. Additionally, from the beginning of vibrations, the time series was shifted
by 0.01 s

s to the right to compensate for the smartphone oscillator in stability. The good match in amplitude and phase
attests the capability of the low-cost GNSS instrument of dynamic deformation monitoring. Note the warming up effect of
both displacement time series produced by the transient response of the IIR filtering process. Instead of this, a sudden ’pull’
to maximum was expected. (b) Natural frequency match without prior time correction. The identified natural frequency of
the CB is of 1.36 Hz.
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4. Recommendations and Conclusions

In the following, recommendations are outlined sensor-wise for the installation, ef-
ficient use and data analysis procedures in order to achieve a similar precision level to
the presented results. Furthermore, important limitations from the CB experiment are
highlighted to help users not repeat the same mistakes, giving a good and fair impression
of the sensor’s operational feasibility. Based on the obtained results, a final conclusion
on the sensor’s quality and suitability for dynamic deformation monitoring is expressed,
answering the research questions.

4.1. Recommendations

Regarding the installation and efficient use of the smartphone accelerometer, we
recommend to have the sensor always connected to the local cellular network or a GPS
service in order to avoid time keeping errors that can cause fragmentation and missampling
in the accelerometer data.

In the case of the GNSS sensor, in order to reach a high level of precision it is advisable
to use identical antennae at both baseline ends to mitigate any antenna phase center (PC)
errors. Otherwise, the rover antenna needs to be calibrated [31] by modeling its PCO
and PCVs relative to the reference station. Furthermore, metallic ground planes for MP
mitigation should be present along with the patch antennae in the differential GNSS
setup. A high-precision performance may not be achievable for baseline lengths larger
than 20 km (due to differential atmospheric delay errors ([18,19])) and for differential
GNSS configurations surrounded by many high-reflective obstacles, in accordance with the
technical specifications of the GNSS module [12]. Further research is required to assess the
effectiveness of low-cost dual frequency GNSS sensors for deformation monitoring over
large areas.

To practically limit time correlation in the baseline solution, we recommend setting up
the low-cost GNSS sensor at sampling frequencies below the upper limit of the receiver
PLL of typically 15 Hz [10].

Due to the limited length of the CB experiment (of four days) and the wind influence
on the static state of the CB, we could define only a six hour MP correction based on
the satellite ground track repeatability property using only GPS baseline observations. A
multi-GNSS differential positioning approach ([18,19]) would further improve the pre-
cision, representing the next step to be considered. This goes hand in hand with the
possibility of defining a multi-GNSS baseline-based MP correction over longer ground
track repeat cycles.

Related to the post-processing MP techniques, we show that the baseline based [26]
MP correction is more effective in mitigating MP than the LS polynomial-based correction.
Regardless which of the two corrections, they come with the price of introducing some
time correlation after application. In case of using an MP correction relaying on the ground
track repeatability of the GPS constellation, a procedure for checking the repeatability of
satellites and their geometry is desirable and should be addressed for deciding when to
apply the correction. The first steps in this have been taken and documented in [26]. As a
workaround, an elevation weighting approach has been documented in [18] to work at the
code and CP levels.

Next to the steady MI experiment, the experiment was repeated several times with
similar results for the smartphone accelerometer precision. Similar results were obtained
after running an independent SM assessment using a different smartphone accelerometer.
The precision results of the differential GNSS system fully rely on the long-enough sidereal
CB experiment data. The effectiveness of the two instruments for dynamic deformation
monitoring is supported by results from two SHM experiments.

4.2. Conclusions

It is incontestable that the sensor market has started to offer very cost-effective solu-
tions for deformation monitoring. In the need of evaluating their performance, this paper
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empirically assessed the precision and operational feasibility of two promising and afford-
able sensor solutions for dynamic deformation monitoring set to operate at a high rate (50
and 5 Hz, respectively). The results show that both the smartphone accelerometer and
the low-cost GNSS rover are able to output 3D acceleration and displacement information
with mm

s2 and mm precision, respectively, at high rates, being more than sufficient for the
monitoring of dynamic and quasi-static displacements.

The smartphone accelerometer produces valuable 3D vibration information with em-
pirical (ENU) precisions (σ̂) of ±7.7, 8.1 and 9.6 mm

s2 and almost inexistent time correlations
of a few tens of seconds. The East component is an exception to this, giving slightly larger
time correlations of up to 62 s for a (yet) unknown reason. However, the derived precision
values are comparable with the declared formal precision (σ) of ±8.8 mm

s2 .
The dual frequency GNSS receiver outputs (ENU) displacement values with an em-

pirical (ENU) precision (σ̂) of ±3.7, 5.5 and 11.7 mm straight out of the box. The precision
results are derived from a 15 meter baseline experiment. As expected, these values are
smaller than the declared formal precision of ±0.1 m + 1 ppm since the later one was
derived based on a tedious RTK calibration campaign run over a longer (one kilome-
ter) baseline.

Furthermore, we show that if one tries to empirically asses the variation in the GNSS
baseline position time series straight out of the box, one can incorrectly determine the
precision of the GNSS sensor arriving at a too large standard deviation value. This reads as
such since low-cost GNSS sensors, and effectively the baseline estimates, can be influenced
by inherent multipaths. Therefore, we propose a high-rate (5 Hz), GPS-only, baseline-
based MP correction to correctly determine the precision of the position time series of
±2.6, 3.6 and 6.7 mm. These new precision values are 30, 35 and 43% smaller than the
straight-out-of-the-box precision values. However, the MP signal itself, when still present
post-correction, may also cause a time correlation of typically tens of seconds. Lastly, a
double integration method is applied on data from an artificial SHM experiment run on
a cantilever beam to validate the capability of the high-rate GNSS sensor for measuring
moderate dynamic (beam) displacements. Moreover, this method attests to the capability
of both low-cost sensors to output precise frequency domain information by identifying
the same natural frequency (1.36 Hz) of the cantilever beam. Hence, we conclude that the
reverse transformation method serves as a useful smartphone-based validation method
that can support GNSS-based dynamic deformation monitoring.

On behalf of the results, these sensors can be considered as affordable and precise
options for regional landslide and SHM.
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acceleration records.
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Abbreviations
The following abbreviations and mathematical notations are used in this manuscript:

AP Application Program
AID Artificially Induced Displacement
CP Carrier Phase
DD Double-Difference
DOY Day-Of-Year
EEW Earthquake Early Warning
ENU East-North-Up
FFT Fast Fourier Transform
GNSS Global Navigation Satellite System
LS Least Squares
MDPI Multidisciplinary Digital Publishing Institute
MEMS Micro Electro-Mechanical System
MP MultiPath
NRTK Network Real Time Kinematic
PC Phase Center
PCO Phase Center Offset
PCV Phase Center Variations
PPK Post-Processing Kinematic
PDOP Positional Dilution of Precision
RTK Real-Time Kinematic

Mathematical symbols and notations
ϕ geographic latitude [◦]
λ geographic longitude [◦]
N number of samples
A design matrix
y vector of random observables
x vector of unknown parameters
E{ }, D{ } expectation and dispersion operator
σ̂, σ empirical and formal standard deviation
τ lag [s]
ρ(τ) (auto)correlation sequence as a function of time lag
t time series duration/period [s]
tρ(τ) (auto)correlation period [s]
Qaa,yy variance-covariance matrix of accelerometer (aa) and GNSS (yy) observables
f (sampling) frequency [Hz]
nA,nd spectral noise parameter [ µg

Hz ]
Qx̂x̂ variance-covariance matrix of estimators for unknown parameters
|P1( f )| single-side amplitude spectrum
x̂ GNSS based displacement estimates [m]
x̂p LS polynomial displacement estimates [m]
a acceleration observations [ m

s2 ]
âp LS polynomial acceleration estimates [m]
e formal measurement errors [ m

s2 ; m]
ê empirical measurement residuals [ m

s2 ; m]
x̃ derived accelerometer based (dynamic) displacements [m]
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Appendix A

Figure A1. (a) East, (b) North and (c) Up smartphone accelerometer LS polynomial fitting: The process was run on the
four-hour-long steady MI acceleration time series (a) in order to define the noise level (ê) from Figure 4. The East component
in (a) is influenced by a linear drift error.

Figure A2. Definition of LS based MP correction (x̂p): The process was run on one-hour-long sequences of the baseline
time series (x̂) of day 079 to model the MP behaviour at reference and rover station site. The resulting one-hour-long LS
polynomial sequences were merged together to form high-rate (5 Hz) GPS-only MP corrections (black) in (a) East, (b) North
and (c) Up. This is further used in the definition of the noise-level time series (ê) from Figure 7. Small gaps in the data
correspond to filtered out float baseline solutions. Note the sidereal period of the time scale on the horizontal axis. The start
and end are actually 18 March 2020 23:52:08 UTC and 19 March 2020 23:48:12 UTC, but for simplicity, they are plotted at
00:00:00 and 23:56:04 UTC on 19 March 2020.
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a

b

Figure A3. Visual analysis of the statistical distribution of the (a) Smartphone accelerometer and (b) GNSS noise data sets.
Both sets of histograms generally fit the shape of the formal normal distribution curves in black (with empirical mean and
standard deviation).
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Figure A4. (a) East, (b) North and (c) Up LS-based MP correction (x̂p, black curves) of a six hour fragment of (ENU) baseline
time series of day 078 (bright red) and the resulting GNSS empirical noise (ê) level (red) post subtraction of LS polynomial
curves. For visualization purposes, the ENU noise sequences are shifted by 5 cm. Resulting ENU instrumental noise time
series show a variability (σ̂) of ±2.3, 3.2 and 6.5 mm, respectively. The noise sequences present an almost random behavior
freed from MP harmonic behavior. The start and end is corresponding to 18 March 2020 23:52:08 and 06:00 UTC.

Figure A5. (a) East, (b) North and (c) Up baseline-based MP correction (x̂m, black curves) of a six-hour fragment of the
baseline time series of day 078 (bright red) and the resulting GNSS empirical noise (ê) level (red) post subtraction of the
baseline based time series. For visualization purposes, the ENU noise sequences are shifted with 5 cm. Resulting ENU
instrumental noise time series are showing a better variability (σ̂) than in Figure A4 of ±1.9, 2.7 and 5.3 mm, respectively.
The noise sequences present an even more random behavior than in Figure A4, concluding a higher effectiveness of the
baseline-based correction at reducing MP. The start and end is corresponding to 18 March 2020 23:52:08 and 06:00 UTC.
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a
b

Figure A6. Schematics of validation methods: (a) Forward transformation for deriving acceleration information from
GNSS-based displacements. (b) Reverse transformation for deriving displacement information from smartphone based
accelerations. For more details please refer to [8,26].

Figure A7. AID experiment results: (a) Accelerometer and (b) GNSS (bottom) dynamic displacement time series. Good
match in amplitude between the displacement time series. Slightly larger amplitudes are visible in panel (a) for the high-rate
(50 Hz) accelerometer. The smartphone accelerometer displacement time series is affected by a constant clock drift, making
it run ahead of the (more accurate) GNSS receiver clock. The identified smartphone clock stability is of 0.01 s

s .
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